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ABSTRACT 

Some theoretical results pertaining to the physical behavior of 
gravity waves on a sloped plane are presented.     The notion of "saturated" 
breakers and "non-saturated" breakers which follow the breaking index 
curve is introduced.    Criteria for different kinds of breaking and successive 
breaking of waves are presented.    Some considerations on the wave run-up 
are deduced. 

Then a critical analysis of the method of characteristics is pre- 
sented, with some possible refinements.    Path curvature effect is taken 
into account and the problem of waves climbing on a dry bed is solved. 
Criteria for determining saturated and non-saturated breakers and the 
wave run-up by the method of characteristics are proposed. 

INTRODUCTION 

It is commonly admitted that breakers on a beach can be separated 
into spilling breakers on a very flat slope and plunging breakers on a 
steeper slope.    (Plunging breakers are sometimes called surging break- 
ers on a very steep slope.)   This separation of breakers into these two (or 
three) categories is based on visual observations rather than on some 
hydrodynamical criterium.    However,  the essential hydrodynamical 
characteristics of these breakers are recalled. 

The profile of a spilling breaker remains,  for the most part,   almost 
symmetrical and the wave breaks by curling over slightly at the crest 
(Figure 1).    As long as the foam of the breaker is small by comparison with 
the "bulk" water,  which happens on a very gentle slope,   the wave presents 
roughly the main characteristics of a solitary wave,   even after breaking 
inception.    But due to the spilling breaker a given amount of energy is 
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dissipated in such a way that the wave crest follows the breaking index 
curve defined by   H = 0. 78 d .    Then the spilling breaker is transformed 
into a bore when the slope becomes steeper.    When the slope is steep 
before breaking inception,   the wave profile first losts its symmetrical 
shape,  then a plunging breaking wave generates a bore directly. 

In the following an attempt is made to analytically investigate 
these described phenomena.    As usual two methods exist.    The first 
method -- the energy method -- is only approximate but gives a great 
amount of information from relatively simple calculations.    The second 
method -- the analytical method --is more accurate but requires tedious 
computations for each particular case.    Then it will be seen that the 
method of characteristics requires some refinements for analyzing the 
surf motion. 

THE ENERGY METHOD 

The energy method of investigation consists of first determining 
the wave motion on a horizontal bottom independent of the friction forces. 
This work has already been accomplished.    Then the wave motion is 
assumed to keep its essential characteristics on a sloped bottom with 
friction forces with only a simple change in wave height (and wave length), 
This method is valid provided the bottom slope is gentle enough.    Then th< 
cnoidal wave theory or the solitary wave theory is used for very shallow 
water. 

Even after the inception of breaking the essential characteristics 
of the motion of "bulk" water will be assumed to be also those of a soli- 
tary wave.    In practice these assumptions are valid for swell waves whicl: 
give rise to slightly spilling breakers on a very gentle beach.    The case 
under study is presented schematically in figure la.    Such assumptions 
do not hold true for steep waves (sea waves) on steep beaches which give 
rise to plunging breakers,   or even when the foam of a spilling breaker 
becomes too important. 

Then it will be written that the variation of transmitted wave energ 

over a length   dx ,  namely  —^3——   ,  is equal to the rate at which this 
dE        C^ 

energy is destroyed:    - —37-  which is written: 

d(EC)      _      _dE_ 
dx dt 

Now the problem arises of how to evaluate   EC .    Because of the 
great simplicity of the solitary wave theory one assumes that the wave 
characteristics are those of a solitary wave,  even if the energy is 
distributed otherwise over a "wave length". 
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(D* Then it is known (Munk        ): a cUEC).     8 
(« 

3/2cLy2Cj 
(i) 

where   C =    g (d+ H) 1/2 

The rate at which the energy is lost is due to bottom friction 

and to spilling breaker       ,, .    Hence: 
b dt   Is -l 

cLE. 
dt 

d(EC) 
dt 

d -x. dt + dt s J 
(2) 

