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ABSTRACT 

The integration of the equations of the nonlinear 
shallow-water theory by a finite difference scheme based on 
the method of characteristics is programmed for digital com- 
puters.  In the program, the equations of the bore propaga- 
tion are coupled to the equations of the nonlinear theory, 
and thus a procedure for predicting the motion of the entire 
wave, including the bore, is established.  Waves of irregu- 
lar shape and experimental data are treated by an iterative 
method.  Laboratory experiments on the inception and propa- 
gation of bores also are presented. 

INTRODUCTION 

The theory of waves of small amplitude, which has been 
the basis for the classical studies of ocean waves, predicts 
an infinite wave amplitude at the shoreline.  The shallow- 
water theory, on the other hand, presents no such difficulty, 
and is more appropriate for the study of waves near the coast. 
However, before a strong case for the shallow-water theory can 
be established, it is desirable that (a) a method of solution 
for its routine application be developed and (h) fairly good 
agreement between the theory and observation be shown.  The 
purpose of this paper is to present the results of an effort 
made to achieve these objectives.  The principles for obtain- 
ing the solutions of the equations of the nonlinear shallow- 
water theory on a digital computer are described.  It is shown 
that by using an iterative method, it is feasible to feed ex- 
perimental and field data into the computer program.  Finally, 
experiments of an exploratory nature are described and the re- 
sults of the computed and experimental values are compared. 

THEORY 

The equations of the nonlinear shallow-water theory in 
two-dimensional flow are 

(?>/&x)[u(h + 11)] + (oV&t) = 0 (1) 

(?>u/ot) + (udu/dx) = -(go^/ox) + (1/P)(OT/OX)     (2) 
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In these equations, the x-axife is taken along the bottom, h 
is the depth of water, r\   is the water surface elevacion above 
the steady-state position, p is the water density, and T IS 
the shear stress along the bottom.  The derivation of these 
equations is given by Stoker (1957).  In (2), the last teim 
on the right is added to the corresponding mviscid equation 
to take care of the friction effects.  In the terms of the 
friction slope Sf, (l/p)(9T/dx) = gSf .  (1) and (2) are the 
equations of the first-order shallow-water theory in which it 
is assumed that the pressure distribution is hydrostatic or 
that the vertical component of the acceleration has a negli- 
gible effect on the pressure,  Friedrichs (1948) has shown 
that by using a perturbation scheme higher-order theories may 
be developed from the hydrodynamical equations.  In a higher- 
order theory, the vertical acceleration may not be neglected 
and the pressure distribution need not be hydrostatic.  This 
presentation, however, is only concerned with the first-order 
nonlinear theory. 

Equations (1) and (2) constitute a system of first-order 
hyperbolic equations.  In such systems, smooth solutions do 
not necessarily exist for all time; after a finite time a 
smooth solution may cease to be smooth and later tend to a 
discontinuity that may behave quite differently from the smooth 
solution (Jeffrey and Taniuti, 1964).  Physically, it is im- 
plied that the wave may develop a bore and the propagation of 
the bore will not be given by the system of equations (1) and 
(2).  The bore speed, however, can be determined by the appli- 
cation of the momentum principle. 

METHODS OF SOLUTION 

Analytical solutions of the nonlinear equations are sel- 
dom known.  Finite difference methods are therefore used to 
obtain numerical solutions.  A survey of these methods is 
given by Forsythe and Wasow (1960).  The numerical methods for 
the solution of hyperbolic equations may be classified broadly 
into (a) finite difference schemes using regular networks and 
(b) the method of characteristics.  The first method employs 
fixed space and time intervals.  It has been applied by Stoker 
and his associates to the movement of floods in rivers (Stoker, 
1957) and by Keller et al. (1960) for determining the change 
in bore height and speed as it advances into nonuniform flow. 
However, as yet, no way has been found to predict the develop- 
ment of a bore by this method. 

The second method is based on the characteristics of the 
differential equations (1) and (2).  Because these equations 
are hyperbolic, the characteristics are real and numerical 
methods utilizing the characteristics have been developed. 



