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The results of an analytical and experimental investigation into
the dynamics of a buoyant sphere moored by a single line in shallow water
waves are presented. The sphere motion and the mooring line forces are
related to the sphere diameter, weight, submergence and the wave fre-
quency, height and water depth. Analytically, the phenomenon is approached
as a forced vibration problem., The sphere and its mooring line acts as
a spring-mass system driven by the oscillating wave force. The relevant
dimensionless paramcters are the ratio between the natural frequency of
the moored sphere and the wave frequency and the ratio between the
dynamic mooring force due to a given wave and the force on the sphere
held stationary in the same wave. Experimental values of the frequency
and force ratios obtained from tests made at the Massachusetts Institute
of Technology Hydrodynamics Laboratory over a range of sphere and wave
characteristics are in essential agreement with the analytically
determined values. The investigation was supported by the Humble 0il
and Refining Company of Houston, Texas.

ANALYTICAL DEVELOPMENT
WAVE FORCE ON A STATIONARY SPHERE

The forces on objects submerged in water waves result from the
velocities and accelerations of the water particles comprising the waves,
For waves having a steepness H/L less than 0.03 the particle kinematics
are given by the Airy equations. The equations for the horizontal and
vertical components of particle velocity and acceleration expressed in
the notation of Figure 1 are
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Fig. 2. Definition sketch for moored sphere.
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The speed of wave propagation or celerity is

celerity = 1,1: = /8 tanh kd (5)

In the absence of viscosity, the force exerted on an object in an
unsteady flow field may be determined from classical hydrodynamic theory.
The pressure gradient in the horizontal direction resulting from the
local acceleration (convective acceleration terms neglected) is given by
the equation of motion.

-Sx"p%% (6)

By integration, the force on an object due to the pressure gradient
becomes

s gy - Bl by B0

where M is the mass of the displaced fluid.
In addition to the pressure gradient force there is a force due to

virtual mass which exists whenever there is relative acceleration between
a fluid and an immersed body. The virtual mass force can be expressed

Fy (virtual mass)= Kpﬁ]o]_,) g.% - KM% )

where K is the added mass constant. Addition of equations (7) and (8)
gives the total acceleration or inertia force.

{ du = ﬂ
Fgp = (L +K) ug = cy plor) = (9)
In equation (9) Cy, the coefficient of mass replaces the term (1 +K).

The added mass constant K has been determined analytically for a sphere
to be 0.5. Cy for a sphere in frictionless flow is therefore 1.5,

The force on an object in steady viscous flow arises from surface
shear, pressure gradients and wake formation. The hydrodynamic drag is
expressed

Fip = CD-%(Area)lu] u ' (10)

To obtain the wave force on a submerged stationary object the stead;
state drag force given by equation (10) is added to the potential flow
inertia force given by equation (9)

Fuo = Fup *+ Fyp = Cy p(Vol) % + ¢ p/2 larea)lul u (11)

748



THE DYNAMICS OF A SUBMERGED MOORED SPHERE
IN OSCILLATORY WAVES

Substitution of the wave particle velocity and acceleration expressions
into equation (11) yields

- g‘_l. 2
F Cy p(vol.) [dt;l]ncos ot + Cp p/Z(Area)um |sin ot} sinot (12)

HO

Assuming CM and Cp to be constant over a wave cycle, equation (12) may be
rewritten

Fug = Fygy €05 0t + Fyp |sinot]sinot (13)
where
du
Futm = Sy p(Vol.) [}R}n (14)
<
Fipm = Cp P/2 (area)u; (15)

Using the Stokes solution of a sphere oscillating in a viscous fluid
at low Reynolds nurbers and dimensional analysis,Keulegan and Carpenter (195
successfully correlated experimentally determined inertia and drag coeffi-
cients with a period parameter uy T/D. The parameter up T/D is directly
related to the ratio of the maximum wave draz force component to the
maximum inertia component. For a sphere, equations (14) and (15) with the
use of equations (1) and (3) give

FHIm a % n Cy [ s 0T

[S_—

(1)

From equatinn (16) a low value of period parameter signifies a predominant
inertia force while a high value signifies a predominant drag force.

Using a cylinder in the sinusoidal horizontal current under the node of a
standing wave, Keulegan and Carpenter found the experimentally determined
inertia coefficient equal to the potential flow value for low period
parameters and the drag coefficient equal to the steady state value for
high period parameter. Between these two extreme cases a point of
maximum deviatlion of both the inertia and drag coefficients from their
potential flow and steady state values respesctively was found at a period
parameter of 15,

Keulegan and Carpenter's results indicate that equation (12) may be
used to determine the wave force on a submerged object provided the
inertia and drag coefficients are known asz functions of the period
parameter. In the special case where the inertia force predominates and
the drag force is small (low period parameters) the potential flow value
of the inertia coecfficient may be used. In the special case where drag
force predominates and the inertia force is small (high period parameter)
the steady state value of the drag coefficient may be used.