A number of studies has been carried out on the damping of soli- 
tary waves due to viscous bottom friction.    However,   despite the difficult 
encountered in evaluating a friction coefficient,   it is more realistic for 
practical purposes to assume the motion to be turbulent.    Then the unit 

shear  ~fc    is quadratic:       ~£~   -     P f u     where   f   is a friction coefficient 

and   u   the horizontal velocity. 

dE 
dt 

=»o 
lr " <=L' 

Then by inserting some classical relationships from the solitary 
wave theory 

d     • P = c 

where 
c* = 

2. 
it is found that 

dt Y5 ) 

(H 
f <5 S) 

cosh 

oc -  Ct 
<* 

d 

doi 
H 

By use of the guddermannian of    c{ 
to 16/15.    Hence,   finally 

dt 
32 

15-^3 rf 

cesH.    <* 

it is found that the integral is equal 

dVa •   •   •    (3) 

*   Numbers refer to references listed at end of paper. 
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2 
In a very first approximation,    f   can be taken to be equal to   g/C, 

where   C,    is the Chezy coefficient and   n   is the Manning coefficient. 

h = Jl=    2 ^ 14 
C*     (\4 86Td^ JV5 • • • (4) 

This assumption involves that the vertical velocity distribution due to 
bottom friction in a solitary wave appears as that of a succession of steady 
flows.    In practice such an assumption is really valid for periodic,  very 
long waves in shallow water,  which themselves are considered as a 
succession of solitary waves. 

The rate of loss of energy due to a spilling breaker is very similar 
to that of a tidal bore (which is a shock wave).    In the case of a shock 
wave it is known that (see figure lb) (Stoker'2)): 

cLt   ~   R 4 R, ^ •••   (5) 
where   "•]_    and   nn   are the depths before and after the front of the bore, 
respectively,   and   Q   is the discharge due to the moving bore.    It is 
recalled that the above formula is based on the assumption that the vertical 
distribution of the horizontal velocity   u   is uniform. 

In the case under study the spilling breaker is due to the fact that 
the horizontal velocity at the crest becomes greater than the wave celerity 
C.    By analogy (see figure la)   n2   -   d+ H   and   h^    -   d + yS H   where 
^ is always smaller than unity and can be zero at the limit.     The vertical 
velocity distribution,   and consequently the discharge,   is directly related 
to the average horizontal velocity.    Hence the discharge could be written: 

Inserting these values into equation (5) and defining   B   as follows: 

B   will be called the "breaking coefficient".    The breaking coefficient   B 
is the ratio of the rate of energy dissipated by the spilling breaker to the 
rate of energy which could be dissipated by a bore of front height equal 
to the height of the solitary wave which generated it.    B = 0   corresponds 
to no breaking (ft    =1).    A small value for   B   corresponds to a little 
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spilling breaking near the crest (    6   close to unity).    It is a partial break 
ing or a non-saturated breaker.    It is difficult to ascertain the maximum 
value for   B   by the energy method.    However,  it is certain that   B   canno 
be larger than unit (    p   = 0).    Then there is total breaking and the breake 
is a saturated breaker.    Further consideration will be given to the 
physical meaning of   B   later in this paper. 

Now,  by introducing equalities (1),  (3) and (5) into equation (2),   it 
is found that 

3/2   3/2 which gives after division by   H       d       C,   integration between a small 
interval Ax = x? - x1   ,   and since     e~      £~  I — a-x- 

(8) 

When all friction effects are neglected (f = 0 ) and there is no breaking 
(B = 0),  the classical law 

Ha      d. '- •••    ^    ^. ^/» 

U\ <^+Hz/   ~ \<*J H,      cU\ C^+H^ /     \*w ... (9) 

is easily recognized.    It is known that such a law is not too well verified 
experimentally.    The variation of wave height with distance depends,  in 

fact,   on the relative depth    _1 2    where   d,    is the depth of breaking    ' 
db 
(5) and the slope (Ippen and Kulin     ).    This has thrown some doubt on the 

validity of using the solitary wave theory for analyzing the wave motion 
on a slope.    It is also known that equation (9) should be replaced by the 