72 COASTAL ENGINEERING 

METHOD OF CHARACTERISTICS 

The solution of equations (1) and (2) may be given by the 
intersection oi the two sets ol positive and negative charac- 
teristic curves.  The slope of the positive charactoristic is 
given by 

dx/dt «= u + c (3) 

where c is the wave clerity given by c = g/h 4 rj.  The slope 
of the negative characteristic is given by 

dx/dt = u - c (4) 

Furthermore, 

d(u + 2c - mt) = 0 (5) 

on a positive characteristic, and 

d(u - 2c - mt) = 0 (6) 

on a negative characteristic, where m = -gS - gS-f and S is 
the rate of change of depth with distance x.  The derivation 
oi equations (3) through (6) and a description of the undei- 
lying principles are given by Stoker (1957).  A critical 
analysis of the method of characteristics is given by 
Le Mehaute (1963).  Wave transformation in shoaling water has 
been investigated by an approximate analytical method based 
on characteristics by Kishi (1963).  Equations (3) through 
(6) serve as the basis for numerical computations by the 
method of characteristics.  These four ordinary drfferential 
equations replace the system of partial differential equa- 
tions (1) and (2).  Once the initial values are known, solu- 
tions may be obtained step by step. 

The required initial values may be prescribed in several 
ways.  But for free surface flows, it is recommended that the 
initial values be given as (a) the values of u and c as func- 
tions of x at time t = tQ and (b) the values of c as functions 
of time t at a, given x = X0.  The first set is known from 
the steady-state conditions prior to the arrival of the wave 
and the second set is known from a knowledge of the variation 
of the water surface elevation with time at x = X„, 
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The values oi u, the particle velocity, need not be pie- 
sciibed at x = XQ as a function of time.  This is a fortuitous 
circumstance so far as experimental data are concerned, because 
the particle velocity is difficult tc measure.  But the choice 
of initial values in the manner described above rests on a 
deeper principle, the choice being influenced by the role of 
the negative characteristics.  The negative characteristics 
issued from the leading wave elements interact with and modify 
the original wave (Ho, 1962).  Stoker (1957) has suggested, 
in this context, that the values oi either u or c, but not 
both, should be prescribed as initial values.  An analogous 
situation has been observed in flood waves in rivers where 
the stage discharge curve may have a loop.  At a given loca- 
tion, for the same surface elevation, the water velocity at 
the wave front may be different from that at the rear of the 
wave.  The water velocity at the rear is subjected to modifi- 
cation by the negative characteristic issued from the wave 
front.  This may be called the "backwater effect."  With the 
choice of the initial values in the recommended manner, the 
"oackwater effect" is taken into consideration. 

The method of characteristics has an inherent advantage 
in that it provides insight into the physical phenomenon under 
study.  Thus, the inception of a bore is predicted by the in- 
tersection of adjacent positive characteristics.  The bore 
speed is given by (Stoker, 1957) 

V = 7g(h + r|)(2h + -n)/2h (7) 

The bore propagation is determined by coupling the bore equa- 
tion (7) to the equations of the shallow-water theory.  In 
terms of the bore strength defined by 

M = V//g(h + n) (8) 

it is found that (Keller et al., 1960) 

V//gh = M(2M2 - 1) (9) 

and 

;/Vgh . /2M2 - 1 (10) 

1 dh =   - 4(M + 1)(M - 0.5)2(M3 + M2 - M  - 0.5)   (n) 
h dM   (M - 1)(M2 - 0.5)(M4 + 3M3 + M2 - 1.5M - 1) 
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The changes in bore height and speed as the bore advances 
into nonuniform flow are calculated from (11).  If a positive 
characteristic should meet the borelme at a later time, then 
a new value tor the bore strength M should be calculated. 
The new value of M should be taken from the characteristic 
that intersects the boreline. 

An alternate method for the calculation of the bore 
propagation based on the continuity and momentum, as used in 
hydraulics, is given by Freeman and Le Mehaute (1964). 

NUMERICAL PuOCEDUKfi 

The integration of the equations of the shallow-water 
theory by the method of characteristics may be performed 
very efficiently on a digital computer.  In this method, the 
shallow-water theory is represented by the ordinary charac- 
teristic differential equations (3) through (6), rather than 
the original partial differential equations (1) and (2). 
The numerical solutions of equations (3) through (6) are ob- 
tained by replacing the differential equations by the cor- 
responding difference equations.  Only the procedure for the 
investigation of irregular waves that develop a bore at the 
wave front and whose profiles are given by discrete point 
functions of the time will be described.  An iterative method, 
perhaps feasible only in machine calculations, constitutes a 
key element of the computational procedure.  A study on regu- 
lar waves and waves developing bores at intermediate points 
on their profiles and the wave runup is currently under way 
for the U.S. Naval Civil Engineering Laboratory and will be 
reported on at a later date. 

