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Abstract 

The unsteady-state response of a slender body in nonlinear shallow- 
water wave environment was studied  Numerical scheme has been developed 
which permits rapid calculation of the following, which describe the 
motion of an arbitrarily shaped body in three degrees of freedom any- 
where within such an environment 

a  Unsteady-state response 
b  Centroid locus 
c  Forces and moments 

Sample calculations are given for a typical submersible  Results are 
expressed in generalized parameters, defining the circumstances wherein 
various displacements, velocities, accelerations, etc , would occur 

Introduction 

The primary objective of the present work was to study the unsteady 
state response of a slender body in nonlinear shallow-water wave environ- 
ment  Consideration was restricted to the wave-induced motions of a 
rigid body confined to one plane, hence, involving only three degrees 
of freedom—either surge, pitch, and heave, or sway, heave, and roll 
This would correspond to the case when the wave is long-crested and is 
incidental along the body in the former case and is incidental to the 
broad side in the latter case 

The hydrodynamic forces under consideration consist of four parts 
pressure and inertial forces that can be derived from velocity potential, 
drag force that is proportional to the square of the relative velocity, 
restoring force due to the relative position and orientation of the body 
m the fluid, and thrust and uprighting moment due to the body 
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The seaway which enters as the input to the system, is derived from 
the following wave theories 

a  Cnoidal wave theory of Keulegan and Patterson for high, long, 
near-breaking and breaking waves 

b  Airy linear theory for short period waves 

c  McCowan solitary wave theory of matching period for very long 
waves 

These theories are chosen on the basis that they provide the best 
approximation to internal wave characteristics as obtained experimentally 

A numerical scheme has been developed which permits rapid calcula- 
tion of the following, which describe the motion of an arbitrarily shaped 
body in three degrees of freedom anywhere within such an environment 

a  Unsteady-state response 
b  Centroid locus 
c  Forces and moments 

Results are expressed in generalized parameters, defining the circum- 
stance wherein various displacements, velocities, accelerations, etc , 
would occur 

The Equations of Motion of a Submerged Body 

Consideration was restricted to the wave-induced motions of a rigid 
submerged body confined to one plane, hence involving only three degrees 
of freedom—either surge, pitch, and heave or sway, heave, and roll, as 
defined on Figure 1  This would correspond to the case when the wave is 
long-crested and is incident to along the body in the former case and 
incident to the broad side in the latter  Although, m principle, these 
two cases are the same hydrodynamically, they differ somewhat in the 
method of obtaining an engineering solution 

Two sets of coordinate systems were employed in analyzing the 
responses of a submerged body, they are 

a  Fixed coordinate system used to describe the sea conditions and 
the position of the body, the origin is arbitrary and was 
chosen here at the sea bottom with the x-axis parallel to the 
longitudinal axis of the body, the y-axis pointing upward verti- 
cally, and the z-axis m the transverse direction 

b  Body coordinate system used to describe the oscillations of the 
body  The body had three principal axes, hence six degrees of 
freedom, corresponding to a translation and a rotation for each 
axis   Symool definitions are shown in Figure 1  The body axes 
have their origin at the center of gravity of the body and are 
coincident with the intersections of the principal planes of 
inertia 
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The problem of body response in a wave environment is treated in 
four steps 

a Derivation of flow environment 
b Derivation of hydrodynamic excitation 
c Derivation of body response and tracing of locus of body motion 
d Derivation of forces exerted on the body 

Incident Wave Parallel to the Longitudinal Axis 

For motions confined to the xy-plane, it is assumed that motion is 
described by three functions of time X(t), Y(t), and 8(t), which are such 
that the location of the center of gravity of the body is (X,Y) at time 
t, and the angle of inclination of the body is 6 (Figure 1)  Then the 
equations of motion of the body are 

MX  =  F 
x 

MY  =  F M1* 
y 

where M is the natural mass, I9 is the pitching moment of inertia, and 
Fx. Fy> an(i Fg are the total hydrodynamic forces and moments on the body 
The mam problem is, of course, the estimation of these hydrodynamic 
forces 

