CHAPTER 5

SPECTRAL COMPUTATIONS ON PRESSURE WAVE GAUGE RECORDS
by Manuel Mendes de CARVALHO*
Fernando Silveira RAMOS
Carlos de Campos MORAES

ABSTRACT
With a view to establish sea wave data processing procedures to be applied to records obtained at the Portuguese coast, a detailed study is made of different choices of certain parameters used in one-dimensional spectral analysis of a pressure wave gauge record. Statistics computed by the selected spectral procedure are then compared with results of a Tucker-Draper analysis of the same record. Finally a hindcast of sea conditions for the date and place of the record is made by different methods and comparisons with previous results are presented.

1 - INTRODUCTION
The study of the coastal sea wave regime in Portugal needs development both in programming an adequate deployment of sea wave gauges and in what concerns establishing the best data processing procedures. The authors form a research team charged at present with the study of the instrumentation and use of an irregular wave flume at LNEC. It is known that for a perfect simulation of irregular sea waves a detailed knowledge is necessary of the wave regimes to be reproduced. There are two phases to consider: the first is a qualitative one in which methods and sea wave data analysis and computation procedures are discussed and developed, the second is quantitative, results from the first being extensively applied, to try and acquire a more exact knowledge of the configuration of sea waves in the zone of interest.

The present paper relates to the above mentioned first phase. It represents the study path followed by the authors. Although most of the techniques presented are already known, it is thought that eventually some usefulness may be derived from reading it, particularly in pointing out some doubts and difficulties inherent in the methods used. The work being still restricted to the first phase, only one record was used. This record was made by a pressure wave gauge.

2 - CONDITIONS OF WAVE MEASURING, RECORDING AND ANALYSIS

In the approaches to Leixões Harbour (in the northwestern coast of Portugal) a pressure wave gauge is installed on the bottom at a mean depth of 22 m (Fig. 1). It is an autonomous St Chamond Granat pressure wave gauge, type LNH. Its working schedule is as follows: at both 0900 hrs and 2100 hrs a twenty-minute recording period starts, when the surface waves exceed 4 m it automatically produces a twenty-minute record every two hours. Normally a 250 milbar manometer is in use.

The present study is based on a twenty-minute record made at 3.47 GMT on December 18th, 1968. For the record digitalization, a Boscot LNF 630 projector by Benson, France, was used. This projector provides a twelvefold magnification of the 35 mm film from the wave gauge and can also handle 16 and 70 mm films. The computations were made in the LNEC's computing centre in a NCR-Elliott 4130 computer with 24 k 24-bit words and 3 magnetic tape handlers.

3 - SPECTRAL ANALYSIS

Estimates of the energy spectrum, \(P(f) \), were obtained by the indirect method through the autocovariance function \(c(t) \):

\[
P(f) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} c(t) e^{-2\pi ift} \, dt = \text{TF}[c(t)]
\]

where TF means Fourier transform. A measure of the mean energy of the waves

* - Trainee Research Officers, Laboratorio Nacional de Engenharia Civil (LNEC), Lisbon, Portugal
During the record duration T_R is given by

$$c(0) = 2 \int_0^\infty P(f) \, df \quad (2)$$

3.1 - Lag and spectral windows

If $Z(t)$ is the water surface elevation above an arbitrary level as a function of time, t, and at a certain place, then the autocovariance function is the mean value of $Z(t)$ $Z(t+\tau)$ along time $T/2$

$$c(\tau) = \lim_{T \to \infty} \frac{1}{T - \tau} \int_{-T/2}^{T/2} Z(t)Z(t+\tau) \, dt \quad (3)$$

$c(\tau)$ expresses covariance between $Z(t)$ and $Z(t+\tau)$, that is, between water surface elevations at any two instants separated by a time lag of τ seconds. In case there are no periodicities in $Z(t)$, then $c(\tau)$ tends to zero as τ tends to infinity. If there is a periodicity in $Z(t)$, then an oscillation about zero, with the same period, appears in $c(\tau)$. In practice, the autocovariance function, $c(\tau)$, is computed as the mean value of $Z(t)Z(t+\tau)$ in the available recording interval, whose length or, rather, duration, is T_R. $c(\tau)$ never really damps out to zero, not only because T_R is finite but also owing to periodicities which always occur in records. This leads to the necessity of truncating the autocovariance function, that is, to consider instead of $c(\tau)$ the new function $c(\tau)D(\tau)$ where

$$D(\tau) = \begin{cases} 1, & |\tau| \leq T_M \\ 0, & |\tau| > T_M \end{cases}$$