The solution of the equations of the shallow-water theory 
may be presented in the form of sets of values of flow quan- 
tities from which a network of characteristics could be plot- 
ted on the x,t plane.  The procedure for the determination of 
the network, in accordance with the discussion on the initial 
values, is patterned after de Prima (Stoker, 1948).  Essen- 
tially, it consists of first establishing the initial charac- 
teristic depicting the motion of the wave front and then is- 
suing the negative characteristics from it.  The values of c 
on the t-axis are given at discrete points as input data.  By 
introducing these walues at appropriate points in the computa- 
tions, the network is extended to cover the pertinent portion 
of the x,t plane.  Brief descriptions of the various phases of 
the procedure are given as follows. 

INITIAL CHARACTERISTIC 

From (X0,to) (Fig. 1), the initial characteristic CQ is 
drawn first.  This is a positive characteristic, and the 
values of u and c for CQ are known from the steady-state flow 
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conditions.      If   an   appropriate   time   interval,   bt,   is   chosen 
on   the   characteristic   segment   P]_P2 >   then 

t(P2)    =   t(Pj_)    4   St (12) 

The value oi x at ?2   1S calculated from equation (13) , which 
in turn is obtained from the finite difference forms of (3) 
and (o): 

x(P2) = x(Px) + [u(Px) i   c(P1) - u.5m(P1)-bt]-bt   (13) 

INTERIOR CHARACTERISTICS 

for purposes of illustration, let it be assumed that the 
calculation has progressed to the line PiJi, with all the 
characteristics to the left of this line being known.  There- 
fore, at each of the node points P]_ ,Qi ,K^, • • • , Ji , the slopes 
of the positive characteristics are given by (3).  The values 
of x, u, and c are also known at P2, since it lies on the 
initial characteristic.  Then a negative characteristic can 
be drawn from P2 to intersect a positive characteristic drawn 
from Q^, the point of intersection being Q2.  

Tne finite dif- 
ference forms of (3) through (6) provide four simultaneous 
algebraic equations from which the four unknown quantities 
u, c, t, and x at Q2 can be calculated.  The computation then 
proceeds to R2• s2> ana on UP to K'•  If K' coincides with K, 
one of the discrete points on the t-axis given as input data, 
then one chain of operation is completed.  To advance the 
computations to the right, storage locations in the machine 
occupied by P]_ ,Q-j. >R1 > " ' ' »Jl will be taken over by 
p2 '^2 »^2 ' ' ' ' *^2 ' an<3 the storage locations occupied by 
P2,Q2,R2,•..,J2 will be vacated and reserved for the results 
of the next chain.  The maximum number of storage locations re- 
quired to handle this part of the program is that which can 
accommodate the computations for a single chain.  By conduct- 
ing the computations in a sequence of chains and recording the 
results after each chain, large outputs may be obtained from a 
relatively small computer. 

If K' does not correspond to a discrete point K given by 
the input data, an iterative method will be used to pass a 
negative characteristic through K. 

ITERATIVE METHOD 

Let it be assumed that the difference between the values 
of t(K') and t(K), where K is in the neighborhood of K' and 
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its position is fixed by the input data, is larger than a 
prescribed tolerance interval.  Then, the value of St in (12) 
will be adjusted, and the chain of operations on P2M2>R2> ''*>K' 
will be resumed.  The operation will be repeated as many times 
as necessary until the difference between the values of t(K') 
and t(K) lies within the prescribed tolerance interval. 

BORE PROPAGATION 

From a computational viewpoint, the inception of the bore 
is indicated when two adjacent points on a negative character- 
istic coincide with each other.  The slope of the borelme on 
the x,t plane is given by 

dx/dt = V + uQ (14) 

where UQ IS the water velocity in the water ahead of the bore. 
The bore path is then determined step by step, using a pro- 
cedure similar to Freeman and Le Mehaute's (1964).  The 
changes in the bore speed between the consecutive intersec- 
tions of the positive characteristics with the bore path are 
taken from the numerical solution of (11). 

