CHAPTER 30

INTERACTION BETWEEN WAVES AND CURRENTS
Ivar G Jonsson
Ph D , Coastal Engineering Laboratory
Christian Skougaard ${ }^{1}$
M Sc , Coastal Engineering Laboratory
John D Wang
Graduate Student
Technical Unaversity of Denmark

ABSTRACT

This paper presents some theoretical results of a general study of the interaction between surface gravity waves and a steady current Assuming irrotational flow and a second order Stokes wave motion, the main objects of the paper have been
a. To present a simple graphical method for the computation of the wave length in a current field
b To antroduce the concept of the mean energy level for a perlodic wave motion with a steady current superimposed.
c To utilaze this for the calculation of the "current-wave set-down" for a two-dımensional motion with a constant discharge over a gently sloping bottom
d. To present a complete set of conservation equations for the case considered under point c
e To present graphs and tables for the variation in length and height of wave for the case considered under point c

No experimental results are presented

1 JNTRODUCTION

Aspects of non-linear interaction between gravity waves and a current motion have recelved increasing attention during the last 10 years The works by Longuet-Higgins and Stewart [5], [6], and. Whitham [8] are already classics The mechanism is intimately connected wath the so-called radiation stress

However, there are still basic features related to this problem that are not wadely known One of these is the important concept of the mean energy level for a periodic, urrotational flow (For a pure wave motion the mean energy level was introduced by Lundgren [7]) One of the objects of the present study is to show how this concept can yleld the "currentwave set-down" in a sumple way, and to demonstrate how it affects the conservation equations for a two-dimensional current-wave motion propa-

[^0]gating over a gently sloping bed (see Fig 5-A) The conservation equations for wave crests and energy are solved to yleld graphs and tables for the variation in wave length and wave helght for this sltuation The wave length graphs and tables can be used, though, for any angle between wave front and current direction provided the current velocity is replaced by its component in the direction of the wave orthogonal A graphical method for the determination of the wave length in a homogeneous current field will also be introduced This method permits a simple discussion of various domains where different solutions are applicable

Energy losses are neglected in this paper The current velocity is assumed to be steady and constant over the water depth, and only surface waves are considered A second order Stokes expansion is used in the calculatıons

2 NOTATION

c	(m/s)	Wave celerıty
${ }^{c}{ }_{g}$	(m/s)	Wave group celerıty
D	(m)	"Geometrical water depth" ($=\mathrm{h}+\Delta \mathrm{h}$, see Figg 4-A)
E	($\mathrm{Nm} / \mathrm{m}^{2}$)	Mean specafic wave energy ($=1 / 8 \gamma \mathrm{H}^{2}$)
\bar{E}_{f}	($\mathrm{Nm} / \mathrm{m} / \mathrm{s}$)	Mean energy flux per unit width
F_{W}	(N / m)	Radiation stress
g	(m/s ${ }^{2}$)	Acceleration due to gravity
H	(m)	Wave herght
h	(m)	"Physical water depth" (see Fig 4-A)
$\Delta \mathrm{h}$	(m)	"Current-wave set-down" (see Fig 4-A)
k	$\left(m^{-1}\right)$	Wave number ($=2 \pi / L$)
L	(m)	Wave length
MEL		Mean energy level (see Fig 4-A)
MWL		Mean water level (see Fig 4-A)
n	(dım less)	$c_{g r} / c_{r}$
p	($\mathrm{N} / \mathrm{m}^{2}$)	Pressure
q	($\mathrm{m}^{3} / \mathrm{m} / \mathrm{s}$)	Discharge per unit wadth ($=\mathrm{h} \mathrm{U}$)
q^{*}	(dım less)	Dimensionless discharge per unit wadh ($=q /\left(c_{0} L_{0}\right)$)
s_{v}	(dım less)	Slope of straight line in Fing 3-B
T	(s)	Wave period
t	(s)	Tame
U	(m/s)	Current velocity (positive an dırection of c)
u	(m/s)	Horizontal particle velocity
w	(m/s)	Vertical partacle velocity
x	(m)	Horızontal co-ordinate