$D(\tau)$ is the rectangular lag window and T_M is the maximum lag of the autocovariance function. Instead of $D(\tau)$ and to get more stability in the spectrum estimates, other functions or lag windows, $D_i(\tau)$ are used, which are also identically zero outside the interval $(-T_M, T_M)$ and take the value 1 for $\tau = 0$. Using these lag windows, which is unavoidable in practice, leads to the fact that, for every frequency, one gets a weighted average of neighbouring values of the record spectrum. The weighting function is $Q_i(f) = T_F D_i(\tau)$, the so-called spectral window corresponding to the lag window $D_i(\tau)$. In this study the Parzen, Tukey, Hamming, Bartlett and rectangular lag windows were considered. Their lag and spectral versions are presented in Fig. 3.

It is known that to each window there corresponds a statistical estimator for the spectrum. To choose one among these, various criteria have been proposed, most of them based in the minimization of the mean square error of the estimator or some function or functional of it (See, for instance, Jenkins and Watts [4]). According to this kind of criteria the rectangular window distinguishes itself by being considerably worse than the others mentioned, which in turn are similar to one another in performance. In consequence the rectangular window should be avoided and the choice among the Parzen, Tukey, Hamming and Bartlett windows becomes of secondary importance, as compared, for example, with the choice of the maximum lag for $c(\tau)$, to be considered in 3.6. However, differences do exist and a choice had to be made.

The fact that the side lobes of the Parzen spectral window are much smaller and that its small variance originates narrower confidence intervals for the spectrum estimates led to its selection. For this window, the number of degrees of freedom of the spectrum estimates is $3.71 \cdot T_R/T_M$. The spectral window bandwidth is

* As shown later, (see Fig. 2) the autocovariance function relative to the record considered is far from showing any tendency to become zero.

** Of course, if $c(\tau)$ equalled zero only outside a very large interval a truncation would be in order.
SPECTRAL COMPUTATIONS

\[m_1 = e^{-86} \]

and it is approximately the frequency interval between two practically independent spectrum estimates. It is seen that the smaller is \(m \), the greater is the resolution of the estimates, i.e., the smaller is the influence exerted on an estimate by estimates in neighbouring frequencies. Applying the rectangular lag window is the same as simply truncating the autocovariance function. The spectrum obtained is termed the raw spectrum. The raw spectrum would be exactly equal to the true record spectrum if the autocovariance function were zero for \(|t| > T_M \), which never happens in sea wave analysis. Using any other of the mentioned windows produces smoothed estimates, that is, more stable estimates. For a given window, if \(T_M \) is varied then stability and resolution increase or decrease in opposite senses. Fig. 4 shows the raw spectrum computed for \(T_M = 80 \) s and its Parzen smoothed version.

3.2 - Prewhitening and prefiltering

It is known that spectral windows delete accidental details of the spectrum, that is, they smooth it. In the process of smoothing, the spectrum estimate in a given frequency is influenced by the estimates in neighbouring frequencies. A sharp peak is "spread" over its neighbourhood in a way similar to the spectral window configuration. This leads to the alteration of the true form of the spectrum. To avoid this difficulty as much as possible, Blackman and Tukey [7] suggested a prewhitening, that is, a preliminary digital filtering of the record aiming to reduce the importance of its spectrum peaks. This is bringing the spectrum closer to that of a white noise.

The suggested digital filtering is in general

\[y_t = a x_t + b x_{t-1} \]

\(\{x_t\} \) being the input time series and \(\{y_t\} \) the output time series. The input and output spectra, \(P_x(f) \) and \(P_y(f) \) respectively, are then related by

\[P_y(f) = (a^2 + b^2 + 2 ab \cos 2\pi f \delta t) P_x(f) \]

In this way the spectral window will be applied to a spectrum without sharp peaks and the obtained spectrum \(P_y(f) \) may then be corrected for prewhitening by (7).