It is convenient to separate the hydrodynamic forces into four 
parts  pressure and acceleration forces that can be derived from velo- 
city potential, velocity force that has to be estimated using empirical 
drag coefficient, restoring force due to the relative position and orien- 
tation of the body in the fluid, and thrust or uprighting moment provided 
by the body 

For a body which is slender (1 e , has small cross-bection relative 
to its length and to a typical wave length), the pressure forces, or 
Froude-Krylov forces (Korvm-Kroukovsky, 1961), are relatively easy to 
estimate  Suppose the given incident pressure field is p(x,y,t) and the 
local horizontal and vertical pressure gradients at a station 5 of the 
body are calculated 

P(5,t) = |^(X + ?cos6,Y + § sine, t) (2) 

Q(£,t)    =    |£(x + §cos6,Y H  I sine, t) (3) 
dy 
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then the pressure forces  are easily seen to be 

F
FK  =   .1 P(?.t)S(?)d? (4) 

rFK = -I Q(;,t)S(?)d§ <5> 
y h 

and the pitching moment is 

F
TK
 = -cose/5Q(;,t)s(5)d| 4 sme/^P(?,t)S(Od5 (6) 

Here S(£) is the area of the cross-section of the body at station £, and 
the integrations extend over the length of the body  The acceleration 
forces include that due to the motion of the body and that due to the 
diffraction of the wave field by the body  If the body is slender, its 
effect on the fluid is sensible only when there is a relative motion 
across its axis  Thus, the longitudinal added mass of a spheroid with 
a thickness ratio 1 m 10 is only 2 percent of the displaced mass (Lamb, 
1932), whereas the lateral added mass is nearly equal to the displaced 
mass  Hence, "strip" methods may be used to obtain the added inertia 
effects by considering only the cross flow at each station 5  The fluid 
m the neighborhood of station £ has an acceleration 

-P(§,t)sin6 - 1Q($, t)cosfi 

normal to  the body axis, whereas  the body itself has acceleration 

-Xsin8 + Y cos8 + 5*9 

Hence,   there  is  a relative  acceleration  of  the section  at  5  of 

a(§)    =    -(x + ip)sin0 4- ^Y + -iQ^cosG 4   ?*8 (1) 
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The cross flow, or slender-body hypothesis, now asserts that the 
hydrodynamic effect of this relative motion is an opposing force 
y(£)a(E)d5 on a section of thickness d£, where u(5) is the added mass 
of the section, calculated as if the flow were two dimensional, lrro- 
tational, and infinite in extent  Resolving horizontally and vertically 
and taking moments, we have inertia terms 

*"£ = -/ M(?)a(§)ci:sln8 (8) 

T\     = / u(?)a(§)cl?cosG (9) 
y I 

) Q  -   \  5<JiOa(§)<l5 (10) 

The force generated through the relative velocity between the body 
and the fluid flow is associated with the momentum defect of the fluid 
due to the body  This force is generally expressed in the form 

where 

FD=p2AMV (ID 

C = drag coefficient 

A = frontal area (normal to flow) 

V = relative flow velocity 

The drag coefficient is a function of Reynolds number and differs 
for different body geometry  The velocity force m the cross-flow 
direction and longitudinal-flow direction can be written separately as 

FDT, = Pzj[CDlVRT,|VRndA 

-P^il^lV^dA (12) 



SHALLOW-WATER WAVES 1729 

and 

F„„ =  pj     Cn|VRE|Vu,dA 

P^J   |VR;|VKP/1A d3) 

where 

F^ = drag force m the cross-flow direction 

F  = drag force m the longitudinal-flow direction 

F _ = average drag coefficient in the cross-flow direction 
DC 

F  = average drag coefficient in the longitudinal-flow direction 

and the integral limits S, and B denote that the integrations are perform- 
ed along the longitudinal axis and along the vertical axis of the body 

The relative velocities in the cross-flow direction V  and in the 
longitudinal direction V  are, respectively, 

VR      =    -URsin9 + VRcos9 + §8 (14) 

VR§    =    UR
COS0

 
+ VR<5in6 (15) 

with U_ and V    defined as 
K is. 

