CHAPTER 114

THE MEASUREMENT OF TIDAL WATER TRANSPORT IN CHANNELS

R.E. Klein*

Summary

For the electromagnetic flow measurement in straits, channels etc. use is made of the electric potential difference between two points in the bottom, near the moving water. The potential difference can be put down to natural causes the water is an electric conductor and moves in the magnetic field of the earth. There are a number of quantities and variables that are of importance for the measured signal. Beside this, the measurement is above all a matter of eliminating some disturbances.

Information about the two measuring systems as applied in The Netherlands is given in this article.

Introduction

The principle of the electromagnetic flow measurement in rivers, straits etc. has been known now for about 140 years ever since Faraday conceived the idea in 1832. But it is only in the last 30 years that it has more or less successfully been used at several places in the world[2, 3, 4, 5, 6].

In The Netherlands it has now been adapted to far smaller flows (the measurements in Washington excepted [4]).

In 1964 Schumm started the investigations [7, 8].

Several difficulties had to be overcome, some of them may be of importance to those who want to apply the method themselves.

At present there are two measuring systems in use.

This research work has been commissioned by the Rijkswaterstaat.

*Technisch Physische Dienst TNO-TH (Institute of Applied Physics)
Delft, The Netherlands.

1887
The physical background

The method makes use of a natural phenomenon. Throughout the world, water moves in the magnetic field of the earth. Because water is an electric conductor, an electric potential field occurs in the water and, as a result, also in the surrounding ground. Fig 1. The potential difference measured between the electrodes in P and Q or P and R is a function of all velocities in the channel, and depends also on other quantities and variables such as "the" conductivity of the water and the bottom, the shape and size of the channel, relative changes of the depth by changes of the waterlevel, the vertical component of the magnetic field B etc.

The theoretical basis was laid by M.S. Longuett-Higgins in 1949 [1] and in 1964 extended by Schumm [7], but the problem is very complicated, so that our knowledge remains relatively limited. The proposition is now, that this potential difference depends only little on the velocity distribution (except in very shallow, wide straits), so that in many cases it is allowed to calibrate against mean velocity, discharge etc.

The influence of the vertical component of the magnetic induction B on the calibration is obvious. Fortunately in most cases it is constant enough when taken over a few years to neglect its variations. The magnetic disturbances are very small relatively and they are only an additional effect that can be compensated.

The effect of the other quantities and variables is very complicated. Therefore the systems are calibrated with a number of simultaneous velocity measurements, for instance once a year.

The measured potential difference is highly dependent on the conductive properties of the bottom. The higher it is, the lower the potential difference measured will be and the higher the influence of changes of the conductivity of the water and the waterlevel (tidal range). In The Netherlands the conductivity of the bottom is very high up to a depth of 1 km it is about one tenth of that of seawater. It causes a loss of 80 percent and it is necessary to take into account the influence of the temperature on the conductivity of the water (knowledge within 3°C is adequate).
In the two cases with which we are concerned it was found that the influence of the waterlevel is such that the system does not give the mean velocity but the discharge. It may be expected that the accuracy will range from 5 to 10%.

The problem of the disturbances

The elimination of all kinds of disturbances is an important problem, especially in The Netherlands where the level of the signals is very low. Four kinds are mentioned here:

1. Magnetic disturbances

 Along the surface of the earth potential gradients are generated by the fluctuating magnetic field (especially the horizontal component) of the earth. As already stated they give additional signals. They are eliminated by compensation by means of two signals, measured far away from any flow, in two directions perpendicular to each other, between electrodes in the ground in the same way as the measurement of the flow signal (fig. 2). Thus

 \[V_{\text{flow}} = V_{PQ} - \alpha V_{AB} - \beta V_{BC}, \]

 is formed,

 where \(\alpha \) and \(\beta \) are suitable constants.

 In our cases, where the distance between P and B is for example 15 km, the elimination is very satisfactory.

2. Earth currents caused by the electric DC railway traffic

 They may cause heavy disturbances, depending on the distance to the railway system, the intensity of the traffic, the conductivity of the top layers of the bottom etc.
In most cases the only thing to do is to avoid them, for instance by choosing great distances (10, 20 km) to the disturbing railway. In one case the influence could be reduced by compensation with a signal measured between two points in the neighbourhood of the railway and also by choosing an adequate direction of the line between the measuring points.

3 Electro-chemical disturbances in the bottom and in the electrodes

There are always fairly constant potential differences between two points in the earth. They are caused by local and extended differences in the composition of the ground water and the bottom. The variations in the compositions result in a drift of the zero level. It can be a long-term drift, but drift with the tidal frequency is also possible for example if the electrode is placed in the neighbourhood of the boundary between the fresh and the salt water in the shore. This boundary may move under the influence of the tidal changes of the water pressure, giving a slight mixing each time.

The electrodes are now placed in 5 to 10 m deep pipes, as far as possible from moving or fluctuating ground water. This also has the advantage of a sufficiently constant temperature.