Computations showed that, in the present case, estimates were practically the same with and without prewhitening. This led to giving up the use of prewhitening. As for other kinds of prefiltering, it was not deemed necessary to eliminate the spurious energy of very low frequencies. A first difference filter was nevertheless considered, as is suggested by Jenkins [4], results showing that it was not adequate, as its influence reaches regions of too high frequencies.

3.3 - Confidence intervals

Let \(\bar{P}(f) \) be the smoothed spectrum estimate at frequency \(f \), \(P(f) \) the true value of the spectrum, \(\chi^2_v \) a random variable following the chi-square distribution with \(v \) degrees of freedom and \(b \) the spectral window bandwidth. It can be proved that \(2 T_R b \bar{P}(f)/P(f) \) is a random variable following the chi-square distribution with \(2 T_R b \) degrees of freedom.

\[\frac{2 T_R b \bar{P}(f)}{P(f)} \sim \chi^2 \]

This permits confidence intervals to be constructed for the estimates. Those intervals will be

\[\left(\frac{\bar{P}(f)}{\chi^2_{\frac{1}{2}} 1 - \alpha/2} \right)^{v}, \left(\frac{\bar{P}(f)}{\chi^2_{\frac{1}{2}} 1 + \alpha/2} \right)^{v} \]

\[\bar{P}(f) \]

\[P(f) \]
where 1 - a is the confidence level and \(x_v(k) \) is a number such that

\[
P \left(x_v \leq x_v(k) \right) = k
\]

(10)

In Fig. 5, curves of variation with \(A(v) = \frac{\nu}{x_v(1-a/2)} \) and \(B(v) = \frac{\nu}{x_v(a/2)} \) for 1 - a = 80% are presented.

This was the confidence level used in the computations made. Most spectrum figures in this paper show a 80% confidence zone obtained in the manner described.

3.4 - Sampling interval

From a continuous record a time series can be extracted using a certain sampling interval \(\Delta t \) (digitalization). If \(F_D \) is the frequency above which spectrum values are negligible one must have

\[
F_D \leq \frac{1}{2 \Delta t}
\]

(11)

to avoid the so called aliasing. \(F_N = \frac{1}{2 \Delta t} \) is the Nyquist frequency. Aliasing is a consequence of the digitalization of the record. In fact, the result of digital computations is not the true spectrum \(P(f) \) but the aliased spectrum.

\[
P_a(f) = \sum_{q=-\infty}^{+\infty} P(f - \frac{q}{\Delta t})
\]

(12)

If condition (11) is met, however, then (12) gives \(P(f) \) values between 0 and \(F_N \). Having fixed \(T_M = 80 \) s (and so, \(b = 0.023 \) cps), which is equivalent to having fixed resolution and stability of the estimates, computations were carried out with \(\Delta t = 0.5, 1.0, 1.5, 2.0, 2.5 \) and 3.0 s, corresponding to Nyquist frequencies of 1, 0.5, 0.33, 0.25, 0.20 and 0.16 cps. As \(F_D = 0.25 \) cps in the present case, aliasing should be negligible for \(\Delta t = 0.5, 1.0, 1.5 \) and 2.0 s. In fact, it was seen that estimates were practically the same for \(\Delta t = 2.5 \) and 3.0 s, that is, \(F_D > F_N \), aliasing is already strongly apparent (Fig. 6).

The conclusion is that inasmuch as there is no aliasing, the sampling interval may be as high as wished. In these computations \(\Delta t = 2 \) s could have been used.

3.5 - Cutoff frequency

For reasons of economy, computation of spectrum values should not be carried much beyond \(F_D \). Frequency \(F_C \) up to which calculations are made will be called cut-off frequency. One should then have \(F_D < F_C < F_N \). The choice of \(F_C \) can have great influence in practical computation of the spectral moments.

The spectral moment of order \(n \) is defined as

\[
m_n = \int_{-\infty}^{+\infty} f^n P(f) df
\]

(13)

For even values of \(n \) and since \(P(f) \) is an even function, we may write

\[
m_n = 2 \int_{0}^{+\infty} f^n P(f) df
\]

(14)

In practice, estimates of \(m_n \) (even \(n \)) may be obtained from

\[
m_n = 2 \Delta f \sum_{r=1}^{k} (r\Delta f)^n P(r\Delta f)
\]

(15)

with \(k\Delta f = F_C \) and \(f \) being the frequency interval between two adjacent estimates of \(P(f) \)
Theoretically we have \(m = c(0) \) and so it is suggested that, in practice and with a view to calculating spectral moments, \(F_C \) be chosen such that

\[
c(0) = 2A^f \sum_{r=1}^{k} P(rA^f)
\]

with \(F_C = kA^f \).