UR   =X-« (.6, 

where X and Y are the velocity components of the body in the x- and y- 
directions and u and v are the velocity components of the fluid in the 
x- and y-directions 

Again, like inertia terms, resolving horizontally and vertically and 
taking moments to obtain the drag forces 



1730 COASTAL ENGINEERING 

fD   -    -F„.cos6 + rn   sine (18) 

FD   =    -Fn.sm9 - IV   cosB (19) 
y D^> Dr) 

*? = -p^A^Rr,!^^ (20) 

The restoring forces are simply 

R = 0 (2D F 

F      =    -w for partial submergence (22) 
y s 

=    0 for full submergence 

where w    is  the partial weight of the body  that is  surfaced 

The restoring moments  are 

'R     =     -•£¥  eesm9 - cose/     P0g?dV (23) 

'1 

for partial submergence and 

* ft w K    s 

for full submergence 

where 

¥ = volume of displaced water 

ee = metacentric height of body 
p = density of sea water 
ps = density of body 
11  = body length above free surface 
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Finally, the thrust and righting moments produced by the body 
when resolved into x-, y-, and 8-directions, are 

rj =  itcos( 

ry   = itsine 

-M e r 

(21) 

(?5) 

(?6) 

where T    is   the  thrust,   and M  6  is   the  righting moment,  which  is  assumed 
to be proportional to  the pitch angle 

Thus, we have completed the disposition of the total  forces  acting 
on  the body,   and  the  equations  of motion become 

MX    =    FFK + rA + FD + Fa 

X XXX 

MY    =    FFK + FA ^  FD * FR + FT 

y y       y       y       y 

F 8    =    FfK + FA + F? + F* +   FT 

(27) 

When expressed explicitly,   the equations  of motion  are 

MX - fp(|.t)S(§)d| -   (  u(§)a(?)d§sin6 -  p-pi/|VR§|VR?dAcose 

"DC. 

M 

•   y   2    jlVHrilvRT1
dAsl"e^ T

t
COb0 

A 

Y   =    -I   Q(§.t)«3(?)d§ 1   I  ur)i(?)d^cose - p-f^j |VK?|VR?dAcosO 

DC 
r     V,.     Vr   dAcosG -»  T.sin8 + F 
c     I  '    *<-T\>    Kri t y 

>(28) 

Ie9    =    -cos6|   |Q(5.t)S(5)d5 + sme     ?P(?   t)S(?)d| +1  §u(5)a(§)d§ 

'i \ 

p-T£/5lvRT1|vRT1dA.Mre + Fj 
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where Fy and Fg are defined in Eqs  22 and 23, respectively  Once the 
flow field has been described, these three simultaneous equations can be 
solved using a high-speed computer 

The surging force, heaving force, and pitching moment are evaluated, 
respectively, according to the following equations 

FB    =    M(Xcos9 + Ysm9) - I0(6)2 (29) 

F     =   M( XsinG + YcosB) - IQ6 (30) 

MT   =   IgB (3D 

where 

F = surging force 

F = heaving force 

>L = pitching moment 

Incident Wave Perpendicular to the Longitudinal Axis 

The equations of motion are similar to the previous case, except 
the evaluation of some forces were different  In the determination of 
the mass coefficients, the mam body was treated as a cylindrical body 
of variable diameter  The drag term was calculated in a much similar 
way as the acceleration term, with due consideration in choosing drag 
coefficients for different parts 

The calculation of pressure force, and restoring force, remains 
the same as in the case of parallel waves  The complete calculations 
of motion for sway, heave, and roll, when expressed in force components, 
are, respectively, 