VU   f <*. \V* .   K       H^     fd,4.M, y*» Green Law     —Z =:    —-—   \ or again by      —  =    - -    •   " ;— 1 
H,    v dc ) Hi      ^ <**+ H*' 

Despite these limitations,   the physical interpretation of this study 
will be based on equations (7) and (8) because the spilling breaker effect 
tends to replace the variation of wave height by a simple   H = 0. 78 d . 
When   H   < 0. 78 d,  there is no breaking and the breaking coefficient 
B = 0 .    Then   C = [ g(d+ H)3       .    Moreover,   assuming   H   is small 
by comparison with   d , 
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<.-*(*)*['-* *3srl 
(10) 

It is interesting to note that m the case of long periodic waves,   a 
calculation based on similar assumptions gives 

H -H fd> vMr>   '--f H- A~1 
When   H-^ - o. 78 d]-, ,   there is inception of breaking and the break- 

ing coefficient        B   becomes    >   0.    In the case of a small spilling breaker. 
C   keeps its value   C=   [g(d + H)T'z   Then,   replacing these values for 
H   and   C   in equation (7): 

± <k'/-),,,! 4^0.07 e jimu- 
JL*. 3- 

1. e.   the slope   S =    —3— (d)    = 0. 01 f + 0. 02 B   or within the known 
limits: 

 ^ i  . . . (ii) 

It is seen that the breaking coefficient   B   increases with the 
slope:    the steeper the slope,   the greater the rate at which the energy is 
dissipated by the spilling breaker. 

It may occur that due to bottom friction   B   always retains a zero 
value despite the shoaling when   S    ^ 0,01 f   as is easily seen from 
equation (11).    (This result can also be found directly from equation (7) 
when replacing   H   by 0. 78d and   equating   B   with zero. ) 

Inserting the value (4) for   f ,   a cnterium for damping without 
breaking is proposed: 

q     y        14. 6 n2 

i. e.  with the Manning coefficient   n » 0. 02 

_5 
S K    6" 1(

!M (d   in feet)        .    .   .   (12) 

On the other hand, it has been seen that B cannot exceed unity. 
This happens when S = 0. 02 + 0. 01 f ^ 0. 02 . When S = 0. 02, then 
the breaker is "saturated."    Figure 2 illustrates these considerations. 

Now a complete physical interpretation can be drawn from the pre- 
-5     1/3 vious considerations.    If the slope is always smaller than 6. 10     /d , 
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then the wave height is completely damped by bottom friction.    There is 
no breaking and no run-up.    This occurrence is very rare. 

On a steeper slope,   there is a maximum amount of wave energy 
that a solitary wave can transmit towards the shoreline over a given 
depth.    This maximum energy is reached when   H = 0. 78 d .    If the amoun 
of energy passing through a given plane tends to be larger than this maxi- 
mum value,   a spilling breaker will dissipate the difference.    This is on 
a. relatively gentle slope and is a non-saturated breaker,   in which case 
the wave height is directly related only to the depth.    Then the run-up is 
negligible. 

Considering the usual range of variation of the bottom slope   S   and 
a possible range of variation for   f ,   a reason for successive wave break- 
ing due to change of slope and depth is found and its critenum established. 

In fact other reasons also exist for successive wave breaking. 
First,   by effect of "hydraulic hysteresis" or inertia for the free turbuleno 
due to the breaker being damped,  more wave energy is spent by a breaker 
than indicated by equation (11).    Then another non-breaking wave could be 
reformed,   even if equation (12) is not fully satisfied. 

Moreover,   successive breaking may also be due to the super- 
imposition of crests of irregular waves for which the following formula 
is proposed:   (Le Mehaute(3)) 2. 

£(rj 
(It is interesting to note that this formula gives good results whatever the 
wave direction:   two-dimensional irregular waves,   clapotis,   short-crestec 
waves. )   However,   since in very shallow water all waves tend to travel 
to a constant velocity,  the above critenum is valid more for the whitecaps 
at sea than in the vicinity of the shoreline. 

