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This warier summarises some recent work on 
lone gravity waves on still water m channels 
of arbitrary constant cross-section.  Theoretical 
results have been obtained for both straight and 
curved channels.  Some experimental work has 
been performed m straight trapezoidal channels 
and shows reasonable agreement with theory.  For 
straight channels some details of the second 
approximation are given, and the cases where the 
approximation breaks down are indicated.  For 
curved channels it is found that the effect of 
channel curvature is more r>ronounced when the 
cross-sectional shane of the channel is not 
symmetric with resnect to its centre-line. 

The waves considered are Ions gravity waves on the 
surface of water contained in a channel.  If the waves are 
very long compared with both the breadth and depth of the 
channel, then it is reasonable to assume uniform conditions 
across the whole cross-sectional area of the channel.  That 
is, a uniform height of water and a uniform velocity of 
water alone the channel.  If, further, it is assumed that 
the amnlitude of the wave is very small compared with the 
depth of water, it is simple to show that the pressure is 
hydrostatic, and the wave motion in a straight channel is 
governed bv the equations, 

where u is the velocity of water along the channel which is 
taken to be m the x direction, Z>   is the height of the water 
surface above its undisturbed level, Ao is the cross- 
sectional area of the channel and B0 is the width of the 
free surface of the channel, where both Ag  and B0 are 
evaluated for the undisturbed water surface.  If attention 
is now confined to straight channels of uniform cross- 
section, A<, and Bn are constant and the wave velocity c0 
is given bv 

e§ = g £*   = gbo 

where ho is the mean deptho 
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For the linearized equations (1) to be useful it is 
necessary for waves to have exceedingly small amplitudes, so 
it is desirable to find a better aTjoroximation.  This can be 
done bv retaining the assumption of uniform conditions over 
a cross-section, but sucn an approach leads to equations which 
are not uniformly valid.  That is, the assumption of long 
waves breaks down, since the equations predict that the front 
of waves of elevation continually steepens.  However, for two- 
dimensional motion it is known that this only happens for 
relatively large amplitudes, and that the appropriate 
uniformly valid approximation is that leading to solutions 
such as the solitary wave.  This includes the effect of the 
vertical acceleration of the water on the pressure, as well 
as the next approximation in the amplitude.  In addition to 
these we therefore also include here the effect of transverse 
water motions m channels which are not rectangular m section. 
This has been done and mathematical details may be consulted 
in a recently published paper fref. 1"). 

It is found that the transverse and vertical velocities 
("v,w) are given bv 

9x dy'       3x az' 

where ijf(y,z) satisfies 

3*±  + 3£± - -i (2) 

within the area Ao , with boundary conditions ^=0 on the 

channel walls and f^ = h. on the "free surface. The variations o z 
of longitudinal velocity and amplitude across the channel are 
also in terms of ijr<>  In particular, the variation of amplitude 
across the channel is 

- §r *(y,o), 
where z = 0 is the undisturbed water level.  As may be expected 
ty also appears in the equations of motion, which are 

at + u ax + g ax - °» u; 

where b  = B'(O)/^, if B(z)   is   the width of  the  channel  at 
height  z,and 

\|rB - *A =   •£•[    f(y,Q)dv - jWT i|r(y,z)dyaz. 
"JB0 
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These equations are no more difficult to deal with than the 
corresponding two-dimensional equations, and in manv cases of 
interest it is simple to transform these equations into the 
two-dimensional ones. There is, for example, a solitary wave 
solution, and it is interesting to note that its velocity c 
is independent of \{t(v,z) and depends only on the geometry of 
the channel: 

c2 = g[ho * (1 - ^bb^a] 

where a is the amplitude of the wave. 

This theory is of most interest where it denarts from 
the two-dimensional theory and from the first a-oDroximation, 
in particular in the variation of surface level across the 
channel. One general result can he found fairly easily by 
considering the boundary conditions on ty  at the shore line. 
If the shore line is at an angle a to the vertical, measured 
in the y direction, then the slope of the water surface at 
the shore, 

§ — g^tana. 
This result sbows that the crest of a wave (~?' < 0) will ox 
slope up towards the shore if a > 0 and thus reach a higher 
level than st points away from the shore.  Conversely if the 
banks eie over-hanging, i.e. a < 0, tben the level of the 
crest will be depressed near the shore.  Similarly the depth 
of a wave trough is increased or decreased near the shore if 
a is greater than or less than zero respectively. 

