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ABSTRACT 

The difficulties inherent in the direct determination of loads on off-shore 
structures which are exposed simultaneously to wind and waves make it desirable 
to model each situation in the laboratory  It is shown here that scaling of the 
loads and the waves is possible by using waves which are generated by blowing air 
over the surface of a laboratory channel, and by choosing a model material with an 
appropriate modulus of elasticity  Wind-generated waves such as those measured m 
the wind water tunnel of Colorado State University have a dimensionless spectrum 
(Hidy and Plate (1965)) that is identical in shape to that found off the coast of 
Florida under hurricane conditions (Collins (1966))  Furthermore, it has been 
shown that hydro-elastic modeling is quite feasible (LeMehaute (1966))  These two 
results are combined to give modeling criteria for off-shore structures if direct 
wind forces are disregarded 

INTRODUCTION 

The increased use of off-shore structures for the exploration and exploitation 
of the oceans has created a demand for accurate design information on the load 
conditions to which the structures are subjected.  In contrast to most land based 
structures, the critical load conditions for an off-shore structure may be dynamic 
in nature and induced by the water surface waves, so that analytical design proce- 
dures may become very complicated except for simply shaped structural elements 

Present analytical procedures for determining the response even of simple 
structures to periodic waves are not exact  For example, it is customary to use 
the Morrison equation to determine the wave forces acting on a vertical cylmdei. 
In the Morrison equation, the inertia and drag coefficients must be determined 
experimentally  In some cases these coefficients can only be described statistically 
Furthermore, they may vary with depth, as has recently been demonstrated by Pierson 
and Holmes (1965) 

Under these circumstances it becomes desirable to study the dynamic behavior 
of a structure on a laboratory scale, which is quite feasible as will be shown m 
this paper.  LeMehaute (1966) has shown that hydro-elastic modeling can be accom- 
plished conveniently by using modern plastics for model construction  If it can be 
ascertained that the response of the structure is linear, then the modeling problem 
consists of requiring identical shapes of transfer functions in model and prototype 
obtained by the modeling transformation  The transfer function is then the quantity 
which needs to be determined from the experiment, and it can be found conveniently 
by exciting the model structure with a sequence of sine waves, and finding the 
response to each of them 
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Most structural responses are nonlinear (although many are nearly linear), 
so that their transfer functions cannot be constructed by superposition.  In 
such cases laboratory experiments are the only alternatives to potentially extremely 
complex calculations, for which the model structure must be excited with a forcing 
function which is dynamically similar to the prototype forcing function.  In parti- 
cular, for structures excited by wind generated waves, the model wave spectrum must 
be dynamically similar to that of the prototype  Dynamic similarity of the spectrum 
does imply similarity of the shape of the spectra, as well as similarity of the 
energy contained m the spectra. ' 

The need for similarity in spectral shape has been realized for some time  Thus, 
Nath and Harleman (1967) produced a spectrum whose shape was similar to that of spectra 
found in parts of the Atlantic Ocean by Pierson and Moskowitz (1964). They used a 
wave generator for exciting model structures which was programmed to generate a quasi- 
random wave train with a spectrum of the desired shape. 

Wave trains produced by a wave generator have several features which differ 
from that of a wind generated wave pattern. A wave generator can only produce wave 
components which agree with the free modes of the water surface. That is, each of 
the wave components is sinusoidal in shape and travels independently of all other 
wave components  Thus, when a large wave is formed by the superposition of component 
sinusoidal waves that are momentarily in phase, although of different wave lengths, 
one finds that the life of the wave is fairly short. The large wave forms when 
the components are in phase, and then disappears as the components become out of 
phase due to the different component celerities.  In contrast to this, one finds 
that large wind generated waves at high wind speed are quite long-lived and are, 
therefore, not composed of independently traveling sinusoidal waves. Nor is their 
total shape sinusoidal  In Fig. 1 an example is shown of a significant wave which 
is found at a wind speed of approximately 10 m/sec  This wave has been obtained 
by averaging the highest 20 waves from a record of about 300 waves measured in a 
laboratory channel. The waves were superimposed m such a way that their highest 
points coincided on the time axis and the ordinate values were averaged. A confidence 
band given by the local standard deviations of the coordinate values about the mean 
is also shown. It is apparent that even though the wave travels as a whole, its 
shape is definitely not sinusoidal  Consequently, even though the spectrum of 
generator produced random waves might match that of wind generated waves, the shapes 
of the resulting individual waves are not exactly the same. Results obtained by 
this procedure are therefore subject to question, particularly if the dynamic 
response of the structure is nonlinear. 