$z \quad(\mathrm{~m})$	Vertical co-ordinate
$B \quad(\mathrm{rad})$	Angle between wave front and current (interval 0 to $\pi / 2$)
$\gamma\left(\mathbb{N} / \mathrm{m}^{3}\right)$	Specific welght of water
n (m)	Water surface elevation
$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Density of water
$\phi \quad\left(\mathrm{m}^{2} / \mathrm{s}\right)$	Velocity potential ($u=-\partial \phi / \partial \mathrm{x}$, etc)
$\omega \quad\left(s^{-1}\right)$	Angular frequency ($=2 \pi / T$)
	Mean value slgn
Suffix a denotes	"absolute"
Suffix b denotes	"bottom"
Suffix o denotes	"deep water with U equal to zero"
Suffix r denotes	"relative" (to the current)
Suffix t denotes	partial differentiation with respect to time t

3 WAVES IN A HOMOGENEOUS CURRENT FIELD

Consider a region of constant water depth h, where the absolute wave period \mathbb{T}_{a} and the current velocity U are given

WAVE LENGTHS

Fig 3-A Definition of the angle β
If β is the angle between wave front and direction of current (Fig 3-A), the following four equations are available to determine the unknowns the absolute and relative wave celerıties c_{a} and c_{r}, the wave length L, and the relative period \mathbb{T}_{r}
$L=c_{a} T_{a}$
$c_{a}=c_{r}+U \sin B$
$L=c_{r} T_{r}$
$c_{r}=\sqrt{\frac{g L}{2 \pi} \tanh k h}$
where k is the wave number The current velocity U is considered positave to the same side of the normal N as is inducated by the positive direction of the wave orthogonal β lies, by definition, in the interval $0 \leq \beta \leq \pi / 2$ (31) to (3 4) now yield for determination of L

$$
\begin{equation*}
\sqrt{\frac{h}{L} \tanh k h}=\sqrt{\frac{h}{L_{o}}}\left[1-\frac{U \sin \beta T_{a}}{h} \frac{h}{L}\right] \tag{35}
\end{equation*}
$$

where L_{o} us defined as

$$
\begin{equation*}
L_{0} \equiv \frac{g}{2 \pi} T_{a}^{2} \tag{36}
\end{equation*}
$$

le the deep water wave length wlth U equal to zero
(3 5) determines implicitly h / L as a function of h / L_{o} and
$U \sin \beta T_{a} / h$, and the equation can be solved by iteration (see chapter 6)
It is not evident, however, whether a solution to (35) is unique - or whether it exists at all A graphical representation of (35) reveals this Writing (3 5) as

$$
\begin{equation*}
F(h / L)=G(h / L) \tag{37}
\end{equation*}
$$

it appears that graphically h / L can be found as the value of the abscissa for the intersection of the F - and G-curves, see Fig 3-B The F-curve is unıque, and values can be extracted from a "conventional" wave table

Fig 3-B Graphical determination of L (schematical)

The G-curves are straight lines through the point ($0, \sqrt{h / L_{0}}$), with a slope of 1 horizontal to s_{v} vertical, where

$$
\begin{equation*}
s_{v}=-\sqrt{\frac{h}{L_{0}}} \frac{U \sin \beta T_{a}}{h}=-\sqrt{2 \pi} \frac{U \sin \beta}{\sqrt{g h}}=-\frac{U \sin \beta}{c_{0} \sqrt{h / L_{0}}} \tag{38}
\end{equation*}
$$

Here c_{0} 1s defined as

$$
\begin{equation*}
c_{o} \equiv \frac{g}{2 \pi} T_{a} \tag{39}
\end{equation*}
$$

1 e the deep water wave celerıty with U equal to zero
Fig 3-B now enables us to discuss the solution(s) to (35) in detail (h, T_{a} and β are assumed constant, so s_{v} becomes directly proportional to - U) ${ }^{\text {For } U \text { positive we have case (1), and a unıque solution exists for } L}$ This also applies to case (2), where U Is zero For a negative current (case (3)), there are three possibilities In case (3a) there are theoretically two solutions for L If it ls argued that the variation of L must, for physical reasons, be continuous for $U \rightarrow 0$, only one solution is possable Thas means that the larger value for L should be chosen, as shown in the figure In case (3b) the G-curve is a tangent to the F-curve, and U has attaned its minimum value (always negative), as has the wave length, $L=L_{m ı n}$ This case of "maximum counter-current" corresponds to

$$
\begin{equation*}
\sqrt{\frac{h}{L} \tanh k h}=\frac{1}{1-n} \sqrt{\frac{h}{L_{o}}} \tag{310}
\end{equation*}
$$

wath

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{c}_{\mathrm{gr}}}{\mathrm{c}_{\mathrm{r}}}=\frac{1}{2}\left[1+\frac{2 \mathrm{kh}}{\sinh 2 k h}\right] \tag{array}
\end{equation*}
$$