Fig 7 shows the variation with \(F_C \) of \(m \) values obtained from (15). It is seen that \(F_C \) should be chosen between 0.25 and 0.9 cps approximately.

3.6 Maximum lag for the autocovariance

The choice of \(T_M \) is very important, as on it are closely dependent the resolution and stability of estimates. A great \(T_M \) produces high resolution estimates owing to the narrow bandwidth of the spectral window, smoothing is however small and in consequence estimates present greater instability. If \(T_M \) is small then the inverse is true; we get small resolution and great stability. A compromise is therefore necessary between stability and resolution.

Three criteria for the choice of \(T_M \) were considered:

a) The window closing technique

This technique is suggested by Jenkins [41] and consists in considering successively increasing \(T_M \) values, or, equivalently, decreasing \(b \) values (window closing), which will have the effect that initially obscured spectrum details will become more defined. There are no rules to decide when certain details, as, for instance, a peak which is beginning to show, are real or due to instability. Jenkins suggests that three spectra should be presented, computed for \(T_M \) values from the range where the initial form of the spectrum starts to change, that is, where after the initial convergence of shape a divergence begins to appear. Fig 8 shows that the general spectrum configuration is kept until \(T_M \) reaches about 70 s. Afterwards, a swelling begins to appear around frequency 0.12 cps and it becomes quite distinct when \(T_M = 90 \) s. A \(T_M \) value of about 80 s seems therefore indicated.

b) Using the rectangular lag window

If the autocovariance function \(c(\tau) \) is zero for \(|\tau| > T_0 \), using the rectangular lag window with \(T_M > T_0 \) produces the true record spectrum. If one uses \(T_M < T_0 \), negative values may appear for the spectrum, which is an indication that \(T_M \) is not sufficiently high (Barber [61]). This could eventually serve as a criterion for the choice of \(T_M \). Yet, in practice, with sea wave records, the autocovariance function never really comes to zero however great we may make \(T_M \). This is due to periodicities which always turn up in natural records and the result is that negative values may always arise whatever the \(T_M \). Fig 9 shows that, though \(T_M \) was increased tenfold, negative estimates show no tendency to disappear. On the other hand, when the autocovariance function looks like the one pictured in Fig 2, where there are regions of almost total damping, in the neighbourhood of \(\tau = 44 \) s, a rectangular lag window truncation in that region should produce a spectrum equal to one from a record for which \(c(\tau) = 0 \) in that region. This spectrum should not exhibit negative values, that is really the case when, in the present computations, \(T_M = 44.5 \) s was used, as is seen in Fig 9. The conclusion to draw is that using the rectangular lag window is not a satisfactory way to decide on \(T_M \).

c) Variation of \(\varepsilon \) with \(T_M \)

One parameter to which the name spectrum width is generally given is

\[
\varepsilon = \sqrt{\frac{m_0 m_4 - m_2^2}{m_0 m_4}}
\]

where \(m_n \) is defined by (13). \(\varepsilon \) values computed by (15) from spectra in which \(T_M \)
varied from 22 s to 222 s and where \(F_C \) was constantly equal to 0.3 cps are presented in Table 1 and graphically in Fig 11. It is seen that for \(T_M > 70 \) s the value varies only very slightly. This may mean that a sufficiently high value for \(T_M \) has been reached.

Table 1

<table>
<thead>
<tr>
<th>(T_M) (s)</th>
<th>22</th>
<th>44</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>89</th>
<th>100</th>
<th>222.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>0.61</td>
<td>0.56</td>
<td>0.55</td>
<td>0.55</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.53</td>
</tr>
<tr>
<td>(m_0)</td>
<td>0.50</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>(f_{\text{peak}})</td>
<td>0.085</td>
<td>0.080</td>
<td>0.080</td>
<td>0.080</td>
<td>0.080</td>
<td>0.080</td>
<td>0.080</td>
<td>0.080</td>
<td>2 peaks</td>
</tr>
<tr>
<td>(P(f_{\text{peak}}))</td>
<td>3.17</td>
<td>4.55</td>
<td>4.79</td>
<td>5.15</td>
<td>5.41</td>
<td>5.59</td>
<td>5.69</td>
<td>5.77</td>
<td>5.77</td>
</tr>
</tbody>
</table>

These 3 criteria considered, it was decided to use 80 s as an adequate value for \(T_M \) which is about 6 to 7 times the period corresponding to the peak frequency of the spectrum.