A second, and possibly more important difference between a generator produced 
spectrum and a fully developed wind wave spectrum lies in the inability of the 
former to properly model the magnitudes of the spectral densities. Complete dynamic 
modeling requires that both wave lengths and amplitudes are modeled by the same 
scale factor  As shall be shown later, this condition requires that the dominant 
wave, which corresponds to the frequency at the peak in the spectrum for fully 
developed conditions, reaches its maximum possible amplitude.  It is doubtful that 
this condition can be met while maintaining the required spectral shape, because 
the variance of a wave spectrum driven by strong winds increases with fetch, while 
that of the paddle generated wave spectrum decreases, partly due to viscosity, and 
partly due to breaking when superposition of component waves increases wave amplitudes 
beyond their stability limit 

More suitable test conditions are obtained when wave trains are used, whose 
spectra, as well as shape and amplitudes of individual waves, resemble those of' wind 
generated waves, but on a smaller scale. Such wave trains are found in the laboratory 
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if air is blown over the surface of water standing in a channel.  In this paper, the 
application of wind generated waves to modeling of wave forces is discussed. Since 
the wind generated laboratory waves have fewer drawbacks than paddle generated waves, 
it would be advisable to use them to obtain the load conditions on model structures 
By this method one also obtains a means to evaluate the wind loads on the part of 
the structure above the water surface 

As shall be discussed in the first part of this paper, the spectrum of fully 
developed wind generated waves in a laboratory is similar in shape to that found 
for ocean waves, and it also yields a relationship between peak frequency and 
variance of the spectrum which is scaled by the Froude number in such a way that 
no change m scale between vertical and horizontal dimensions becomes necessary 
In the second part, considerations will be given to the modeling requirements of 
the structure  This will be discussed on the basis of simple linear structures, 
and it is shown that Cauchy number similarity is feasible together with Froude 
number similarity. 

The Similarity Spectrum of Wind Generated Waves 

The driving forces acting on the submerged portion of a dynamically loaded off- 
shore structure result from the wave field generated by the wind. They act in 
addition to the wind force on the superstructure  Even though this wave field 
usually appears random both in space and time, it is nevertheless possible to dis- 
tinguish, especially m the neighborhood of coasts, crests of waves which give the 
wave field an appearance of local two-dimensionality, with a predominant direction 
of progression perpendicular, or almost perpendicular, to the crest  For such a 
wave pattern, a laboratory analogue exists in the wind generated waves which are 
obtained when air is blown over the surface of the channel m which water is standing 
It seems possible that the majority of all wind driven ocean waves outside of a storm 
center consists basically of a dominant pattern of this kind  This would offer a 
logical explanation for the observation that one-dimensional wave spectra both in 
the laboratory and in oceans have an approximately equal shape. An illustration of 
this phenomenon is given in Fig 2a where a typical laboratory spectrum, obtained by 
Hidy and Plate (1965), is compared with a set of ocean wave spectra generated by 
strong off shore winds off the coast of Florida shortly after the passage of 
Hurricane Dora, in September 1964. The spectra were calculated by Collins (1966) 
The peak density of the larger ocean wave spectrum is 10,000 times larger than the 
peak density of the laboratory spectrum  Yet, the shapes do not differ significantly. 