Now the case of total breaking is considered. 

It is seen,   also,  that there is a limiting amount of energy which 
could be dissipated by a breaker over a given length.    Hence,  when the 
slope becomes steeper and steeper,   the regulating effect of the spilling 
breaker reaches its limit when   B - 1 •    Then the breaking index curve is 
surpassed by the height of the front bore.    There is run-up.    The words 
"saturated" and "non-saturated" breakers are now defined,   explained 
and justified. 
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A very important conclusion is also drawn:    On a beach having its 
curvature upwards,   the maximum possible wave run-up is given by the 
wave which breaks at a depth where the slope is equal to 0. 02.    It is known 
that if   d^   is the depth over that slope,   the corresponding wave height is 

H,   = 0. 78 d,   .    Any wave having a greater height breaks sooner,   dissi- 

pating its energy following the breaking index curve up to the plane where 
the slope becomes larger than 0. 02. 

In fact the theoretical value 0. 02 for the critical slope (correspond- 
mg to   B = 1) may be replaced by a more factual and conservative value 
0. 01.     The exact determination of this value requires further investiga- 
tion by the method of characteristics. 

The results of this section are summarized in figure 3 by three 
typical cases.    It must be noted that the run-up in cases I and II is    the 
same despite their different deep water wave heights. 

ON THE METHOD OF CHARACTERISTICS 

First the usual presentation of the method of characteristics is 
recalled.     Then it will be seen that the application of this method to the 
problem under study requires a number of modifications and refinements. 

It seems that the first application of the method of characteristics 
to the problem of a wave breaking over a beach was due to StokerV 2). 
(Other references are given by Ho and Meyer.''*')   In fact the same method 
has been applied for a long time in studying tidal motion and bore forma- 
tion in estuaries.    In both cases the vertical velocity distribution is 
assumed to be uniform and the pressure distribution hydrostatic.    More- 
over,   the friction forces (neglected by Stoker) take great importance in 
the study of tidal motion in estuaries.     Then the two basic equations are: 

momentum: 

continuity: 

where   u   is the average horizontal velocity along   OX,      y    the elevation 
of the free surface above the still water level,    (d +  W    ) the depth,   and 
C,     the Chezy coefficient. 

i 1 / ? 
Defining the quantity   c =   [g (d +   v?   )J it is found after some 

transformation that 

jJL +(a+c) i.   ](u+ic)  -   G 
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<•£  (<*••*y) 
1-e- ACu+2c) = C3 along ±2- =  a •+ C 

± ( a -2.C)   = d along £2.  -    " - C 

It is recalled that   G   is considered as a constant over a small interval 
A t. 

Then,  by knowing   u   and   c   at two points defined by their 
position   x   and time   t   (figure 4),   it is possible to calculate the location 
of a third point by drawing the lines of slope    1/uj + c-^   and   1/u^ - c^_   in 
a (t,x) diagram and to calculate   U3   and   c,   from the equations: 

u3-ZC5 = U2 -tcx +   G  At^3 

Hence,  this powerful method permits the complete analysis of the wave 
motion as a function of time and space.    However,   as it is presently used, 
it has some limitations.    One of them is rightly pointed out by Stoker: 

The method of characteristics gives a marked steepening of the 
wave front and a very unsymmetrical shape for the wave at breaking.    In 
a word,  the method of characteristics gives directly a bore or saturated 
breaker while it is well observed that spilling breakers remain almost 
symmetrical in shape. 

The case of a solitary wave on a horizontal bottom without friction 
is of particular interest because it is known that a solitary wave must 
travel without deformation.    When this problem is treated by the method 
of characteristics,  the wave profile becomes quickly deformed and even 
generates a bore,   despite the fact that the bottom is horizontal.    This dis- 
crepancy is due to the fact that the flow curvature,  particularly important 
near the crest of a wave,  is neglected in the method of characteristics 
while the profile of a solitary wave is obtained by integrating the continuity 
and momentum equations in which a term for the flow curvature has been 
introduced.    It is because of this term that the pressure distribution in a 
solitary wave is actually smaller than the hydrostatic pressure and much 
smaller (40%) under a near breaking wave crest. 