3.7 - Record partition

The record was partitioned into four 5-minute parts. Table 2 and Fig 10 show results of computations made. The 3rd and 4th part values are about the same. Spectrum variations may have different reasons. They may result from the fact that we are now dealing with four different samples and variation may be merely statistical in nature. These variations should, perhaps, be considered large, which might mean that a five-minute period is too short for getting a representative record. Since \(m_0 \) is a measure of the mean energy of sea waves, another reason for the variations may be that the record should not be considered completely stationary. In future, when an extensive study is undertaken of records made at the same date as this one, the matter may be clarified further.

3.8 - Variation of some statistics with \(T_M, \Delta t \) and \(F_C \)

Tables 1, 3 and 4 show the variation of \(\epsilon, m_0, f_{\text{peak}} \) and \(P(f_{\text{peak}}) \), with \(T_M, \Delta t \) and \(F_C \), respectively. Variation of \(\epsilon \) with the same parameters is also shown in Fig 11.

As said in 3.5 variation of \(\Delta t \) will not influence spectrum estimates, as long as \(F_C \leq F_N \).

This is illustrated in Table 3.

Convergence of \(\epsilon \) values when \(T_M \) increases is apparent from Table 1 and Fig 11. From \(T_M = 70 \) s onwards \(f_{\text{peak}} \) is practically the same for all \(T_M \) but \(P(f_{\text{peak}}) \) increases with the closing of the spectral window since the influence of neighbouring low values steadily decreases. This increase, however, is small for \(T_M > 80 \) s. \(m_0 \) values vary only slightly with \(T_M \) and \(F_C \) as seen in Tables 1 and 4. It is clear that \(F_C \) should...
exert no influence on f_{peak} and $P(f_{\text{peak}})$. Choice of F_C is nevertheless very important for the calculation of ε as is seen in Table 4 and Fig 11, and should be made according to 3.5

Table 3

<table>
<thead>
<tr>
<th>$c(0)=0.506$</th>
<th>Variation of Δt</th>
<th>$T_M=80s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt</td>
<td>0 5 1 0 1 5 2 0</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>0.52 0.53 0.53 0.53</td>
<td></td>
</tr>
<tr>
<td>m_0</td>
<td>0.506 0.506 0.506 0.506</td>
<td></td>
</tr>
<tr>
<td>f_{peak}</td>
<td>0.080 0.080 0.080 0.080</td>
<td></td>
</tr>
<tr>
<td>$P(f_{\text{peak}})$</td>
<td>5.59 5.59 5.65 5.56</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>$c(0)=0.506$</th>
<th>Variation of F_C</th>
<th>$T_M=80s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_C</td>
<td>0.150 0.200 0.250 0.300 0.650</td>
<td>1</td>
</tr>
<tr>
<td>ε</td>
<td>0.45 0.50 0.52 0.52 0.79 0.95</td>
<td></td>
</tr>
<tr>
<td>m_0</td>
<td>0.495 0.500 0.506 0.506 0.507 0.508</td>
<td></td>
</tr>
<tr>
<td>f_{peak}</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>$P(f_{\text{peak}})$</td>
<td>5.59</td>
<td></td>
</tr>
</tbody>
</table>

3 9 - Conclusions

The considerations made from 3.1 to 3.8 led to the adoption of the following characteristics for the final computation of the bottom spectrum:

- No prefiltering
- Window Parzen
- Maximum lag 80 s
- Cutoff frequency 0.3 cps
- Sampling interval 0.5 s (although this could have been wider the corresponding computations were already available)
- 80% confidence intervals

The number of degrees of freedom was 55 and the bandwidth 0.023 cps. The resulting values for $\varepsilon, m_0, f_{\text{peak}}$ and $P(f_{\text{peak}})$ are presented on Table 1. Value computed for $c(0)$ was 0.5056.

This final bottom spectrum is shown in Fig 12.