The identical shape of the dimensionless spectra shall be explored here  A 
non-dimensional form of the spectral shape that is suitable for the purpose of this 
paper has been suggested by Hidy and Plate (1965)  Hidy and Plate (1965) recommended 
to non-dimensionalize the spectra by dividing the frequency axis by a        , which is 
the angular frequency at which the spectral peak <J>(w  ) is observed  The spectral 
density <K<o) was reduced so that the area under the non-dimensional spectrum 
S(u)/io  ) is equal to 1  This leads immediately to the requirement 

ci  ">     i     max  J.I   1 Ml S(- ) =   <Ku>) (1) 
max ,2 

where o2 is the variance of the water surface elevation. This non-dimensionalizing 
procedure is equally valid for ocean wave data, as was shown by Colonell (1966).  In 
Fig. 2b, the average curve of Hidy and Plate (1965) is given, which is representative 
for many different laboratory spectra. The similarity of this shape with that of 
Fig. 2a is noted  Also, it is seen that the high frequency end of the spectrum follows 
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approximately a a~      law, as predicted by Phillips (1958)  However, the -5 law 
seems to be only an approximation to the spectra at high frequencies  There is 
evidence that the exponent in the power law varies from about -7 near the spectral 
peak to -4 at higher frequencies. 

More significant than the high frequency behavior of the individual spectrum 
is the fact that all spectra obtained from ocean or laboratory are bounded at the 
high frequency end by a universal curve given by the equation of Phillips 

(f>0 ~ «>  ) = 1 05 10~2g+2uT5 (2) T l    max' s 

where g is the constant of gravity  This is shown in Fig. 3, which has been 
reproduced from Hess (1968). Phillips (1958) derived Eq. 2 by using dimensional 
analysis. Recently Plate, Chang and Hidy (1968) have provided arguments which 
deduce the -5 power law as an upper limit of spectral growth, independent of the 
shape of the individual spectrum, provided only that all spectra are similar  The 
-5 power law then becomes a law which relates peak spectral density <f (w  ) to 
a)     Since this law plays a key role in the modeling criteria to be developed, 
the derivation shall be outlined here 

The basic assumptions are 

a.  The spectrum has a sharp peak near a        , and can be described by the 
similarity shape of Fig 2b. According to Longuet-Higgms (1952) this implLes that 
the water surface undulations consist mainly of a train of waves of frequency o> 
whose amplitudes are subject to a random modulation. This model agrees well witn 
observations both of water surface elevation recordings and of wave spectra  The 
wave of frequency u    shall be called the dominant wave, whose height is denoted 
by H . max 

b   The maximum growth of the dominant wave component is limited by the 
acceleration of gravity such that 

a   = ag (3) 
max    s 

where a is the maximum acceleration of the surface of the dominant wave, and 
a is a number which is smaller than 1 It will be shown that a ~ 0.3 leads to 
an estimate which is consistent with the numerical factor of 0.0105 in Eq. 2. 

Longuet-Higgms (1952) has shown that a Gaussian wave record which satisfies 
condition (a) above has wave heights h which are Rayleigh distributed. Consequently, 
the mean value, H^"J , of the pN highest of N waves is a constant multiple of 
the mean wave height H , or 

HCP) 
~   = m (4) 
H 

where m is a constant.  Typical values of m are m = 1 42 for p ~  1/3 and 
m = 1.26 for p = 1/2. Thus, if each wave is basically sinusoidal, then the average 
vertical acceleration of the water particles at the peak of the highest pN dominant 
waves is found to be equal to 

a = I ^        H(P>  . (5) 
m   2  max 
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Fig. 3  A Comparison of Observed Wave Spectra with 
Geophysical Wave Spectra (from Hess, 1968) 



MODELING OF STRUCTURES 753 

Somewhat arbitrarily, it is.assumed that the significant acceleration is that of 
the significant wave IP   . For a wave record whose water surface elevation is 
Gaussian (which is approximately true both for the laboratory and the field), there 
exists the following relation between mean wave height and variance of the water 
surface elevation (Collins, 1966) 

8 a2    =    H2 (6) 

with .m = 1.42, the relationship between the acceleration of the significant wave 
H^     and the variance a2    of the wave record is found as 

a2 = 4 u    a2 (7) m      max 

But according to assumption Eq. 3, this is also equal to a2g2, so that 

(8) 
2 2 01 R 

.     4 4 a) max 

We can eliminate o2 in Eq. 1 and let a =  i»     It is then seen from Fig 2 that 
S(w  /io  ) = S(l) ~ 0 5 for a fully developed sea, and consequently max max' 

<K«  ) = -iL— 05= -i-f— (9) T^ max'  u        . 5 max max 

which is independent of the spectral shape except for the requirement of similarity. 
This result is now compared with Eq 2 where co is replaced with u>  . One obtains 

• (d)  ) = 1 05 10"2 g2 uf5 (10) v max' &      max l ' 

Consequently, one finds 

a = 0 29 (11) 

which is somewhat lower than the limiting vertical acceleration of the Stokes wave, 
where a = 0.5. 

