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ABSTRACT 

A digital computer model for diffraction of wind waves behind a 
breakwater is developed  The model combines the hydrodynamic theories and 
the concept of directional spectra  It is designed so that it may be used 
not only for the study of the wind wave diffraction problem behind breakwaters 
but also for the investigation of experimental (or field) data analysis pro- 
cedures of other kinds  An extensive study of optimum data length, lag 
number and gage spacmgs m wave gage arrays is presented 

I  INTRODUCTION 

Unlike monochromatic waves, wind waves are quite complicated in nature 
Their heights and lengths are irregular  The crest length, along each wave 
crest is relatively short and their forms are not permanent  Each portion 
of the water surface has a different shape  The wave speed, frequency, and 
direction of advance vary from one wave to the next  Because of the diffi- 
culties of an analytical treatment of such a complicated situation, an 
approach through simulation techniques offers many advantages[4] 

The three types of simulation commonly used are laboratory (physical) 
electronic analog, and digital computer  In the following, only the digital 
simulation procedures will he outlined 

II  SIMULATION OF WIND WAVES 

rfmd waves can be simulated digitally m several ways, such as super- 
position and digital filter techniques [l] In the following development, 
only the filtering procedure will be employed 

Let y(t) be the wave surface elevations recorded by 4 gages in front of a 
breakwater  Each of the y(t) can be expressed by the summation of the pro- 
ducts of d and x (see eq (1))  Here, x is a sequence of normal random deviates 
For computational convenience the random numbers have been selected so that they 
nave a zero mean and variance of one 
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The "d" values are digital filter coefficients and can be represented 
m terms of the Fourier coefficients, A and B obtained from the Tourier 
approximation of the system functions K°f) as shown by eqs  (2)-(4) 

The values of K(f) are determined from the cross-spectral densities 
which are Fourier transform of the cross-covariance functions (eqs (5), (6)) 

If the probability distributions of the spectra are assumed to be cir- 
cular normal (eq (10)), then the normalized cross-spectral density functions 
can be expressed as the functions of Bessel functions (eqs (7}-(9)) 

In short, if the spectral forms of waves are assumed (such as that given 
by Bretschneider [5] and Pierson and Moskowitz £6] we can simulate the wind 
waves with digital computation 

As already mentioned previously these simulated random waves have very 
complicated natures and the conventional diffraction theories cannot be 
applied  To deal with this kind of problem, we introduce the concept of 
directional spectrum 

III  CONCEPT OF DIRECTIONAL SPECTRUM 

Random waves can be thought as composing of infinite number of mono- 
chromatic component waves, each of which has a different frequency and phase 
and propagate along a different direction  Since it is known that, to a 
linear approximation, the conventional diffraction theories are applicable 
to these monochromatic waves, our problem has then become the question of 
"how to determine the directional spectrum7" 

At the present time, there are several ways available for estimating 
the directional spectrum  But, only one of those methods, Jl,2] will be 
discussed  It considers the directional spectral density function as the 
product of PS(f) and D(8), where PS(f) is spectral density which varies solely 
with frequency and D(9) is a function of direction and possible frequency 
(see eq  (13)) 

There are several ways to estimate D(G)  One of them is based on the 
assumption that D(6) is circular normal  In that case, it can be approximated 
in terms of Bessel functions as shown in eq  (14) 

The spectral density function can be estimated by the conventional spec- 
tral analysis technique using either the covariance function approach or the 
techniques arising from the fast Fourier Transform algorithm 

IV  SIMULATION OF DIFFRACTION OF PLANE WAVES [3,1*] 

Mathematically, the propagation of a plane wave is  described by the 
boundary value problem with a second order partial differential equation of 
elliptic type (eq (15)) and three boundary conditions (eqs 16,17,18)  By 
applying the method of separation of variables, the boundary value can be 
solved 
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Due to the presence of a semi-infinite breakwater, located along the 
X-axis with one tip at the origin and the other at x = +«°, an additional 
boundary condition of 

8y 

should be introduced  For the reason of generality and convenience, a polar 
coordinate system is adopted here  Accordingly, the amplitude for incident 
wave and diffracted wave can be determined 

Since the diffraction coefficient, k' is defined as the ratio of in- 
cident wave height over the diffracted wave height, it can he estimated by 
the modulus of F(r,6) for the diffracted waves  Their mathematical equations 
and solutions are given in the Appendix III 

V  THE APPLICATIONS OF SIMULATION TECHNIQUE 

Simulation may be used to explain various features of data sampled from 
the field or to examine the consequences of selected theories In addition, 
it can be used to determine 