This term is presented in many books.    It is therefore judged un- 
necessary to reproduce the calculations here.    It is sufficient to know that 
it is obtained by considering that the vertical component of velocity is 
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assumed to be linearly distributed from the bottom to the free surface. 
This is a very realistic assumption.    It is also assumed that the bottom 
slope has a negligible effect on the path curvature.    This assumption holds 
true only for a gentle slope near the wave crest.     But,   if these conditions 
are not satisfied,   the path curvature correction becomes small,  in any 
case,  by comparison with other terms such as ( — §• S      ).    Hence a more 
complex calculation of the path curvature effect taking account of the bottom 
slope would be easy to perform but not worthwhile for practical purposes. 

Then the momentum equation is written , 

"*" -2. ' 
CM-   .   0    •"    ^   _    0> J±V    _   a ._         

Hence the only modification introduced by the flow curvature in the method 
of characteristics is to give   G   the value 

G = " 3& ~  "c^7) ^~   dt» ** 
This expression can easily be expressed as a function of   u   and   c   for 
each point of the   x, t   diagram along the characteristics since according 
to the continuity equation and the definition for    c 

Hence the previous values for   G,   Gi    and   G2   will be corrected by terms 
£ G,    and     A. G, . 

For more generality it is of great interest to work with dimension- 
less terms.    Defining   C^   =    £ g d, 3 '/'2*        where   d,    is an arbitrary deptl 

u.f.   , c-^ , x-f-     ,T.£ * t 

CK «*• 
The basic equations become 

L(ar*c>.<;.m-s-7L@.)%± 

along      U t    C  =    -gTjr 
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In view of determining the maximum possible run-up,  it is seen 
from the first part of this study that the most convenient input is the pro- 
file of a limit solitary wave where the slope tends to become steeper 
than 0. 01.    Then   °^    can be taken as the depth at that particular location. 
It is at this location that the breaking index curve is no longer followed. 
The breaker is close to being saturated.    The relative maximum possible 

wave run-up,   n  no **3*   -   ~jT^> will appear as a function of the slope only. 
1 flax 

Such a method of calculation often permits reduction of the number of cal- 
culations required.    Consequently the cumulative errors are reduced in 
such a way that the final result is even better than that which would be 
given by starting directly from an input defined by a non-breaking wave in 
deep water.    Also,   as long as the wave travels on a slope smaller than 
1/10,  the curvature term has a non-negligible influence in computing the 
run-up. 

Now another deficiency of the method of characteristics and its 
solution are analyzed.    First it is recalled that there is bore formation 
when two characteristics of the same family cross each other.    Then two 
values for   c ,  and consequently for   o    ,  are obtained.    It means physical 
that the wave breaks and forms a tidal bore. 

Actually,  as pointed out in the first section of this paper,   a spillin 
breaker appears prior to bore formation.    It has been seen resulting in a 
loss of energy,  which is not taken into account by the method of character 
istics.    This is due to the fact that the method of characteristics is based 
on the assumption that the vertical velocity distribution is uniform while 
the spilling breaker is due to the local high particle velocity near the cres 

The method of characteristics can be corrected in order to take 
account of this important phenomenon.    It is sufficient to impose to  porH, 
and consequently to   c ,   a maximum value prior to the bore formation. 
This maximum value for   H      will be 0. 78d ,   for example.    Then 

c =    [l.78gd] max l- =>    J 

y* 
max 

Such computations define the area for non-saturated breakers. 
Then,  again, when two characteristics of the same family cross each othe 
the bore appears and the non-saturated spilling breakers are transformed 
into saturated breakers.    It is evident that on a steep slope this intermedi 
process of calculation does not appear. 