The reasoning leading to Eq. 10 is of consequence for the purpose of modeling. 
When conducting a model study, it is naturally desirable to model the maximum forces 
that can occur  Waves with amplitudes exceeding that of the significant wave would 
presumably break, because their accelerations exceed the critical value ag   There- 
fore, waves at frequencies to > w    of larger amplitudes than that at m , max max cannot occur in an equilibrium spectrum described by the similarity shape ana by the 
relation between peak spectral density and the corresponding frequency expressed 
through Eq 10  If larger waves are to occur they must therefore be of lower 
frequencies. 

Equation 10 also implies that the waves that reach the limit of growth are 
subjected to continuous addition of energy through work done by the wind, so that 
the dominant wave remains at its maximum height. A spectrum of waves with a dominant 
wave consisting of swell from a far away, and perhaps long subsided storm, might still 
have the similarity shape of wind generated waves, but its maximum spectral density 
will be below that of Eq. 10. Consequently, the maximum possible spectral density 
for waves of frequency u    is given by Eq. 10, which therefore describes the 
envelope for all fully developed wave spectra. 
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Fully developed wave spectra are found in particular when wind of long 
duration is blowing, such as during hurricanes  An example is given by results 
of Collins (1966) which were obtained at two different times at two different off- 
shore fetches during an off-shore blowing wind.  In Table 1 the peaks of the spectra 
calculated from Eq. 10 are compared with the peaks obtained by Collins.  It is 
remarkable that the long fetch spectra are in exact agreement with Eq 10, while 
the lower fetch data are below the saturation value given by Eq 10  Many other 
data show the same behavior, as is evident from the data of Fig 3. 

TABLE 1.  PEAK AMPLITUDES OF HURRICANE DORA DATA 
(from Collins, 1966) 

*(f      ) T    max' <(>(f       )   =  2INK&I       ) max'          T v max 

^ase f       (Hz) max      ' 

(observed) 
m2-sec 

(f: com Eq    10) 
mz-sec 

AI 0.35 0.130 0 124 
All 0 45 0 018 0 034 
BI 0.23 1 05 1.00 
BII 0 27 0.2 0 45 

Remarks 

Sept. 9, 64 Fetch 11 miles 
Sept. 9, 64 Fetch 1.7 " 
Sept 10, 64 Fetch 11  " 
Sept.10, 64 Fetch 1.7 " 

We notice that the results of Eqs 
between variance, o2 , and u 

'    '     max 

2.1 10 
•2 2 -4 

max 

9 and 11 yield the important relationship 

(12) 

Equation 12 shows that the scale of the amplitudes of the wave which must also scale 
the square root of the variance of the spectrum fixes the scale of the frequencies, 
so that it is not possible to adjust the two scales independently.  If it is desired 
to model wave heights so that 

(o/L) = (o/L) 
m     'p 

(13) 

then it follows that the frequencies must be related like 

max p (14) 

Here, L is any characteristic length, the subscript m refers to the model, and 
the subscript p to the prototype. This condition is in accord with the require- 
ments imposed on the wave length \  .     If it is desired to have identical non- 
dimensional wave lengths, X/L , for model and prototype, then it would be 
necessary to set 

k 
(15) 

However, for gravity water waves, the frequency is related to the wave number, 
k = 2ir/X , by. 
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o>2 = g k tanh kh (16) 

where h is the depth, as defined in Fig 4, and thus 

u2    k    L    h 
_£. = JL = JL    = JL (17) 
„2 k     L     h 
a1- m    p    p 

m agreement with Eq 14. Consequently, the use of a fully developed wave spectrum 
in the laboratory for simulating a fully developed wave spectrum for prototype con- 
ditions results in identical scale ratios of both wave heights and wave lengths, if 
the spectra are related by Eq 14. The use of Eq. 14 thus leads to an undistorted 
geometrical scaling of the whole wave field This result establishes the advantage 
of using wind generated waves in the laboratory for modeling wind generated waves 
in the field 