It is possible to solve equation (2) analytically in a 
number of simple cases; but for most channels a numerical 
solution is needed.  One particularly simple solution is 
for any triangular channel where 

• (y,z) = j(yz +- z«) 

when the origin of the coordinates is taken at the bottom of 
the channel,. In this case the transverse surface profile is 
alwavs part of a parabola. 

Attempts to solve equation (2) analytically for 
trapezoidal channels led to an interesting result concerning 
wide channels.  That is, as such a channel gets wider so the 
difference m crest height between the centre and the shore 
increases like the width of the channel.  Thus, an essential 
part of the derivation of the solution, that such variations 
be small, no longer holds.  It seems likely that lone waves 
travelling along wide channels will usually break at the shore 
line. 
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Figure 1 shows how the function i|r(v,0) varies for a sequence 
of three channels of different widths.  For wider channels 
the value of \|/ at the shore line increases linearly with L. 

->y 

Figure 1 : Values of \|t(v,0) for channels of the cross- 
sectional form shown at the top of the figure. 

Some simple experiments measuring the variation in 
surface height along the crests of solitary waves have been 
conducted in three different channels.  Two were trapezoidal, 
with one vertical side and the other side at 30 or k5    to 
the vertical.  The measurements from these channels were in 
reasonable agreement with the theoretical results.  The third 
channel was triangular, with one side vertical anri the other 
at 60 to the vertical.  The results from this latter channel 
were not very consistent and usually differed substantially 
from the theoretical values.  It is clear from the theory 
that it is not applicable for shore lines slopins at small 
angles to the horizontal and it may be that, for waves of the 
amplitude used, 30 is too small an angle.  Further details 
are given in reference 2. 

This theory has been extended to curved channels (Towers, 
unpublished thesis, University of Bristol 1968).  The 
equations corresponding to equations (1) are 

at + ax = o.   Bofl + £(Qof) = o, 
where f = (1 + /cy)u, QQ If & 

at • ax 
dydz 

(5) 

KV 
, and K  is the radius 

of curvature of the centre-line of the channel. Note that 
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even in the first approximation the velocity is not uniform 
across the channel, u is the velocity at y = 0.  As before, 
x is measured along the channel, y in the horizontal trans- 
verse direction and z vertically upwards: however, this now 
defines curvilinear coordinates which is why (1 + icy) 
appears in some terms.  The surface y = 0 is chosen to be 
midway between the two shore lines.  The form of the equations 
and the values of f, u, K,  Q and x are all slightly different 
if a different zero is used, but £ is unchanged, so that it 
is preferable to look on equations (5) as equations for 
g(x,t).  In this, the first, approximation £ is constant 
across the channel. 

If f(x,t) is eliminated from equations (5) it is clear 
that the effect of channel curvature only appears in QQ.  If 
K  is assumed to be small, which it must be if this long wave 
approximation is to be consistent, then we raav write 

Qo = AQ - icjl    y dy dz + /e2 If   y2 dy dz + „„. (6) 

If the cross-sectional area is symmetrical about the centre- 
line the second term in (6) is zero, otherwise it mav be non- 
zero.  Hence it appears that the curvature of the channel may 
have a stronger influence when the channel cross-section is 
aysymmetrical. 

By comparing equations (1) and (5) it may be seen that 
the effect on wave amplitude of varying curvature along a 
channel is the same as would occur if the cross-sectional 
area A,, varied in a straight channel while B0 was constant, 
for example a rectangular channel with varying depth. 

The next approximation, which gives the variation of 
wave amplitude across the channel has been worked out, and 
solutions obtained for channels of three different cross- 
sections.  The results indicate that these second-order 
effects are quite small in those circumstances where the 
theory is most likely to be anplicable.  For exarnnle, in a 
channel of square cross-section of unit depth with 

•i 

K  — TT  and a solitary wave of amplitude of 0-3 the wave 

crest is only 0-028 higher at the outer edge of the chrnnel 
than at the inner edge. 
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