MZ = rrK < rA + r
D 

7 7 7 

MY = rrK + FA i rD + FT • rR        }  (32) 
y    y  y  y   y 

_FK   A , „D   T   R I (0   -   F  + F„ + F  + r„ r I , 
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Wave Environment and Flow Field 

Three wave theories were used for evaluating excitation forces 
They are 

a  Cnoidal wave theory of Keulegan and Patterson for high, long, 
near-breaking, and breaking waves 

b  Airy linear theory for short period waves 

c  McCowan solitary wave theory for very long waves 

The cnoidal wave has wave profile (Wiegel, 1964) 

yt 
+ Hcn2[2K(k)(t-i) k] (33) 

with wave period to  the first order 

T   =   -#% 
/3gH 

kK(k) 

•*T[-'^-3f§-)] 
(34) 

The corresponding wave length is 

16dJ 

3H kK(k) (35) 

where 

y = water surface elevation measured from sea bottom 
s 

H = wave height 
en = one of the Jacobian elliptic functions 
k = a real number varied from 0 to 1 

K(k)= elliptic integral of first kind 
E(k)= elliptic integral of second kind 

't 
H((d/H) - 1 + (I6d3/3L2H) Jk(k)[K(k)  E(k)]}) 
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In Eq 34, when T xs plotted as a function of k for fixed d and H, 
it takes a form shown in Fig 2  Thus, if one starts at point A on the 
curve for increasing value of T, the corresponding k can increase or 
decrease depending upon which branch one follows  The left branch should 
be discarded because it corresponds to increasing values of T with de- 
creasing values of L, which is physically meaningless  For waves of 
periods shorter than T , the Airy theory is to be applied  By differen- 
tiating Eq  34 with respect to k and equating the result to zero, 

H " X ~ 772L4  VK(k) + 11 
2k 

for T,/g/d = minimum 

Thus, the value of (T J g/d)mlrl versus d/H so obtained defines the 
matching line between the cnoidal wave and linear wave  It is also 
evident from Fig 5 that, when the elliptic parameter approaches unity, 
the period approaches infinity rapidly  For instance, when the k values 
are changed from 1 to 0 9999, the period 4K(k) is decreased from in- 
finity to about 7ir  In the numerical calculation, the wave period (or 
length) is specified, and the value of k is found by Eq 34 through 
iteration  For very long waves, the value of k is very nearly equal 
to 1, and it becomes impractical to obtain numerically the value of k 
through iteration  In this case, the solitary wave, which is the limit- 
ing case of the cnoidal wave, can be treated as having a finite period 
for many practical purposes  The upper limit of elliptic parameter has 
been chosen as equal to 0 9999 in the present study  Figure 3 shows the 
regions where the different wave theories apply 

Method of Computation 

Numerical Analysis 

The differential equations to be solved are a set of three simul- 
taneous, nonlinear second-order equations  The fourth-order formula of 
Runge-Kutta (Hildebrand, 1956) is used to perform the numerical evalua- 
tion  This method, which extends forward the solution of differential 
equations from known conditions by an increment of the independent 
variable without using information outside this increment, has been 
applied extensively in solving initial value problems  In essence, the 
fourth-order formula evaluates the slope of the wave at the initial 
point, the 1/4 point, the 1/2 point, and the 3/4 point of the interval 
of increment  The numerical solution is then obtained in agreement with 
the Taylor series solution through terms of the fourth order of the in- 
terval h  The local truncated error is then of the order of h , where h 
is the size of the increment  In the present case, the independent 
variable is the nondimensional time, which is equal to t/T, where t is 
real time, and T is the wave period 
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After several tests, the incremental interval h = At/T was selected 
at 1/64 throughout the computation 

Input Conditions 

The independent elements which affect the behavior of the body are 

1 Environment 

Wave height H 
Wave period T 
Water depth d 
Gravity g 

2 Fluid properties 

Fluid density p = 2 0 
Viscosity y (Not explicitly involved, appears m terms of drag 

coefficients) 