It is interesting to note that modeling according to Eq. 14 implies Froude 
number scaling, i.e., 

u 
(18a) 

gLm    VeL p 

where u    is a wave related velocity such as c , or the wave induced at some 
reference depth.  For the latter, u     is proportional to am    for any frequency 
component and one obtains 

(19) 

If o is eliminated through Eq. 14, then Eq 17 follows  Consequently, Froude 
number modeling according to Eq 19, in conjunction with Eqs. 9 and 10, results 
in fully developed wind generated wave spectra in model and prototype which are 
geometrically similar with equal vertical and horizontal scales  Therefore, the 
model structures can be built to scale, and the complications which arise from 
distorted scales can be avoided.  It should be mentioned that the definition of 
a modeling Froude number according to Eq 19 is somewhat more stringent than is 
required for linear response of structures under the effect of a wave force. For 
such a system, the amplitude appears only in the load function and therefore need 
not be scaled properly because its effect can be included into the conversion 
factor which is used for calculating prototype response data from model data.  Then 
the Froude number is more suitably defined by 

(20) 

Since c  is independent of the vertical scale of the wave motion, this modeling 
criterion only suffices to satisfy Eq 15, but not Eq. 13. 
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x- Deflection 

Fig 4 Definition Sketch for Off-Shore Structure 

In applying Eq. 10 to laboratory modeling, it is required that some value of 
the height of the significant wave is known which can be expected under prototype 
conditions at the position where the structure is to be constructed. How this wave 
height can be found shall not be discussed here  If it is known, then the variance 
of the water surface follows from Eqs. 4 and 6, the peak frequency, co   , from 
Eqs. 8 and 11, and the spectral peak from Eqs 9 and 11. The spectrum can then be 
constructed with variance a2 , w   , and the similarity spectrum of Fig. 2. After 
choosing a suitable length scale,mtfie model spectrum can be obtained by reducing 
the variances of the water surface and the frequencies according to Eq. 14. It 
remains to show under what conditions it will be possible to obtain a scaled dynamic 
response of the structure. 

Modeling of Structures Subjected to Wave Forces 

When a linear structure is excited by a random dynamic load whose stationary 
spectrum is <frT (io) , it is well known that the deflection spectrum *„(» of a 
characteristic point on the structure can be expressed by 

K2 4(u0 HO) I2 *LC")) (21) 

where K is the spring constant of the support legs and H is a transfer function. 
Multiplication of the deflection spectrum by the square of the spring constant K 
of the support legs signifies that we assume the structure to be so stiff that 
deflections are within the range of validity of Hooke's law. Then the spring constant 
is a multiplier whose magnitude must be known.  It is to be chosen according to 
dynamic similarity of the structural response 

The function H(<o) of Eq. 20 is the transfer function of the structure which 
establishes the dynamic response of the structure under the effect of the load 
spectrum.  In our notation, it is a dimensionless function whose value at zero 
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frequency must be one, to correspond to the case of static loading.  The simplest 
structure, such as shown in Fig 4, consists of one or more cylindrical supports 
which are clamped to some degree into the ground and into the working platform. 
The transfer function of each of these cylinders is then given by that of a simple 
second order system 

| H(co)|2 =  2 z  (22) 

2 
2C ; 

Si 

which is valid for the dominant first vibrational mode, whose natural frequency is 
equal to u    The coefficient t,    is the relative damping factor  It is deter- 
mined almost completely by the internal structural damping, while the natural 
frequency is given to 

(23) 

where m is the mass of the load on the single cylinder, and K is the spring 
constant 