$c_{\text {gr }}$ being the relative wave group celerıty From (3 5) and (3 10) we then find that the absolute wave group celeraty is zero for $L=L_{m i n}$

$$
\begin{equation*}
c_{g a}=c_{g r}+U \sin \beta=0 \tag{312}
\end{equation*}
$$

(It wall be shown in chapter 5 that in the case of a two-dimensional wave motion ($\sin \beta=1$) progressing against a current over a gently sloping bed, the wave height reaches infinity at the water depth at which (312) is fulfilled) In case (3c) there is no solution for L It is readily seen from Fig 3-B that - other things being equal - a positive current "lengthens" the waves whereas a negative current "shortens" them

A full account of the graphical method, including its practical application, is found in [4] Solutions to (3 5) (with sin $\beta=1$) are presented in chapter 6

For deep-water waves (for Instance $h / L>05$) (35) can be solved explacatly

$$
\begin{equation*}
L=\frac{1}{4} L_{0}\left[1+\sqrt{1+4 \frac{U \sin B}{c_{0}}}\right]^{2} \tag{array}
\end{equation*}
$$

MOMENIUM AND PRESSURE FORCES ("STRESSES")
In thas paper wave helghts wall be calculated only for two-dimenslonal flow Stresses and energy fluxes will therefore be calculated only
for the special case $\beta=\pi / 2$ Taking mean values over period T_{a}, the following total force (normal "stress") over depth h and per unit width is found in a section at right angles to the current vector (and so in this case also to the direction of wave propagation)

$$
\begin{equation*}
\sigma=\frac{1}{2} Y h^{2}+\rho h U^{2}+F_{W} \tag{array}
\end{equation*}
$$

In this expression, F_{W} is the radiation stress

$$
\begin{equation*}
F_{W}=\frac{1}{16} \gamma H^{2}\left[1+2 \frac{2 k h}{\sinh 2 k h}\right]=\left(2 \frac{c_{g r}}{c_{r}}-\frac{1}{2}\right) E \tag{array}
\end{equation*}
$$

where E is the mean specific wave energy The first two terms in (3 14) are readıly discernıble

ENERGY FTUX
The mean energy flux over depth h and per unit width depends upon the zero level for potental energy, since a net current is present Taking the mean water level as level we find for $\beta=\pi / 2$ in a section at right angles to the current vector

$$
\begin{equation*}
\bar{E}_{f, M W L}=\frac{1}{2} \rho h U^{3}+\left(U+c_{g r}\right) E+U F_{W} \tag{316}
\end{equation*}
$$

This expression has already been given by Longuet-Higgins and Stewart [5]
The paradox arises that although (3 16) may be interpreted physically, it is of no direct use for the calculation of the wave helght variation on a non-unlform current (because of the varlation in the mean water level) This will be elucidated in chapters 4 and 5

In these and the subsequent calculations the following restriction on a Stokes wave must be borne in mind For long waves the "Ursell parameter" ($\mathrm{H}^{2} / \mathrm{h}^{3}$) must not exceed a certain number

4 THE MEAN ENERGY LEVEL

As a computation of the wave helght variation requires a knowledge of the mean energy flux at any station corresponding to the same horizontal datum, it is amperative to determine the variation in the MWL over an "arbitrary" (here gently sloping) bottom In other words, the "set-down" of the MWL is wanted The discussion is confined to periodic, irrotational flows These two conditions are written in the frames in Fig 4-A (For simplicity we consider two-dimensional flow only)

In the figure we have a sloping, known bottom and a sloping, but unknown, MWL And we have a horizontal datum, $z=0$ The mean water level is given by

$$
\begin{equation*}
\bar{n}=z_{b}+h \tag{array}
\end{equation*}
$$

so the determination of the MWL calls in fact for a definition of the water depth h In the present case, which is a second order theory in wave helght, but is also a "zero-order bottom-slope theory", it is natural to define the water depth from the mean bottom pressure

Fig 4-A Illustration of the "set-down" (schematical)

$$
\begin{equation*}
h=\frac{1}{\gamma} \overline{p_{b}} \tag{42}
\end{equation*}
$$

We still have not utillzed the fact, that the flow is arrotational and periodic The Bernoulli equation - presented with mean values over period T_{a} - 1 s therefore introduced

$$
\begin{equation*}
\mathrm{z}+\frac{\overline{\mathrm{p}}}{\gamma}+\frac{1}{2 \mathrm{~g}}\left[\overline{\mathrm{u}^{2}}+\overline{\mathrm{w}^{2}}\right]=\frac{1}{g} \overline{\phi_{t}}=\text { const } \tag{43}
\end{equation*}
$$