(a) optimal data length (Fig 1)  For this case, optional 
length = 2048 

(b) optimal maximum number of lags (Fig 2)   For this case, 
optional lag = 50 

(c) effects of smoothing on the spectral density estimates 
(Fig 3)  The results have indicated that 

(l)  for shorter data length, there is a great difference 
between the outputs of unsmoothed and smoothed cases 
but there seems to be no difference between hanning 
or Hamming smoothing 

and that 

(n) for very long record, there is no difference no matter 
whether they have been smoothed or not 
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APPENDIX I 

Simulation of Complseated Wind Wave Profiles 

Let y.(t),  y9(t),       ,y   (t)  be II -  time series 

N 
y(t)     =       I     d    x(t-nAt) CD 

n=N 

where n =  0     1,   2    

At = time nterval 

x = random deviates 

and the digital filter coefficients 

(2) d    = 
o A 

0 

d     = 
n 

A    + B 
n         n 

} 

d    = 
-n 

A    - B 
n         n 

where 
F 

A = JL  / R[K(f) ] Cos (211) df 
n   t     „ D 

1  r 

Bn = —    / ijK(f) ] sin(2|£) df (3) 

1 
F =  -   = Nyquist frequency 

and 

K(f)     -    AQ +    f {An cos  (if^-)   -  iBn sin (if^-)} (4) 
n=l 

f     =     frequency,   cps 

i   - ITi 
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The system function can be also written as 

Ku(fk)     -     [Su(fk)] 

K       (f  )   =     [S     Af.)]h (5) 

m, 1    K. 1,1    it 

Vn(fk>  "  {Sm,(m-l)<V  "    U\3   
(V"K

jn(VJ}/Knn(V 

m-1 2 i 
Km,m<fk>-     ^(V-     lx   lKm/

f
k>l    3" 

where 

S     (f)     =     CS     (f)     + i QS     (f) (6) 
mj nrj mj 

CS     (f)     =    cO-spectral density  for gages m and j 

QS     (f)     =    quad-spectral density for gage m and j 

Assuming  the circular normal  function   (eq 10 below)   for  the angular 
distribution of  energy  at  a given  frequency,   the normalized  density between 
gages m and j  can be expressed as 

Zl^ll    "    J(A    )  +    T  
Z. , I Ci)nIl   Ca)J   CA    )]  cos ny 

PS(f) ox mj ^w „Jn  i fi m; mJ 

and the normalized quad-(or quadrature-)  spectral density between gages 
m and j   is 

QS(f)   _       2 I (i)n   [I   (a)  J  (A    )]   cos(nY     ) (8) 

where 

PS(f)       IQ(a)       n=1 3 5 n n    nrj 'mj 

In(a)  = I_n(a)  =   (i)"11 Jn(ia) (9) 

= Modified Bessel Function of order n 

a = a circular normal parameter = measure of dispersion of the 
circular normal 

a = a circular normal parameter = modal direction of circular 
normal energy distribution 
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a cos(0-a) 

8 =  the angle between the positive x-axis and the direction of 
the wave propagation,  measured counterclockwise 

5 =  the wave angle departure from the mean =  8-a 

A       =  2TID     /L 
mj mj 

D  = distance between wave gages m and j 

L = wave length appropriate for the frequency, f 

Y  = the angle between direction of main energy and the line 
connected gage m and gage j 

= 3 -a 

B  = the angle between the x-axis and the line connected gage m mj    , ° ° 
and gage j 

/-l 
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APPENDIX II 

DIRECTIONAL SPECTRUM 

1 Directional spectral density function, p(f,6) 

(a) It has the property of 

p(f,0)   df  d9 = Z [Mean-Square Wave-Surface  fluctuations] (11) 
(df)(d0) 

In other words, 

p(f,Q)   dfdO = variance  of sea surface  fluctuations  obtained by 
adding together  only  the waves with frequency and 
direction  of  travel in  the   (df,d9)   rectangle   centered     (12) 
at   (f,6) 

(b) It  gives   the  allocation  of  the total variance  among the various 
frequencies  and directions 

(c) It  can also be considered as  an allocation  of wave energy 
(since  the wave energy per unit  sea surface is proportional 
to the variance) 

2 Estimation  of  directional spectral  density 

p(f,9) = PS(f) D(Q) (13) 

D (6) = eaC°S (e " a) f     -r—T—r-r     (Circular Normal Function) 
2n IQ   (a) 

JL  +     f    Tn   (a)       Cos   (n« - rnr  ) (14) 
2ir n=I    ir  IQ   (a) 2 

(  a and  a may be   functions   of  frequency  in  the  gaieral  case) 
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APPENDIX III 