Table 5

T_Z	10.8
c	0.58
H_1	4.5
H_2	3.5
H_1'	7.1

4 - WAVE STATISTICS AND WAVE HEIGHT DISTRIBUTION

4.1 - Computations of wave statistics by the Tucker-Draper method

The Tucker-Draper method [8], [9], was used to compute the statistics of Table 5. By this method, the fundamental values read from the record are T_Z (mean zero up crossing period), H_1 (sum of the highest crest with the lowest trough), H_2 (sum of the second highest crest with the second lowest trough). To obtain surface values H', from bottom values H the classical Hydrodynamics Formula was used:

$$H' = H \sqrt{\frac{2T_d}{L}}$$

where d (depth) = 23.3 m,

$$L = \sqrt{\frac{gd}{2\pi^2T_Z^2}}$$

g being the acceleration of gravity.

Computation were based on the digitized record using a sampling interval $\Delta t = 0.5$ s.

4.2 - Wave height distribution compared with the Rayleigh distribution

Wave height in the present paper is the distance between the le

- This formula is derived from $c = \sqrt{\frac{T_d}{2\pi T_Z^2}}$ by a series expansion of the T_d and substituting L by its approximate value $L = \sqrt{\frac{gd}{2\pi T_Z^2}}$.
vels of a crest and the preceding trough. For the record considered, Fig. 13 shows that the wave distribution is different from the Rayleigh distribution, which was to be expected since $\epsilon \approx 0.51$, a value greater than the limit (0.4) below which, according to Cartwright and Longuet-Higgins [10], wave heights follow reasonably well that distribution.

5 - COMPARISON BETWEEN WAVE STATISTICS OBTAINED FROM THE PRESSURE RECORD BY SPECTRAL ANALYSIS AND THE TUCKER-DRAPER METHOD

In Table 6, wave statistics obtained from the pressure record by spectral analysis and the Tucker-Draper method are compared. Both for m_0 and H_s, a pair of values is presented corresponding to calculations made from H_1 and H_2.

6 - CORRECTION TO SURFACE OF PRESSURE RECORD STATISTICS

Though the aim of the work undertaken is mainly the processing of digital data extracted from wave records, which makes unimportant the nature (surface or bottom) of the record used, a comparison of results arising from a weather hindcast with those from spectral analysis and the Tucker-Draper method is possible only if a correction to surface is applied to the latter. Formula (18) was used with and without the instrument factor 1.25 which is recommended by the makers of the LNH type pressure wave gauge as adequate for the correction to surface of the significant wave height. The same formula, without the instrument factor, and the linearity hypothesis for spectrum decomposition as a sum of infinitesimal sinusoids leads to the following relation between surface and bottom spectra, $P_S(f)$ and $P_B(f)$ respectively:

$$P_S(f) = P_B(f) \frac{2T_d}{L(f)}$$

where $L(f)$ is the wavelength corresponding to frequency f.

It should be noted that (1) the instrument factor is very important and an investigation should be made to determine if the recommended value of 1.25 is adequate for sea wave regime at the Portuguese Coast, (2) formula (20) is based on an unverified hypothesis, namely, on linearity of the spectrum decomposition as a sum of infinitesimal sinusoids. In Fig. 14, results of the surface correction for the spectrum are shown. Some pertinent remarks are the following:

- The peak of the surface spectrum occurs at frequency 0.085 cps, which is very close to the one of the bottom spectrum.
- The existence of a second peak at 0.11 cps may or may not have a physical significance (as, for instance, a local storm superimposed on the pre-existent one) as pointed out in 3 6 a).
- Up from $f = 0.13$ cps, $P(f)$ values increase without any physical significance. Owing to the great depth (23.3 m) of the recording wave gauge, $\frac{2T_d}{L}$ values increase rapidly to absurd results from that frequency on.

7 - WAVE HINDCAST FOR DECEMBER 18th, 1968

7 1 - Analysis of the synoptic charts

Examining the synoptic charts for some days prior to December 18th, 1968, it is apparent that the pressure field has taken a little varying shape in the last three days (Fig. 15), the isobars following approximately a northwesterly direction, and that Leixões is included in the generating area over which this three-day storm actuated. As will be seen later the sea should be considered as fully arisen.
SPECTRAL COMPUTATIONS

7.2 - Approximate determination of the fetch to be considered.