3 Submerged body 

Length X. 
Cross sectional areas along the lomtudmal coordinate S 

(i = 1 to m  number of station) 
Longitudinal moment of inertia In u 

Transverse moment of inertia I 
Weight W 
Metacentric height ee 
Righting moment Mn 

Added mass coefficients C 's 
m 

4 Initial conditions 

Depth of submergence d 
Velocity V 

Angle of attack a 

Form of first effective wave F 
Orientating submerged body 0 

All of these factors are required inputs m the computer program 

Numerical results 

Figures 4 and 5 show, respectively, the vertical and horizontal 
displacements of the center of the body in a wave environment  In these 
figures, the free surface variation is drawn with respect to che gravity 
center of the submerged body  In the case of Figure 4, che body was 
initially placed at the middle water depth  The body has a tendency to 
surface  In the case of Figure 5, the body was placed right beneath the 
free surface, rose partially above the surface, and then dived down to 
hit the bottom, partially due to the additional downward force imposed on 
the body from the reduction of buoyancy force resulting from the surfacing 
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Fxgures 6 and 7 show the differences of the acceleration pattern of 
the body for different initial positions  The oscillation was more 
regular when the body was initially placed at mid-depth  The amplitude 
of the oscillation grew with time as the depth of the submergence de- 
creased, as shown in Figure A  Figure 7 shows the acceleration pattern 
for the case where the body was placed right beneath the free surface 
The sudden increase of acceleration results from surfacing  Similar 
patterns were found for the heaving forces, which are closely related 
to these accelerations  A typical pitching motion is shown in Figure 8 

Discussion 

The present work is to provide an analytical tool to examine the 
dynamic behavior of a submerged body when it is exposed in a shallow- 
water wave environment  A thorough investigation, considering every 
variable as listed m the previous section, though desirable, would be 
very cumbersome  Therefore, the consideration was restricted to specific 
hull configurations  Attempts were then made to examine the influence of 
environmental variables on the response of the structure  Even with such 
restriction, only qualitative evaluations can be made 

The wave height and the water depth were found to be the most in- 
fluential variables  Dynamic stability, l e , chance of capsize, depends 
significantly on them  Wave period is less important for the unsteady- 
state case considered  Original altitude of the body is also found to 
be of secondary importance, partially because the wave theories, even to 
the second order, yield hydrostatic pressure distribution in the vertical 
direction  This conclusion can not, however, be extended to the region 
where the body is close to the surface as illustrated in Figures 4 and 5 

The water inertia force, better known as the added mass effects, was 
found to vary with the altitude of the body  CorVection was made by 
using experimentally determined added mass coefficients m the numerical 
computation  This coefficient, being approximately equal to 0 98 when 
the submergent depth is equal to or larger than six times the height of 
the body, decreases monotonically with the decreasing of submergence to 
a value of approximately 0 75 when the body is barely submerged  Further 
decrease in submergence will result in significant surface disturbance 
and was not considered  Because of the high waves used in the computa- 
tion, it was found that the velocity-related force is no longer negligi- 
ble  Entirely different results were obtained for the cases in which the 
velocity-related force was neglected, linearized and left to be propor- 
tional to the velocity square 

Also worth mentioning is the effect of the form of the first wave 
that encounters the body  Since waves are oscillatory in nature, the 
unsteady response of the body depends strongly on when the body is re- 
leased in the wave cycle  In general, the body has a net translation in 
the wave direction when the first wave is in the form of a crest, whereas 
the net translation is opposite to the wave direction if the first wave 
is a trough  This phenomenon can easily be demonstrated experimentally 
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Conclusion 

Through analytical consideration, a numerical method was developed 
to suit the engineering purpose of quick assessment of the dynamic be- 
havior of submerged slender body m high amplitude shallow water waves 
To serve this purpose, as many variables as possible of engineering 
interest were included  In exchange, rigor in mathematics was com- 
promised  Approximations such as strip theory, and empirical relations 
such as drag coefficient were used  Much desired are the future im- 
provements of wave theory in shallow water region and a better under- 
standing of velocity-related forces in oscillating fluid flows 
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