(ϕ Is defined, so that $u_{1}=-\partial \phi / \partial x_{1}$) The fact that the right hand side is independent of x and $\frac{1}{z}$ is easily ${ }^{1}$ seen from

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}}\left(\frac{\overline{\partial \phi}}{\partial t}\right)=\bar{\partial}\left(\frac{\partial \phi}{\partial t}\right)=0 \tag{array}
\end{equation*}
$$

since the flow is periodic
This means that a constant horlzontal level is now found which is unherently connected whth the flow atself - and andependent of the arbitrary datum From the datum we can mark $\overline{\phi_{t}} / \mathrm{g}$ vertically, and we wall arrave at the same level for any x This level wall be called the mean energy level (MEL), since it contans the three terms that are analogous to conventional steady hydraulics Combining (41), (42) and (43) (at the bottom) we find the MWL

$$
\begin{equation*}
\bar{n}+\frac{l}{2 g}\left(\overline{u_{b}^{2}}+\overline{w_{b}^{2}}\right)=\frac{1}{g} \overline{\phi_{t}}=\text { const } \tag{45}
\end{equation*}
$$

Since the constant in (45) is the distance from the datum up to the MEL, the set-down of the MWL - as defined by (41) and (42) - is

$$
\begin{equation*}
\Delta \mathrm{h} \equiv \mathrm{D}-\mathrm{h}=\frac{1}{2 \mathrm{~g}}\left(\overline{u_{b}^{2}}+\overline{\mathrm{w}_{b}^{2}}\right) \tag{46}
\end{equation*}
$$

(D could be termed the "geometrical depth", In contrast to h, which is a "physical depth") Assuming the discharge q to be finite anywhere, it appears from (46) that the set-down $\Delta \mathrm{h}$ is in fact the depression of the MWL at an arbitrary depth below the MWL at infinite depth And this depression equals the mean velocity head at the bottom)

The actual analytical expression for the set-down in our two-dimensional combination of a steady current and a wave motion is found as follows It is assumed that locally, we can use the velocity potential corresponding to a horizontal bottom This is - correct to second order wath MWL as datum

$$
\begin{aligned}
\phi= & -U x+\frac{H c_{r}}{2} \quad \frac{\cosh k(z+h)}{\sinh k h} \sin \left(\omega_{a} t-k x\right) \\
& +\frac{3}{32} \frac{c_{r}}{k}(k H)^{2} \quad \frac{\cosh 2 k(z+h)}{\sinh 4 k h} \sin 2\left(\omega_{a} t-k x\right) \\
& +\frac{g H^{2}}{8 h c_{r}} x+\left(\frac{1}{2} U^{2}+\frac{g H^{2}}{16 h} \frac{2 k h}{\sinh 2 k h}-\frac{g H^{2}}{8 h} \frac{U}{c_{r}}\right) t(47)
\end{aligned}
$$

(47) assumes $\bar{n}=0$, so (45) - (47) yleld durectly

$$
\begin{equation*}
\Delta \mathrm{h}=\frac{\mathrm{U}^{2}}{2 \mathrm{~g}}+\frac{\mathrm{H}^{2}}{16 \mathrm{~h}} \frac{2 \mathrm{kh}}{\sinh 2 \mathrm{kh}}-\frac{\mathrm{H}^{2}}{8 \mathrm{~h}} \frac{\mathrm{U}}{\mathrm{c}_{\mathrm{r}}} \tag{48}
\end{equation*}
$$

for two-dımensional flow It will be observed in (4 8) that, in addıtion to the "current set-down" (first term) and the "wave set-down" (second term, see [7] and [1]), an interaction term appears (This last term was unfortunately missing from two previous publications from our laboratory Progress Report No 6 and a loose enclosure in Progress Rephert No 7 This error was corrected in [3] p 20, where some other Corrigenda were also presented) Note that although (48) contains a negative term if U is positive, $\Delta \mathrm{h}$ can never become negatıve, according to (4 6)

It should be added that the set-down for a pure wave motion has been measured in a wave channel by Bowen et al [I] They found that the theory predicts the set-down outside the surf zone very well (They also found the set-up inside the surf zone)