In Fig. 16, the maximum fetch relating to the meteorological situations of the storm days (16th, 17th and 18th) is delimited by a dashed line. After a mean wind speed during the storm is fixed, it can be seen that any of the indicated fetches is greater than the minimum fetch corresponding to a fully arisen sea.

7.3 - Wave refraction up to the wave gauge site.

Recorded values at Leixões at a depth of 23.3 m cannot be transformed into offshore values without some criticism. An examination of Fig. 17 reveals, waves following a course close to NW have a refraction coefficient given by He/Ho (where He is wave height at the harbour entrance and Ho the corresponding offshore value) which is independent of period (the latter varying between 10 and 17 s) and has a nearly constant value of 0.7 approximately. This is the adopted value for a correction of statistics for offshore conditions, according to a rough, yet seemingly adequate, procedure for the present case. Concerning the course followed by waves the following remarks should be noted.

We may roughly guess at the day and the period of time in which waves recorded at Leixões were passing by each one of the three ships (Table 7). Once more we are simplifying things by assuming that the propagation speed is $V_T = gT/4\pi$ and considering the period range to be 8 to 16 s.

<table>
<thead>
<tr>
<th>Ship</th>
<th>Time to reach Leixões</th>
<th>Swell</th>
<th>Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>16 19</td>
<td>6 (const) 12</td>
<td>9 (8-10) 10 (const)</td>
</tr>
<tr>
<td>J</td>
<td>16 17</td>
<td>6 (const) 12</td>
<td>6 (6-7) 8 (8-9)</td>
</tr>
<tr>
<td>C</td>
<td>16 17</td>
<td>6 (const) 12</td>
<td>6 (6-7) 8 (8-9)</td>
</tr>
</tbody>
</table>

Table 7

Table 8 is a résumé of sea and swell conditions recorded by each one of the three ships in such a way that waves could have arrived at Leixões during the twenty-minute recording period at 3 a.m. on December 18th, 1970.

* - Reproduced from Fig. 5 in [2]
Another important problem in the application of the two most common forecasting methods (SMB and PNJ) concerns the choice of a mean wind speed likely to have occurred during the storm. Fig. 16 shows that the mean values of wind speed recorded at K ship on the two days before Dec 18th are:

- Dec 16th: $U = 42$ knots (a)
- Dec 17th: $U = 32$ knots (b)

Assuming that the sea is fully arisen (Leixões being included in the generating area) it will be interesting to know land-recorded values at the closest weather station to Leixões (Pedras Rubras).

<table>
<thead>
<tr>
<th>Speed (knots)</th>
<th>Pedras Rubras</th>
<th>Leixões</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Hour</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Dir</td>
<td>W</td>
<td>NW</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>W</td>
</tr>
</tbody>
</table>

Mean value at Leixões (sea): $U = 25$ knots (c)

With U values indicated in (a), (b) and (c), a mean value should now be adopted. If a Neumann spectrum is chosen corresponding to $U = 30$ knots according approximately with the pressure spectrum (Fig. 14), and assuming a fully arisen sea, the following minimum values are obtained for duration and fetch:

- $t = 23$ h
- $F = 518$ km

Hence, in fixing U, only Leixões and K ship should be considered (K ship is even beyond F in case $U = 30$ knots).

In short, with mean U values of 25 knots (at Leixões) and 32 knots (during the previous 24 hours) and now reasoning backwards, the choice of $U = 30$ knots seems to be adequate as the mean prevailing wind speed which brought about the fully arisen sea relative to the Dec 18th storm.

7 4 2 - Forecasts of the S M N

Based on lighthouse observations the S M N wave forecast for Dec 16th, 17th and 18th was "strong northwesterly waves" which corresponds to wave heights between 2.5 and 5.5 m.

7 4 3 - The Sverdrup-Munk-Breschneider Method (SMB)

For $U = 30$ knots and assuming a 800 nautical mile fetch corresponding approximately to Dec 18th, we get $t = 50$ h, $H_s = 6.09$ m, $T_s = 14$ s.

There is small accuracy in the choice of fetch, but observing Fig. 1-7 on page 19 in [3] one can see that wave characteristics vary only slightly between 800 and 1000 miles. The mean wind speed of 30 knots can be assumed constant during two days which corresponds approximately to $t = 50$ h.

