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This vpaper summarises some recent work on
long gravity waves on still water in channels
of arbitrary constant cross-section. Theoretical
results have been obtained for both straight and
curved channels. Some experimental work has
been performed in straight trapezoidal channels
and shows reasonable agreement with theorv. For
straight channels some details of the second
approximation are given, and the cases where the
approximation breaks down are indicated., For
curved channels it is found that the effect of
channel curvature is more onronounced when the
cross-sectional shavne of the channel is not
symmetric with resmect to its centre-line.

The waves considered are long gravitv waves on the
surface of water contained in a channel. If the waves are
very long comvared with both the breadth and depth of the
channel, then it 1s reasonable to assume uniform conditions
across the whole cross-sectional area of the channel. That
is, a uniform height of water and a uniform velocitv of
water along the channel. If, further, i1t i1s assumed that
the amplitude of the wave is veryv small compared with the
depth of water, i1t is simple to show that the pressure is
hvdrostatic, and the wave motion in a straight channel is
governed bv the equations,

.g_lé.+g%=o, Bn%-réai(!\ou):O, (1)

where u is the velocity of water along the channel which is
taken to be in the X direction, Z is the height of the water
surface above its undisturbed level, A, 1s the cross-
sectional area of the channel and B, is the width of the
free surface of the channel, where both A, and B, are
evaluated for the undisturbed water surface. If attention
is now confined to straight channels of uniform cross-
section, A, and B, are constant and the wave velocitv cq

1s given bv
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where hy, is the mean depth.
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For the linearized equations (1) to be useful 1t is
necessary for waves to have exceedingly small amplitudes, so
1t 1s desirable to find a better avwroximation. This can be
done bv retaining the assumotion of uniform conditions over
a cross-section, but sucn an approach leads to equations which
are not uniformly valid. That i1s, the assumption of long
waves breaks down, since the equations predict that the front
of waves of elevation continually steepens, However, for two-
dimensicnal motaion 1t 1s known that this only happens for
relativelv large amplitudes, and that the aporopriate
uniformly valid approxaimation 1s that leading to solutions
such as the solitarv weve. This 1ncludes the effect of the
vertical acceleration of the water on the pressure, as well
as the next aoproximation in the amplitude. In addition to
these we therefore also include here the effect of transverse
water motions in channels which are not rectangular in section.
This has been done and mathematical details mav be consulted
in a recentlv vublished paper (ref. 1).

It 1s found that the transverse and vertical velocities
(v,w) are given bv

au 2y, - 2u 9y
ax 3y 9x 29z’

where ¥ (y,z) satisfies

22y, 2%y _
o7 t 9ok =1 (2)
within the area A, , with boundary conditions QU = 0 on the

ax
channel walls and %% = hg on the free surface. The variations

of longitudinal velocity and amplitude across the channel are
also in terms of . Im narticular, the variation of amplitude
across the channel 1s

2
- &£ (3,0,

where 2 = 0 is the undisturbed water level. As may be expected
¥ also appears in the equations of motion, which are

%% +u %% +g %% = 0, (3)
g . Vs a8
L (g + og2) + lne + Q)ul + o g5 2 0, (1)

where b = B’ (0)/B,, if B{z) is the width of the channel at
height z,and

Vg =¥, = é%/ ¥(v,0)dv - j% / Vv(y,z)dydz.
Bo A
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These equations are no more difficult to deal with than the
corresnondine two-dimensional equations, and in meny cases of
interest it is simple to transform these equations into the
two-dimensional ones. There is, for example, a solitary wave
solution, and it is interestine to note that its velocityv c
is independent of §(v,z) and depends only on the geometrv of
the channel:

c® =glh + (1 - %bho)a]
where a is the amplitude of the wave.

This theorv is of most interest where it devarts from
the two-dimensional theory and from the first avproximation,
in particular in the variation of surface level across the
channel, One general result can be found fairly easilv by
considering the boundary conditions on § at the shore line.
If the shore line is at an angle a to the vertical, measured
in the y direction, then the slope of the water surface at
the shore,

L - - 3L
-53% == LLn ten a.
This result shows that the crest of a wave (g;é < 0) will
slope up towards the shore if o > O and thus resch @ higher
level than st points away from the shore. Conversely if the
benlts z1e over-hanging, i.c. o < O, then the level of the
crest will be devressed near the shore. Similarlvy the depth
of a wave trough is increased or decreased near the shore if
o lis greater than or less than zero respectively.