K = Y ^-P- Cl-3) (24) 
IT 

In this equation,  E is the modulus of elasticity,  I the moment of inertia, and 
L the length of the cylinders, as indicated in Fig 4  The clamping coefficient 
y    corrects for the possibility of rotation of cylinder top and bottom  When the 
cylinder is clamped into the ground, and into the platform (1 e., the cylinder is 
one leg of a multilegged structure) so that the joints cannot rotate then y  = 1 
A more flexible structure, resulting from only partial clamping in the ground or 
at the platform yields a smaller y  ,  while increased stiffness, as obtained for 
example by braces across the legs results in a larger value of y        Evidently, 
for more complex structures a simple correction of the single cylinder spring 
constant does not suffice, and a suitable elastic model may be the only feasible 
alternative  The coefficient 8 is the reduction factor due to vertical loads, 
l e., 

6 = ^ (25) 
1T2EI 

where W is the vertical load applied to the cylinder top  As long as  3 is 
significantly smaller than 1 , a vertical load can be used to tune the structure, 
so that its natural frequency assumes the desired value. 

For the multilegged structure as a whole, the transfer function is the same 
as that for the individual legs except for a modification factor which results 
from the time lag between the forces on different cylindrical legs. The phase 
shift may either lead to adding total forces on the structure or subtracting, and 
might even cancel depending on the distance between legs as related to wave length, 
and on the orientation of the structure  This effect has been discussed by Nath 
and Harleman (1968) 
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In a model study, the effects of structural complications and mtramodal 
coupling on the transfer function may possibly be determined experimentally 
We notice that for the transfer function to be modeled in the laboratory, it 
shall have to meet the following requirements 

1   Model and prototype must be geometrically similar, and must be scaled 
such that the length scales of the wave motion are identical to the 
scale of the geometry of the structure.  In this manner, interference 
effects due to loads on different individual legs and other structural 
elements are accounted for. 

2. Dimensionless (or relative) damping coefficients of model and prototype 
associated with each mode must be identical. This requirement is not 
met easily.  It is probably suitable to use a damping coefficient based 
on experience and correct the damping of the model structure by an 
external arrangement of dashpots 

3. The natural frequencies of model and prototype must be chosen such that 
ID/ID is identical in model and prototype This must be interpreted as 
requiring that the ratio of the to of the peak of the load spectrum 
to the natural frequency of the structure, ID , is the same, or 

-SSL (26) 
ID ^  ' 

model    '    ' prototype 

Evidently, the preceding requirements imply that the output spectrum, as well 
as the input spectrum, is similar in model and prototype. The modeling requirement 
expressed by Eq. 26 implies simultaneous equality of both Froude number and Cauchy 
number m model and prototype. Generally speaking, the Cauchy number is defined as 

UW C = — (27) a   u„ K    ' E 

where a wave reference velocity might be uw = ow   , while the reference elastic 
velocity uF usually is the speed of sound E/p   However, in the case of bending 
deformation of the structure, it appears to be more rational to use an elastic 
velocity u_ = LID  , so that 

'  E    n 
w 

c  =  J22L2. C28) 
a      (D L n 

for similar geometries, Cauchy number similarity for model and prototype requires 
that Eq. 26 be satisfied  This equality together with Froude number equality can 
be met, however, only if the elastic properties are suitably adjusted  By using 
the definition of the natural frequency, Eq 23, in conjunction with Eqs. 24, 14 
and 27, it is seen that 

E p     L 
~ £ = JS. (29) 

E p     L p m     p 
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when p  and p  are the bulk densities of the loads on the cylinder for 
prototype and model, respectively. The factor a , given by 

Y (1 - g ) I  L 4 

a     =  Ej (30) 
Y (1 - B ) I  L H p      p  p m 

reduces to one if exact geometric similarity of the model and prototype support 
structures exist, and if the damping conditions are identical. A factor a = 1 is, 
of course, not necessary. For example, instead of the thm-walled cylinders used 
for the legs of prototype structures, we might prefer to use solid legs in the model. 

The result given by Eq 28 can be derived more formally by the methods of 
inspectional analysis, as was evidently done by LeMehaute (1966)  It gives a means 
of obtaining, by suitably adjusting a , E  and p , the dynamically correct 
response of the structure to wave forces, provided that the load spectrum is also 
modeled properly. 
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