5 TWO-DIMENSIONAL WAVE TRANSFORMATION

The two-dimensional current-wave system, which now will be considered in some detall, is shown schematically in Fig 5-A The five main unknown quantities that we want to calculate are The wave length L, the current velocity U, the set-down Δh, the "physical water depth" h and the wave helght H (c_{a}, c_{r} and T_{r} can hereafter be found from (31)-(34), wath $\sin \beta=1$) We assume that we know the absolute wave perıod T_{a}, the discharge q, the bottom topography $D=D(x)$, and the deep-water wave helght H_{o} (where the current is zero)

Fig 5-A Definition sketch for wave transformation

CONSERVATION EQUATIONS

To solve the problem, we must set up all the relevant conservation equations Only the energy concept presents us with some difficulty in this connection As pointed out in chapter 3, the expression for the mean energy flux with MWL as zero level cannot be used in a non-unıform flow sance this level is constantly changing However, the existence of the MEL, which was found in the preceding chapter to be independent of the horizontal coordinate(s), overcomes this difficulty

In accordance with Fig 5-A we find the following expression for the mean energy flux wath MEL as reference

$$
\begin{align*}
\overline{\mathrm{E}}_{\mathrm{f}, \mathrm{MEL}} & =\overline{\mathrm{E}}_{\mathrm{f}, \mathrm{MWL}}-(\gamma \mathrm{h} \Delta \mathrm{~h}) \mathrm{U} \tag{array}\\
& =\left(1+\frac{\mathrm{U}}{\mathrm{c}_{\mathrm{r}}}\right)\left(\mathrm{U}+\mathrm{c}_{\mathrm{gr}}\right) \mathrm{E} \tag{array}
\end{align*}
$$

using (3 16) and (4 8) (An erroneous expression for $\overline{\mathrm{E}}_{\mathrm{f}, \mathrm{MEL}}$ was pres $\mathrm{m}_{\text {ated }}$ in some earlier publications from this laboratory, see the comments to (4 8)) As, according to our assumptions, (5 2) must be constant, we can now write down the complete set of conservation equations

$$
\begin{align*}
& \text { Wave crests } \omega_{a}=\omega_{r}+k U \tag{array}\\
& \text { Mass } \frac{d}{d x}(h U)=0 \tag{54}\\
& \text { Momentum } \frac{d F}{d x}+\frac{d}{d x}\left(\rho h U^{2}\right)-\gamma h \frac{d(\Delta h)}{d x}=0 \tag{55}\\
& \text { Energy } \frac{d}{d x}\left[\left(1+\frac{U}{c_{r}}\right)\left(U+c_{g r}\right) E\right]=0 \tag{56}\\
& \text { Bottom topography } h+\Delta h=D \tag{57}
\end{align*}
$$

(5 3) is the conventional way of expressing wave crest conservation In order to get to a practical formula, the expression for the relative wave celerity (3 4) must be used The mass and momentum equations have a direct physical interpretation and require no further comment (- $\alpha(\Delta h) / d x$ is the slope of the MWL) The energy equation is less obvious It should be noted, though, that (56) is a special case of Garrett's adiabatic invariant expression, [2] It is directly seen from (5 6), that H reaches infinity at the water depth at which the absolute wave group celerity is zero It is interesting to recognize this "dynamical" limit as the "kinematical" limıt (found in chapter 3), yielding the mınımum wave length The last conservation equation may seem a trafle sophisticated, if not superfluous This is in a way true for a pure wave motion Our degree of approximation does not permit a discramination between D and h for the determination of L, H and Δh for this case However, when a current is present, the first term in (48) is by definition a zero-order term, and adjustment should be made for this, as described later

PRACTICAL EQUATIONS

The conclusion of the foregolng discussion is that although the conservation equations arc fundamental, they are not applicable for direct calculations A new set of practical equations are therefore

$$
\begin{align*}
& \sqrt{\frac{h}{L} \tanh k h}=\sqrt{\frac{h}{L_{o}}}\left[1-q^{*} \frac{h / L}{\left(h / L_{o}\right)^{2}}\right] \tag{58}\\
& h U=q \tag{59}\\
& \Delta h=\frac{U^{2}}{2 g}+\frac{H^{2}}{16 h} \frac{2 k h}{\sinh 2 k h}-\frac{H^{2}}{8 h} \frac{U}{c_{r}} \tag{510}\\
& \frac{H}{H_{o}}=\left[2 \frac{c_{r}}{c_{o}}\left(\frac{c_{g r}}{c_{r}}+\frac{q^{*}}{\left(c_{r} / c_{o}\right)\left(h / L_{o}\right)}\right)\left(1+\frac{q^{*}}{\left(c_{r} / c_{o}\right)\left(h / L_{o}\right)}\right)\right]^{-\frac{1}{2}} \tag{511}\\
& h+\Delta h=D \tag{512}
\end{align*}
$$

with

$$
\begin{equation*}
q^{*} \equiv \frac{q}{c_{o} L_{o}} \quad(513) \quad \text { and } \quad \frac{c_{r}}{c_{o}}=\sqrt{\frac{h / L_{o}}{h / L} \tanh k h} \tag{514}
\end{equation*}
$$