It is possible to solve equation (2) analvtically in a
number of simple cases; but for most channels a numerical
solution is needed. One particularlv simple solution is
for anv triangular channel where

¥(y,2) = &(y2 + 2z2)

when the origin of the coordinates is taken at the bottom of
the channel., In this case the transverse surface obrofile is
alwavs part of a parabola.

Attempts to solve equation (2) analvticallv for
trapezoidal channels led to an interesting result concerning
wide channels, That 1s, as such a channel gets wider so the
difference in crest height between the centre and the shore
increases like the width of the channel. Thus, an essential
part of the derivation of the solution, that such variations
be small, no longer holds., It seems likelv that long waves
travelling along wide channels will usuallv break at the shore
line.
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Figure 1 shows how the function w(v,o) varies for a seguence
of three channels of different widths. For wider channels
the value of ¥ at the shore line increases linearlv with L.
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Figure 1 : Values of §(v,0) for channels of the cross—
sectional form shown at the top of the figure.

Some simple experiments measuring the varaiation in
surface height along the crests of solitarv waves have been
conducted in three different channels. Two werg trape%oidal,
with one vertical side and the other side at 30~ or L5~ to
the vertical. The measurements from these channels were in
reasonable agreement with the theoretical results. The third
channgl was triangular, with one side vertical and the other
at 60° to the vertical. The results from this latter channel
were not very consistent and usuallv differed substantially
from the theoretical values., It is clear from the theorv
that it 1s not amplicable for shore lines sloping at small
angles to the horigontal and it mav be that, for waves of the
amplitude used, 30 is too small an angle, Further details
are given in reference 2.

This theorv has been extended to curved channels (Towers,
unpublished thesis, Universitv of Bristol 1968). The
equations correspondinc to equations (1) are

£ az =
Eo-o nEean-o O
where £ = (1 + Ky)u, Q = /] ‘TQ¥Q%§’ and « is the radius
A

of curvature of the centre-line of the channel. Note that
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even in the first approximation the velocitvy is not uniform
across the channel, u is the velocity at y = O+ As before,

X is measured along the channel, y in the horaizontal trans-
verse direction and 2 vertically upwards: however, this now
defines curvilinear coordinates which is why (1 + Ky)

appears in some terms., The surface y = 0 is chosen to be
midway between the two shore lines. The form of the equations
and the values of f, u, Ky Q and x are all slightly different
1f a different zero is used, but £ is unchanged, so that it
is preferable to look on equations (5) as eguations for
¢(x,t). In this, the first, approximation ¥ is constant
across the channel,

If f(x,t) is eliminated from equations (5) it is clear
that the effect of channel curvature onlv appears in Q. If
K 15 assumed to be small, which it must be if this long wave
approximation is to be consistent, then we mav write

Q =4 - /[Aoyivdz +KQ/[‘A°yEdVdZ+“. (6)

If the cross-sectional area is svmmetrical about the centre-
line the second term in (6) is zero, otherwise it mav be non-
zero., Hence it appears that the curvature of the channel may
have a stronger influence when the channel cross—-section is
aysymmetrical,

By comparine equations (1) and (5) it mav be seen that
the effect on wave amplitude of varving curvature alone a
channel is the same as would occur if the cross-sectional
area A, varied in a straight channel while B, was constant,
for examnle a rectangular channel with varying devth.

The next anproximation, which gives the variation of
wave amplitude across the channel has been worked out, and
solutions obtained for channels of three different cross-
sections. The results indicate that these second-order
effects are guite small in those caircumstances where the
theorv is most likely to be avvlicable. For examnle, in a
channel of sgquare cross—gection of unit denth with

K =,% and a solitary wave of amvlitude of 0+3 the wave

crest 1s only 0-028 higher at the outer edge of the chrnnel
than at the inner edge.
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