We developed special purpose Ag-AgCl-electrodes. They are constant within ± 0.5 mV for a period of one year (in the laboratory). We found that many kinds of electrodes (and also ours) are extremely sensitive to electric currents, giving a long-term drift. Therefore it was necessary to place a voltage follower between the electrode and the long line that connects the measuring point with the mV-meter. In one place we found a drift of the zero level as low as 0.5 mV in a week, but at other places it is greater.
4. **Noise**

The noise that is picked up by the wires used in the telephone cables to connect the measuring points with the apparatus mainly consists of pulses and hum. Sometimes the peak value is 1000 times the signal to be measured. It is eliminated by normal filtering after the compensation of the magnetic and other disturbances has taken place, to avoid differences between the compensating and the compensated signals.

The measuring systems in The Netherlands

At present there are two measuring systems in use in the north of The Netherlands, fig. 3, for measuring the tidal flow in the Borndiep and the Marsdiep. A third, in the Eyerlandse Gat, is being prepared.

The Borndiep system

The Borndiep system, fig. 4, has three measurements for the flow (between JD and WM, OD and WM and ZD and ZM). The measurement for the magnetic compensation is between WM and OM and WM and ZM. There is a level gauge for additional data on the "Vrijheidsplaat". An example of the measurement between ZD and ZM, the two magnetic signals and the result is given in fig. 5. The amplitude of the flow signal is 3 mV, it is the lowest signal we can measure (low electro-chemical disturbances).

Fig. 6 gives an example of the flow according to "ZD - ZM" and the water level measured on the "Vrijheidsplaat". In the middle the effect of a storm in the far distance, the region between the Atlantic Ocean and the North Sea.
The Marsdiep system, fig 7

The potential difference according to the flow has been measured between ZD and ND, between the electrodes in ZM, NM and OM the two magnetic signals are measured.
The electric DC railway traffic causes heavy disturbances.
Fortunately it is an uncomplicated case. In this case compensation is possible. We use the (large) signal measured between ZD and T.

Due to the extensive clay layers deep in the bottom pronounced induced polarization influence occurs. It causes differences in the shape of the disturbances measured between the several points and these differences grow with the distance to the railway. The ZD-T-signal must therefore be filtered so that it gets the right forms before it is used for compensation.

Fig 8 is an example: the disturbed flow signal, the three compensation signals and finally the result.

The compensation of the railway disturbances is satisfactory, but not of the same quality as that of the magnetic disturbances. If necessary, it is possible to make improvements by digital filtering or the extension of the compensation system.

The only calibration available at the moment is that of a former experimental system at the Marsdiep, fig 9.
It did not work with ZD and ND but it did at two other points, one of them with more than normal electro-chemical disturbances, as will be seen on the right.

We are now building a third system for measuring the flow in the Eyerlandse Gat. It measures the flow signal between ZD' and N and uses the magnetic compensation signals of the Marsdiep system.
A fourth system may be built next year in the straits east of Ameland.

Other applications

The method is also suitable to obtain information on the flow along a coast. The most simple set-up makes use of one electrode near the coast and one far inland.
The signal gives a weighted average of all velocities, the weighting factor depending on the distances to the two electrodes. Unfortunately we know only little about these factors; theoretical research is necessary.

The flow signals of rivers are usually too small to be measured by applying the present method, due to the relatively small discharges.

We are now working on a modified method for fairly big rivers. This method makes use of an artificial alternating magnetic field in order to separate the signal from the noise.

References
1 M S Longuett-Higgins The electrical and magnetic effects of tidal streams

2 G L Bloom Water transport and temperature measurement in the eastern Bering Strait, 1953-1958
 J Geoph Res, Aug 1964, 59, 16, 3335-3354

3 K F. Bowden The flow of water through the Straits of Dover related to wind and differences in sea level

4 R M Morse, M Rattray Jr, R G Paguette, C A Barnes
 The measurement of transports and currents in small tidal streams by an electromagnetic method
 Univ of Washington, Dep of Oceanography, Techn Rep 57, 1958

5 B H Olsson The electrical effects of tidal streams in Cook Strait, New Zealand
 Deep-Sea Res 1955, 2, 204-212

6 G K Wertheim Studies of the electric potential between Key West, Florida and Havana, Cuba
 Woods Hole Oceanogr Inst Ref 53-95, 1954.
7 C Schumm. Electromagnetic flow measurements in the Marsdiep.

8 C Schumm. Potentiaalmetingen in het Marsdiep.
TNO-nieuws 1966, 21, 110-121.
The Northern Part of the Netherlands

North Sea

- Wadden Sea
- Marsdiep
- Eyerlandse Gat
- Borndiep

Fig. 1

Fig. 2

Fig. 3

TIDAL WATER TRANSPORT

1895
FIG. 4
THE BORNDIEP SYSTEM
FIG 6 BORNDIEP SYSTEM
Flow and tide from 27 sep to 1 oct 1969
FIG 7
THE MARSDIEP SYSTEM
TIDAL WATER TRANSPORT

DIG 9 MARSDEP NOV 23rd-24th 1968
Calibration of a former, experimental system

HIGH WATER +0.16 m
LOW WATER -0.95 m

FLOW ACCORDING TO CURRENT MEASUREMENTS

VERTICAL TIDE

FLOOD STREAM

[Graph showing tidal water transport with time and flow measurements]