(5 8) is simply a rewriting of (3 5) with sin $\beta=1$ (Now assumed to be valid for a gradually varying water depth) (59) and (5 ll) are (54) and (56) integrated The momentum equation is replaced by the $\Delta \mathrm{h}$-expression (48) (which in fact can be deduced directly from the conservation equations)

The equations are solved as follows for given values of D, q, T_{a} and H_{0} (not all combinations are admıssable) First h and U are found from (59) and (512), with $\Delta h=U^{2} / 2 g$ and subcritical flow assumed I_{o}, c_{o} and q^{*} are calculated from (36), (39) and (513) Next, L is found from (5 8), either by iteration, or graphically, as explained in chapter 3 (with $s_{v}=-q^{*} /\left(h / L_{o}\right)^{3 / 2}$), or read from Fig 6-A, or interpolated in Table 6-a or 6-b H is calculated from (5 ll), (3 ll) and (5 ll), or read from Fig 6-B A new value of $\Delta \mathrm{h}$ is then calculated from (5 10), (59) and (5 12) hereafter yield the final value of U, which should be used to correct the first term in (510), to give the final value of 4 h (and h) In this way we should have taken account of all terms $O\left(H^{2}\right)$ (The calculations can of course be repeated in an iterative manner to give "full numerical reciprocity" between D and h It should be borne in mind, though, that the increase in accuracy is formal) If h were given (measured), instead of D, the calculations and considerations are straightforward

6 TABLES AND GRAPHS FOR L AND H

WAVE LENGTHS

(5 8) was solved numerically by a Newton-Raphson iteration method on a digital computer The results are plotted in Fig 6-A ("constant discharge curves")

For q^{*} posituve, the h / L_{0} - Ilmits have been so chosen that the Froude number is smaller than one, and h / L goes up to about 05 Outside the latter limit, deep-water expressions will normally suffice Here (313) glves (wath $\sin \beta=1$)

$$
\begin{equation*}
\frac{L^{\prime}}{L_{0}}=\frac{1}{4}\left[1+\sqrt{1+4 \frac{q^{*}}{h / L_{0}}}\right]^{2} \tag{array}
\end{equation*}
$$

(The former limlt is of course unrealistic Near such a high Froude number the curvature of the mean water surface becomes so large that the assumptions for our theory become invalıd) The straight line corresponding to h / L equal to 005 indicate that shallow-water conditions are not "typical" for the hagher q^{*}-values The shallow-water wave length is found from (5 8)

$$
\begin{equation*}
\frac{L}{L_{0}}=\sqrt{\frac{2 \pi h}{L_{0}}}+\frac{q^{*}}{h / L_{o}} \tag{62}
\end{equation*}
$$

Of particular interest is the existence of maxima and minima for a number of positive q^{*}-values This is due to the fact that the steady increase in current velocity - as the depth decreases - tends to lengthen the waves, while the decrease in depth tends, in itself, to have the opposite effect The possibility of horizontal tangents can also be seen directly from (3 11) and the following expression, which is valid for constant values of T_{a} and q

$$
\begin{equation*}
\frac{d L}{d h}=\frac{L}{2 h} \frac{\left(2 c_{g r}-c_{r}\right)-2 U}{c_{g r}+U} \tag{array}
\end{equation*}
$$

For q^{*} negative, the upper limit for h / L_{0} was chosen (arbitrarily) as 061 The lower limit was chosen so that the wave length L comes as close to $\mathrm{L}_{\text {min }}$ as the selected values of $\mathrm{h} / \mathrm{I}_{\mathrm{o}}$ allow (see Table 6-b) In the limat $L=L_{\text {min }}$ (see (310) and the pertaining discussion) the numerical value of the Froude number whll be smaller than one, see [4] It 1 s 1 m medrately obvious that for $\mathrm{q}^{\text {* }}$ smaller than - 005 (appr) deep-water conditions prevall, and (6 l) can be used It will also be seen that in the case of a negative discharge we have the same trend as for no current L decreases monotonously with decreasing depth