Wave forecast for the wave gauge zone, taking into account a H_e/H_o value of 0.7 is then $H_s = 4.3$ m.

7 4 4 - Pierson-Neumann-James method (PNJ)

As mentioned above, a 30-knot Neumann spectrum was chosen according approximately with the pressure spectrum (Fig. 14).

The corresponding hindcast statistics have the following off-shore values:

- $H_s = 6.6$ m
- $H_{1/10} = 8.3$ m
- $T_{av} = 5.5$ s
- $f_{peak} = 0.08$ cps

Taking into account the correction for the wave gauge zone we get:

- $H_{av} = 2.1$ m
- $H_s = 4.4$ m
- $H_{1/10} = 5.7$ m

* - Serviço Meteorológico Nacional (Portuguese Weather Service)
SPECTRAL COMPUTATIONS

8 - COMPARISON OF COMPUTED AND HINDCAST SURFACE SIGNIFICANT WAVE HEIGHT VALUES

Tucker-Draper method

\[H_s (\text{from } H_1) = 4.42 \text{ m} \]
\[H_s (\text{from } H_2) = 3.78 \text{ m} \]

Taking the arithmetic mean and correcting to surface with \(\frac{2\pi d}{L} \) only, we get \(H_s = 4.1 \text{ m} \). If the instrument factor of Chatou is used, then \(H_s = 4.4 \text{ m} \).

P.N.J. method \(H_s = 4.4 \text{ m} \)

S.M.B. method \(H_s = 4.3 \text{ m} \)

S.M.N. forecast for Dec 18th Wave heights between 2.5 and 5.5 m

These values are close to one another and so it seems reasonable to conclude that at Leixões, on December 18th, 1968, the surface significant wave height was 4 to 5 m.

9 FİNAL SUMMARY OF THE MORE NOTEWORTHY ASPECTS OF THIS PAPER

Partial detailed conclusions were drawn in preceding chapters of seemingly more salient aspects. A summary of important points is:

- The sampling interval may be as high as 2 s if spectral analysis only is intended.
- If a smaller interval is used, which means a higher Nyquist frequency \((F_N) \), then a convenient cutoff frequency \((F_c) \) should be chosen, possibly according to coincidence of \(m \) and \(c (\theta) \).
- A good estimate of the spectrum width depends on a well balanced choice of some parameters, especially on the cutoff frequency.
- A good choice of maximum lag for the autocovariance function is of great importance to spectral analysis.
- Results from record partition seem to indicate that a more careful study must be made of the necessary record duration.
- Some aspects of wave data acquisition which are well-known yet should be kept in mind concern correction to surface of bottom spectra (lack of linearity) and of bottom statistics (adequate instrument factor).
- Great influence of depth on wave attenuation.
- Faulty characteristics of pressure records for spectral analysis of sea waves.
- For hindcast and related meteorological problems, the usual difficulties arise in fetch determination (to the resolution of this problem, directional spectra may provide a useful contribution). It is also important to make a realistic criticism to sea wave data secured from meteorological services. Indeed, it is frequent to detect absurd correlations between wave heights and periods and sometimes fallacious distinctions are made between sea and swell.

As final conclusion we would like to stress the importance of a close collaboration between different techniques used in Maritime Hydraulics. This collaboration is essential for an intimate connexion in the development of both the physical (meteorology, oceanography, fluid mechanics) and the mathematical approaches.
ACKNOWLEDGEMENTS

The authors are grateful to the Instituto Hidrografico for the facilities granted concerning reading and digitizing wave records. They are also in debt to Dr Anthimio de Azevedo from the Serviço Meteorologico Nacional for the meteorological elements provided and their interpretation.

REFERENCES

Fig 1 - Wave gauge site

Fig 2 - Autocovariance function

Fig 3 - Windows considered

Fig 4 - Raw and smoothed spectrum
Fig. 13 - Exceedance probabilities of bottom wave heights compared with Rayleigh distribution.

Fig. 14 - Surface version of bottom pressure spectrum compared with Neumann spectrum.

Fig. 15 - Synoptic charts.
Fig 16 - Fetch delimitation

Fig 17 - Refraction coefficients at Leixões harbour entrance

Fig 18 - Observations at North Atlantic K weather ship