Now the succeeding steps of the computations are given. 
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U   and   C   can always be determined on the low side of the bore,   say 
j "V" 

U ,   and   C , .    Along the bore line defined by    ,T     =   V ,   where   V   is the 

speed of the bore,   three unknowns must be determined:    V itself,   and   U 
C   on the high side of the bore,  namely   ^u   and   Cu .    These three un- 
knowns are determined from the momentum equation  and the continuity 
equation for shock waves,   and by the   U +  C   line which crosses the    V   line 
on the high side of the bore from a point   o   (^0 ,      o)*    (^s construction 
may require some interpolation.)   Hence,   the system of equations to be 
solved is: 

The solution of this system is given by the following set of equations: 

where 

X =* 

which permits calculation of   C    .    Then   U      is obtained directly and u u ' 

V.o^g^^i.] VA 

Now the characteristics on the high side of the bore are easily determined 
from the obtained values for   U      and   C    . u u 

When the depth tends to zero,    C , —» 0 .    Then it has been said 
that the above formula for   V   loses its        physical meaning because   V 
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tends to infinity.    In fact it is pointed out that   V   can never exceed 
u + u • First, the wave elements have a tendency to catch up the front 

of the bore at a speed U + C . Then the energy at the front of the bore is 
dissipated by turbulence as it is in a shock wave.    Hence      „   decreases 
up to the point where   V   given by the above formula equals U„ + *-•„ .  
The above equation for the bore is always valid but then   Cu   also tends to 
zero when   ^jj   tends to zero,   i.e.   near the shoreline.    iFis a "depression 
wave. "   (But    U   retains a value different from zero.)   Then the set of 
equations becomes: . _. Ki 

and also,   since the characteristics for   V   become 

AT 

index   o   indicating the previous values on the   V   line.    This set of equation 
can easily be solved from the equations for   C    : 

where   A   =^   , 

Then the calculation of   U      and   V = U    + C     is obtained easily for the . „ u u        u ' following step. 

It is seen that the shock wave disappears at the shoreline and that 
it is an edge of water which climbs on the beach.    Hydrodynamically 
speaking,  it is not a bore (nor a shock wave) which climbs on a dry bed, 
but a "depression wave. "   In fact it is true that the extreme edge of water 
is cut and the front of the water is roughly at a 60° angle with the vertical, 
presenting the aspect of a bore.    At this extreme edge   C   always equals 
zero since then    W    =    - d and   V = U .    The maximum wave run-up is 
obtained when   U   also tends to zero. 

The same mathematical process can be applied for studying the 
wave due to the breaking of a dam:    V   can never exceed   U + C   in shallow 
water and   U   on a dry bed. 

B   =  « 
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CONCLUSION 

New concepts such as saturated and non-saturated breakers and 
corresponding criteria have been established.    It has been demonstrated 
that spilling breakers follow the breaking index curve as long as the 
bottom slope is not steeper than 0. 02,   at which point the breaker becomes 
saturated.    Hence the maximum possible wave run-up is given by the wave 
which breaks over this slope.    If the wave is higher it will dissipate its 
energy sooner and will finally give the same run-up.    Because of this 
result,   application of the method of characteristics in deeper water is 
without use.    The input of the method of characteristics can be taken as a 
limit solitary wave where the slope is 0. 02 or 0. 01 by safety.    Starting 
the method of characteristics on a gentler slope in deeper water will give 
more error due to the cumulative effect of errors. 

It has been shown that on a slope smaller than 1/10,   the path curva- 
ture has an important effect on wave deformation,  which cannot be neglected 
The correcting term to be included in the method of characteristics has 
been established.    It has also been shown that the dissipation of energy at 
the   crest of a spilling breaker (without shock wave) has to be taken into 
account by imposing a maximum value for   C . 

Finally the method of computing the bore in shallow water and 
the climb of the water on a dry beach has been established.    It has been 
demonstrated that the bore or shock wave stops at the shoreline and it is 
a "depression wave" or edge of water which climbs on the beach. 

It can be concluded that the wave run-up (and associated problems 
such as waves due to the breaking of a dam) can now be completely solved 
by theory,  whatever the complexity of the slope. 

A computing program presently under development should permit 
investigation of the wave spectrum run-up taking into account the inter- 
action of one wave on the following wave. 
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