In Table 6-a, numer ical values of L / L_{0} are presented for $\left|q^{*}\right| \leq 002$ (It should finally be mentioned that F1g $6-\mathrm{A}$ and Tables $6-\mathrm{a}$ and $6-\overline{\mathrm{b}}$ can also be applied in the three-dimensional case, Fig 3-A Here we take as "current velocity" in (5 13) the component in the direction of the wave orthogonal)

Fig 6-A "Constant discharge curves" for L/Lo

Table 6-a Values of $\mathrm{L} / \mathrm{L}_{\mathrm{O}}$ (positive discharge)

Table 6-b Values of L / L_{0} (negative discharge)

WAVE HETGHTS

The wave helghts - calculated from (5 8) and (5 1l) - are plotted in Fig 6-B Note how the "shape" of the curves corresponding to a constant positive discharge differs from that corresponding to $q^{*}=0$ The outmost left part of these curves correspond to Froude numbers close to one (see also Fig 6-A, with comments) For negative discharges we end with infinite wave herghts in the limit $L=L_{m i n}$

7 NUMERICAL EXAMPLES

In the examples results are only given with normal slide-rule accuracy

EX 7-a CALCULATION OF $L, H, \Delta h, h$ AND U FROM T_{a}, q, D AND H_{o} Two-dimensional flow is assumed, and the following quantities are glven
$T_{a}=80 \mathrm{~s}, \mathrm{q}=101 \mathrm{~m}^{2} / \mathrm{s}, \mathrm{D}=95 \mathrm{~m}, \mathrm{H}_{0}=16 \mathrm{~m}$ (corresponding to a deepwater steepness $\mathrm{S}_{\mathrm{o}}=16 \%$)

In the first approximation, H is put equal to zero in (5 10), so we find from (5 9) and (5 12), by iteration
$\Delta h_{1}=00583 \mathrm{~m}, \mathrm{~h}_{1}=94417 \approx 944 \mathrm{~m}, \mathrm{U}_{1}=107 \mathrm{~m} / \mathrm{s}$
From (36), (39) and (513) $L_{0}=15680^{2}=100 \mathrm{~m}$, $c_{0}=15680=125 \mathrm{~m} / \mathrm{s}, \mathrm{h} / \mathrm{L}_{\mathrm{o}}=00944, \mathrm{q}^{4}=000808$
By interpolation in Table 6-a we then find $L / L_{0}=0795 \Rightarrow L=795 \mathrm{~m}$ (whthout the current, the wave length would be 695 m , for the same values of D and T_{a})
$h / L=944 / 795=0119$, so we find from (5 14) and (3 11)
$c_{r} / c_{o}=0709 \Rightarrow c_{r}=886 \mathrm{~m} / \mathrm{s}$ (wathout the current the wave celerity
would be $869 \mathrm{~m} / \mathrm{s}$), and $\mathrm{c}_{\mathrm{gr}} / \mathrm{c}_{\mathrm{r}}=0853$
(5 ll) then gives $H / H_{o}=0804 \Rightarrow H=129 \mathrm{~m}$ (without the current the wave helght would be 150 m , for the same value of H_{0})
The new value of $\Delta \mathrm{h}$ from (510) $\Delta \mathrm{h}_{2}=00583 \mathrm{~m}$ $+00078 \mathrm{~m}-00027 \mathrm{~m} \approx 00634 \mathrm{~m} \Rightarrow \mathrm{~h}_{2} \approx 944 \mathrm{~m}=\mathrm{h}_{1}$ So withan sllde-rule accuracy we find $\mathrm{U}=107 \mathrm{~m} / \mathrm{s}, \Delta \mathrm{h}=0.0634 \mathrm{~m}$ (without the current the set-down would be 00094 m$), \mathrm{h}=9.4366 \mathrm{~m}(\approx 944 \mathrm{~m})$

Finally from (3 1) and (3 2) $c_{a}=795 / 80=9.93 \mathrm{~m} / \mathrm{s}$ and $\mathrm{T}_{\mathrm{r}}=$ $795 / 886=8.98 \mathrm{~s}$

EX 7-b CALCULATION OF WAVE HEIGHT FROM BOTTOM PRESSURE CELL
This example demonstrates how the wave helght H can be determıned for a two-dimensional flow, when the below mentioned parameters have been measured It also shows specifically the effect of a current