Diffraction of Plane Wave 

(A)  BOUNDARY VALUE PROBLEM FOR PLANE WAVE PROPAGATION 

i   „  ,  i A   tt 320  .  320  . 320 = 0 (15) 1 Partial diff eg    —» + —J   + —o 
3x     3y    3z 

2 Boundary Conditions 

(l)  At an impervious and rigid bottom 

f       -o 
z=d 

whch d =  still-water depth 

(n)     At   the  free  surface 

(a) Kinetic  Surface  Boundary  Condition 

li -    IE  MX'W  =^T + ^ + iE = '3t"+U     3^atZ = 1 (non-linear)        (17) 

I4 = -j£ at  z = 0   (linear) 
dz dt 

(b) Dynamxc Surface  Boundary   Condition 

—30        12 2 2 
-rr + ^-(u    +v    +w)+gn     =  0,   at  z =  0   (non-linear) (18) at        z 

n=—   r- at   z =  0   (linear) 
8     It 

3 Solutions 

0 =  F(x,y)   Z   (z)   T(t) (19) 

0 = A e_1  e     cosh   [k   (z+a)]   F(x,y) 
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For a plane wave   travelling  in  the y-direction 

F(x,y)   =  e  ^ (20) 

Sommerfeld's radiation  condition       F =  0   (~) (21) 

/ 2 j.    2 r =/x    + y 

Wave  amplitude, A =      cosh   (kd) 
g 

(22) 

wave period, "£ (23) 

wave velocity c =   / •& tanh   (kd) (24) 

wave  length, -^ (25) 

wave number, ^ (26) 

Akr 
^^cosh   (kd)   sin   [k(ct-y) ] (27) 

B       THE PROBLEM WITH THE PRESENCE  OF A BREAKWATER 

(semi-infinite breakwater) 

1       an  additional boundary  condition 

|^ =  0  at  y  =  0,x  >. 0 (28) 

This  implies  that 

~ =  0  at  y =  0,x 10 (29) 
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2 for incident waves 

Fi(r,e) . e"
lkr COS (8 " 8o) (30) 

3 the free wave surface can be given as 

- ^^ [cosh (kd)] elkct F(r,8) (31) 

4 for diffracted waves 

F,(r,e) - f(o) e~lkr [c°s(e " V] + f(o) e"lkr  [C°S (9 " V]   (32) 
a 

a = 2(7^) sin j  (8 - 0Q) 

a' = -2(V^ )sm | (9 - 0Q) 

2 
f(o)  = i  e "/4   e ^/2^ dt 

/2~      J-°° 

F„<r,G) - p(r,G) e lC(r'9) (33) 

a 

a, = ^^ cosh (kd) (34) 
d   g 

5  Diffraction coefficient 

k' -7-i- p 
2a 

k' = |Fd(r,Q)| (35) 
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8x 10 

- initial Spectral   Density 
- Data   Length = 8192 
- Dato Length = 2048 

Dota Length = 1024 
Data   Length -    5 12 

2 3 

FREQUENCY     (cps) 

FIG      I     ESTIMATES OF SPECTRAL DENSITIES FOR VARIOUS LENGTH OF  DATA 



COMPUTER MODELLING 485 

— Initial   S 0 
— Simulated   S D with Max Log = 20 
— Simulated   S D with Max Lag = 50 
— Simulated   S 0 with Max Lag =100 

FIG 

3 
FREQUENCY       (cps) 

ESTIMATES OF  SPECTRAL   DENSITIES  (2048  DATA LENGTH) 

FOR VARIOUS MAXIMUM LAGS ON THE  COVARIANCE   FUNCTIONS 
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Gage   I 

o     Initial Spectral Density 
Unsmoothed 
Hamming  Smoothing 
Honning Smoothing 

2 3 
FREQUENCY     (cps) 

FIG      3      EFFECTS  OF   SMOOTHING   ON  THE   SPECTRAL   DENSITY   ESTI- 
MATES    FOR    DATA   LENGTH   8192    AND   MAXIMUM    LAG    50 
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9xiO   I— 

Gage   I 
——O      Initial Spectral Density 
 D      Unsmoothed 
 &      Homming   Smoothing 
 x      Honning  Smoothing 

FIG 

3 
FREQUENCY    Icps) 

EFFECTS  OF  SMOOTHING ON  THE  SPECTRAL  DENSITY ESTIMATES 
FOR   DATA   LENGTH   2048 AND MAXIMUM LAG 50 




