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SUMMARY 

Laboratory tests say that the littoral transport by waves reaches 

a maximum value when the waves approach the shore obliquely. In some 

way this must lead to peculiarities in the forms of shorelines. There- 

fore we put the question what types of shorelines can mathematically 

exist assuming the littoral transport is ruled by the function sin 2oC 

where c< is the angle between the wave front and the shoreline. This 

yields some basic types of shorelines. After a brief discription of the 

mathematical treatment these results will be discussed. 

This paper is a continuation of the paper presented on the same 

subject at the 7  conference on coastal engineering. 

INTRODUCTION 

The configuration of sandy shores and the changes in it depends 

completely on the variation in the transport of sand above the sea- 

bottom. The sand movement is a consequence of the movement of the water. 

In its turn the watermovement is a result of the tide and of the wind 

action. For the coastal engineer it is of importance to know the re- 

lations between the stream and wave characteristics on the one side 

and the intensity of the littoral sand transport on the other side. 

Therefore several laboratory tests have been made to get an idea about 

these relations. Knowing how extremely complicated these relations are we 

have to expect much scatter in the results of these tests. In spite of 

this scatter however all tests show a similar characteristic* They say 

that the intensity of the littoral transport is maximum when the waves 

approach the shore obliquely. Some tests say that this maximum is reached 
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when the angle o< between the wave front and the shoreline is 30°. Other 

tests say that this happens when this angle is 60°« Whatever the real 

value may be it seems to be true that the intensity of the littoral 

transport has a maximum by a value of <x  which differs much from ex = 0 

and from e< «* 90°. 

On the supposition that this fact must lead to certain peculiari- 

ties in the form of shorelines the coastal research department of the 

Rijkswaterstaat in the Netherlands has made a study about this* They 

have put the question what types of shorelines can mathematically exist 

assuming the littoral transport is ruled by the function sin 2 <x which 

has its maximum value when oi = *f5° • 

THE MATHEMATICAL TREATMENT 

Considering a stretch of shore of an infinite small length we have 

the condition that the quantity of deposited (or eroded) material must 

be equal to the difference between the quantities transported by the 

sea at the beginning and at the end of that stretch of shore* On the 

basis of figure 1 we put: 

~ d q> dt = ar d <P <LL dt 

or      *i = ar &L 

in which 

r and <p are the polar coordinates of the considered point of the shore 

q is the function that determines the quantity of the littoral transport 

t is the time 

a is the depth of the water which will be a function of r and cp 

The magnitude of q depends on the angle << only. So this angle holds 

a key position. Therefore we take <* as the independent variable instead 

of cp e This has two consequencies. First the form of the equation of 

continuity must be reduced to: 

^k +ar (»L *£ _*£ *J) s0 (1) 

Secondly we need another equation to relate << and cp • On the basis of 

figure 2 we have: 

oC + 9 + v^ = p, (2) 

It will be clear that p> defines the direction of the wind. But v^ is a 

new variable also depending on oC and t. So we cannot get away from 
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another equation that defines ^ • From the well-known formula: 

tan vf = ~ 

we derive: 

tan ^ M = r |? (3) 

Now the problem is to find functions which satisfy the three equations 

(1), (2) and (3). We shall try whether the following combination of. 

functions will do* 

a = cr"-<k <<<0 

r = ROOT CO 

q = A Q C*) 
where Q, cp and R are functions of o< only and T is only a function of 

the time t. 

Substituting these functions in the equation of continuity (1) yields: 

d-d c   i-p  TV-M  ^T 

On the left hand side of this equation there are expressions of «< only, 

on the right hand side there appears only the time to This equation can 

only be satisfied when both parts are equal to a constant k. This yields 

the two conditions: 

dQ = kR~*a $ cLcp 
w 

c 

The second condition offers no problem while it can be integrated to: 
•nUL  

T    = \/ftx+a)1*A Cl-W) (5) 

where t© is an integration constant. The first condition replaces the 

original equation of continuity (1). However much simplier we are not 

able to solve the set of equations (2), (3) and (k)  unless we restrict 

ourselves further. Therefore we assume that the bottom of the sea is ho- 

rizontal. This means that n = o and that <$ = 1. 

Finally we have obtained the following set of equations we can manage: 

dQ • k R. dcp (6) 

tan«4<dR = R. dcp (7) 
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oc + cp + v^ s (b (8) 

while the function T is: 

The function Q can have each form. We took for it the function sin 2 c<  • 

It is usefull to realise that the choosen combination of functions shows 

a certain character. The matter is that when we divide the radius vector 

r by T we obtain a value depending on c<   only. That means that the shore- 

line at the time t = ti and the shoreline at the time t » t2 can be reduce 

to the very same shape by geometrical multiplying out of the origin. 

So to discuss these shorelines it is sufficient to discuss the curves gi- 

ven by H and <f which satisfy the equations (6), (7) and (8). The constant 

k can have each value. We took it equal to \  because then the relation of 

the area between two radius vectors in the graph of H with the area be- 

tween the corresponding lines in the prototype is the most simple one. 