Measured parameters

$$
\begin{aligned}
\mathrm{h} & =850 \mathrm{~m} \\
\mathrm{U} & =-070 \mathrm{~m} / \mathrm{s} \\
\mathrm{~T}_{\mathrm{a}} & =60 \mathrm{~s}
\end{aligned}
$$

and $\max \quad \Delta \mathrm{p}_{\mathrm{b}}=3400 \mathrm{~N} / \mathrm{m}^{2}$ (1 $\mathrm{N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$), where $\Delta \mathrm{p}_{\mathrm{b}}$ 1s the dufference between actual pressure and hydrostatic pressure corresponding to MWL ($\equiv \gamma \mathrm{h}$) at the bottom, (here considered measured with a pressure cell at the bottom)

The calculations proceed thus

$$
\begin{align*}
& L_{0}=\frac{981}{2 \pi} \quad 60^{2}=562 \mathrm{~m} \tag{36}\\
& \mathrm{~h} / \mathrm{L}_{0}=850 / 562=0151 \\
& \mathrm{c}_{\mathrm{O}}=\frac{981}{2 \pi} \quad 60=936 \mathrm{~m} / \mathrm{s} \tag{39}\\
& \mathrm{q}^{*}=850(-070) /(93656 \mathrm{2})=-00113 \tag{513}
\end{align*}
$$

Using linear interpolation in Table 6-b we obtain

$$
\mathrm{L} / \mathrm{L}_{\mathrm{o}}=0712
$$

hence

$$
\mathrm{h} / \mathrm{L} \equiv\left(\mathrm{~h} / \mathrm{L}_{\mathrm{o}}\right) /\left(\mathrm{L} / \mathrm{L}_{\mathrm{o}}\right)=0151 / 0712=0212
$$

Using the first order expression only, we have for the wave amplitude

$$
\mathrm{H} / 2=\max \Delta \mathrm{p}_{\mathrm{b}} \quad \cosh \mathrm{kh} / \gamma
$$

cosh kh = 203
and so the wave helght becomes

$$
\underline{H}=23400203 /(1000981)=141 \mathrm{~m}
$$

If the current were not noticed, then $L / L_{0}=0820$ from Table 6-a or $6-\mathrm{b}$ and $\mathrm{h} / \mathrm{L}=0151 / 0820=0184$
cosh kh $=175$
$\underline{H}=23400175 /(1000981)=121 \mathrm{~m}$
$\frac{\Delta H}{H}=\frac{141-121}{141} 100 \%=14 \%$
1 e in this case, neglection of the current will glve wave height 14% too small (A positave current will have the opposite effect)

It is not difficult to find realistic sets of values for h, U and T_{a} that lead to higher values of $\Delta H / H$ (as defined above) This aspect shows the importance of considering the effect of a possible current The phenomenon may be one of the factors which can obscure the direct comparison in a coastal zone between wave helghts as measured at the water surface and as calculated from pressure cell recordings at the bottom

8 REFERENCES

[1] Bowen, A J , Inman, D L , and Simmons, V P (1968) Wave "Set-Down" and Set-Up J Geophys Res 13, 2569-2577
[2] Garrett, C J R (1967) Discussion The Adiabatic Invariant for Wave Propagation in a Nonunıform Moving Medıum Proc Roy Soc , A, 299, 26-27
[3] Jonsson, I G (ed), (1969) Index to Reports 1-19 (1961-1969) Basic Res -Prog Rep 20 Coastal Engrg Lab and Hydraulic Lab, Techn Unıv Denmark
[4] Jonsson, I G (1970) Graphical Determination of the Wave Length in a Homogeneous Current Field Basic Res -Prog Rep 2l, 19-26 Coastal Engrg Lab and Hydraulıc Lab, Techn Unıv Denmark
[5] Longuet-Higgins, M S , and Stewart, R W (1960) Changes in the Form of Short Gravity Waves on Long Waves and Tidal Currents δ Fluld Mech 8, 565-583
[6] Longuet-Hıggins, M S , and Stewart, R W (1961) The Changes in Amplıtude of Short Gravity Waves on Steady Non-Unıform Currents J Fluid Mech 10, 529-549
[7] Lundgren, H (1963) Wave Thrust [\equiv Radiation Stress] and Wave Energy Level Int Assoc Hydr Res, Proc loth Congress 1, 147-151, London
[8] Whitham, G B (1962) Mass, Momentum and Energy Flux in Water Waves J Fluld Mech 12, 135-147

[^0]: ${ }^{1}$ Present address Municipalıty of Roskilde, Denmark