COMPUTER PROGRAM 

The integration of the equations of the nonlinear 
shallow-water theory by the method of characteristics, to- 
gether with the determination of the inception and propaga- 
tion of the bore, has been programmed in FORTRAN.  The pro- 
gram includes the iterative method for the treatment of 
experimental data for irregular waves.  A conceptual flow 
diagram is given in Fig. 2. 

The following input data are required for each run: 

h , the initial steady-state depth at XQ 
N,  the number of points taken on the wave on the t-axis 
n,  the coefficient of friction in Manning's formula 
S,  the rate of change of depth in the x-direction 
T,  the final value of time on the t-axis 
tQ, the initial value of time on the t-axis 
ux, the initial steady-state velocity at XQ 
Xf, the value of x at the downstream station 
XQ, the value of x at the upstream station 
A,  the time interval between sonsecutive points 

on the t-axis 
Values of c at XQ as functions of time. 
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N° DISTANCE 

FIG    1     -M^lWORhOl   C HARACTLRIMICS 

Read N, S, A, XQ, 
tQ, hx, ux, Xf, n 
Read  t.c at Xn 

Start  new chain 

Compute 
u,   x,   c,   and  t 

Adjust ht 

Print 

Print u,   x,   c,   t 

Compute 
V,   xb)   tb 

FIG.  2. --CONCEPTUAL FLOW CHART 
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The output information is printed out in the form of 
tables of values of depth, distance, time, water velocity, 
wave celerity, bore speed, and bore position. 

EXPERIMENTS 

Experiments of an exploratory nature involving waves of 
irregular shape were performed in a glass-walled rectangular 
channel.  The disturbances were generated by manipulating the 
valve controlling the flow into the channel.  Two resistance 
probes, one near the upstream end and the other farther down- 
stream, were installed in the channel.  The probes operate 
on the principle that the resistance across two wires im- 
mersed in water is a function of the depth of immersion.  The 
probe outputs, representing the variation of the water sur- 
face elevation with time, were amplified and recorded on 
oscillograph recorders.  The principles and details for this 
type of instrumentation are described by Wiegel (1955). 

To obtain a comparison of the experimental and computed 
values, the surface elevation data as recorded at the up- 
stream probe were fed into the computer program, from which 
the theoretical data at the downstream probe could be obtained. 
Some of these results are shown in Figs. 3, 4, and 5,  In 
Figs. 3 and 4, the water is initially at rest.  In Fig. 5, the 
flow is initially steady but nonuniform and accelerating in 
the x-direction.  An examination of these figures indicates 
that there is excellent agreement between the computed and ex- 
perimental values for the time of arrival of the bore.  Per- 
haps the conditions at the bore front caused by the pile-up 
of the water there may not be faithfully represented by the 
theory in its present form.  The computed wave behind the bore 
is seen to conform in general outline to the recorded wave. 
Because of the difficulty of maintaining constant calibration 
curves for the probes, the experimental results should be con- 
sidered to be providing qualitative evidence in support of the 
theory for the portion of the wave behind the bore.  It is 
felt that more extensive experiments will favor the establish- 
ment of the nonlinear shallow-water theory as a powerful tool 
for the study of wave processes near the coast. 

CONCLUSION 

A finite difference scheme for the solutions of the equa- 
tions of the nonlinear shallow-water theory by the method of 
characteristics for digital computer applications is described. 
The significance of the proper method for choosing the initial 
values is discussed.  The computer program includes the test 
for the inception of bores and methods for the calculation of 
bore speed and height.  The use of an iterative method makes 
it possible to treat waves of irregular arbitrary shape.  Ex- 
ploratory experiments on the inception and propagation of 
bores are also presented. 
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The accuracy, economy, and speed of the digital computer 
have eliminated the extensive calculations involved in inte- 
grating the equations of the nonlinear shallow-water theory. 
It is hoped that the feasibility of successful computer pro- 
gramming will encourage the greater use of the nonlinear 
theory by the coastal engineer.  However, further research, 
with improved equipment and instrumentation, is needed to es- 
tablish the range of validity of the theory so that it could 
be applied with confidence to predict the wave motion near 
the coast. 
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