THE RESULTS 

Before discussing the solutions of these equations obtained by means 

of a computer we shall bring to the fore some general remarks on these 

solutions. First with respect to the function of sin 2<X. it can be proved 

that when the curve a of figure 3 is a solution of the differential equa- 

tion , the curves b, c and d will also satisfy the equations. Curves a and 

b and the curves c and d are symmetrical with respect to the wind direc- 

tion. Curves a and c and the curves b and d are symmetrical with respect 

to the polar axis. 

The second remarkable thing is that straight lines through the origin 

satisfy the equations but other straight lines do not. 

The third point is that only in the octants 0,3, k and 7 of figure k 

these straight lines can be asymptotes of the solutions. This means that 

we can have bays and capes of a shape as shown in figure k    and k  , but 

when the angle S becomes more than V?° the bays and capes must be shaped 

as in the figures k   and ke  while in the points A the condition of conti- 

nuity must been satisfied. The fourth point which asks attention is the 

fact that when the littoral transport reaches its maximum value the shore 

line shows a cusp as will be shown later. 

Figure 5 shows the result of a calculation on the computer. The com- 

puter was programmed to follow this curve starting from a point A practi- 

cally in the infinite and stopping in another point B likewise in the in- 
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finiteo 
With this one solution of the differential equations we can construct 

shorelines of different types. First the curve of figure 5 can be inter- 

preted as the shoreline of a bay or by mirroring with respect to the po- 

lar axis as the shoreline of a cape. Besides we can construct with this 

curve a symmetrical simple delta. Therefore we take only part A-F, mir- 

ror it with respect to the wind direction and put a rivermouth in point F. 

Then the condition is that the river brings a quantity of material to the 

sea that equals twice the quantity of the littoral transport in point F 

of the original curve. 

But there is still a third way to use this curve. The computer has 

been programmed in such a way that all points of transition were indicated, 

A point of transition means that in that point the littoral transport alon; 

the curve has the same magnitude as the littoral transport that would take 

place when the shore would be situated along the radius vector to that 

pointo In the curve of figure 5 there are three of such points C, D and E. 

At each point there is written down a number.. This number gives the ratio 

between the magnitude of the littoral transport in that point and the 

quantity of material that the sea is able to transport. The magnitude of 

the littoral transport will be always expressed in this manner. With point 

C we can construct four other shorelines. This is not possible with the 

points D and E. Finally figure 6 shows all the shorelines which can be 

constructed form the curve of figure 5» 

Mathematically there exists another shape of the shoreline for a 

symmetrical simple delta. This shape is shown in figure 7. The centre of 

curvature lies at the other side of the shore shown in figure 6. The cur- 

ve links op the original shore in the finite and just in the point where 

the littoral transport equals zero. 

It is easy to construct deltas with more rivermouthso The only thing 

we have to do is to link up different curves and to put a rivermouth in 

each point of connection. There the river must bring to the sea such a 

quantity of material that the condition of continuity is satisfied. Such 

composed deltas are shown in figure 8. A mathematical condition in con- 

structing such deltas is that the river arms must be situated along a 

radius vector. These deltas are still symmetrical ones. It is also very 

simple to construct non-symmetrical deltas in the same way. The only thing 
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we have to do is to connect on the left hand side other curves as on the 

right hand side (figure 9). We can construct an infinite number of shore- 

lines. By the way some of the original shores in the figures 8 and 9 hav< 

the shape of a bay or of a cape* 

But there is still another way to construct non-symmetrical deltas. 

Till yet we have put p> equal to zero. That means that the wind direction 

has been always perpendicular to the polar axis* When we take (*> o - 20° 

we can construct the set of curves shown in figure 10* The curves on the 

right hand side of the line d have a cusp in the point where the littoral 

transport reaches its maximum value* At one point A is indicated how the 

shoreline would continue when the computer was not been stopped in the 

cuspo With this second part of the curve the symmetrical simple delta 

form figure 7 has been constructed* On the left hand side of line d the 

curves have an asymptote with decreasing values of Q according to the 

flatness of the curve* 

When we take (b = + 20° we can construct the set of curves of figure 11* 

Here also exists a locus of cusps. When we mirror the set of figure 11 

with respect to the wind direction we can combine this set with that of 

figure 10 and obtain figure 12* Here we have in principle 32 non-symme- 

trical deltas* Note that by each value of the quantity of material that 

the river brings to the sea there exist two different forms of shore- 

lines* The deltas indicated by a letter A and by a letter B are a pair 

where the ratio between the quantity of material conveyed by the river 

and the quantity of material the sea is able to transport is about 0,55. 

The deltas indicated by a letter D and by a letter E are a pair where 

this ratio is about 1,25. Only when this ratio becomes equal to two (the 

delta indicated by the letter F) there exist mathematically only one so- 

lation* These 5 deltas are drawn in figure M seperately* 

It will be clear that in this way we can also construct non-symme- 

trical deltas with more rivermouths combined with bay - or cape shaped 

original shorelines* But before continuing this stude it seems necessary 

to investigate whether the results we have obtained can be recognized in 

nature or not. 
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