749



COASTAL ENGINEERING

The reasoning outlined above is supported by the results of Harleman
and Shapiro (1955) in their tests on single vertical cylinders in steep
waves, In their analysis they used essentially the formulation of
equation (12) to construct the total wave force history with the potential
flow Cyq and the steady state Cp. Their analytical results were in agree-
ment with experiment for the cases of predominant inertia and predominant
drag, but were not in agreement for the region of approximately equal
inertia and drag. The greatest discrepancy between analysis and experimen
occurred near uy T/D = 15.

The relationship between the period parameter and the wave and objec
characteristics is found by substituting from equation (1) for up.

Um? _ nH cosh kS (17)

D D sinh kd

The experiments in this study were conducted using waves of steepnes:
H/L = 0,02. This small steepness was chosen to simplify the analysis of
the problem through the use of the Airy equations for wave kinematics.
In addition, wave and sphere dimensions were selected to yield low period
parameters; that is, a condition of predominant inertia force. The
subsequent analysis will be seen to depend upon this condition. The wave
and sphere characteristics used in this study are shown in Table I and
Figure 2a. "

The preceding discussion of wave forces on rigidly restrained
bodies has been concerned with the horizontal wave force component.
However, all the foregoing applies to the vertical component as well.
The following are the relevant equations for the vertical component.

Fyp = (1+k) p(Vol.) dv/dt = C, p(Vol) dv/dt (18)
Fyp = Cp p/2(area) [v] v (19)
Fyo = Fyp * Fyp = Oy A¥0L) dv/dt + Cp p/2(Are:-ﬂvIv (20)
Fyo = Fypy Sinot+ Fo - Jeos ot] cos ot (21)
Fym ™ Oy p(ve1) [dv/dt] (22)
Fypm ™ Op /2 (Area)vm2 (23)

ANALYSIS OF MOORED OSCILLATING SPHERE

Figure 2 is the definition sketch for the moored sphere analysis.
It is assumed in the analysis that the mooring line remains straight and
under tension at all times and that the sphere motion remains in the plane
defined by the wave particle orbits. These assumptions permit the
position of the sphere to be uniquely defined by the mooring line angle,yi
alone. Thus the sphere and mooring line constitute a single degree of
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freedom oscillating system.

Referring to Figure 2c¢, Newton's second law is written in the
tangential direction for the element of mass dm.

d Force = dm ;&:X

where il.d is the angular acceleration. Multiplying both sides of the
equation by A gives

d Torque = A? dm Y
Integration over the volume of the sphere yields
T=1IY (21)

where I is the moment of inertia of the sphere about point 0 since

szdm-l

veL.
Equation (24) is the standard form of Newton's second law for
rotating bodies. The torque, T, is the summation of the torques due to
all the forces acting on the sphere. The first of these is the spring
torque. Assuming that the mooring line angle remains small, so that
siny, 2 Y , the spring torque is

Spring torque = = Nt}. = - N siny

= - [E-Ig—spg- mgl A ¥ (25)

The pressure gradient torque depends upon the fluid acceleration
and is derived from equation (7). Here the flow field is specified in
terms of horizontal and vertical components. To find the total pressure
gradient torque it is necessary to take the sum of the projections in
the tangential direction of the horizontal and vertical pressure
gradient force components. Assuming again that the mooring line angle
remains small

3
Pressure grad. torque = -T%—p [%% cosyp = a@% sinp 1R

(26)
3

The virtual mass torque depends upon the relative acceleration
between the fluid and the sphere. In view of equation (8) the virtual
mass effect is assumed due to a sphere of fluid the same size as the
actual sphere but having a mass equal to K times the mass of the fluid.
Following the method used in deriving equation (2u4) and using equation
(8), the virtual mass torque may be written
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KnD? du av .
% p [3g cos¥- 3% sinyl &

Virtual mass torque = e I'\}; +
KnD? d d (27)
~ Y7 u u v
= =TV S I - F VA

where I' is the moment of inertia of the fluid sphere about point O and
the mooring line angle is assumed small.

The damping torque depends on the relative velocity between the
sphere and the fluid. Assuming, for the present, the damping to be linear
and the mooring line angle small, the damping torque may be written

Damping torque = c [=WR + u cosp~v sinyl L

. (28)
mcl-plru-vyPll

The contributing torques given by equations (25) through (28) are
added and substituted into equation (24) to give the equation of motion
of the oscillating sphere with linear damping E

net bouyaney yo
et P e —— ~

T+ )P+ cf 2 s Bpg - me s (1+ D0 S+ ovily

e (29)
3 g
= [(k+ 1) B0 52+ cul R
—w N
Inertia Drag

Equation (29) has the general form of the differential equation of motion
of a single degree of freedom spring-mass sysiem with linear damping.
However, in its present form the equation is non-linear.

The physical meaning of the varicas portinns of equation (29) is
indicated by brackets. To linearize and sirplify the equation the
following assumptions are made:

Assumption 1 The vertical component of the mooring line force
is equal to the net buoyarcy N. This is valid if
the vertical dynamic wave force Fy is small with
respect to the net buoyancy.

Assumption 2 The drag wave force component is small with respect
to the inertia wave force component.

Assumption 3 (previously stated) The mooring line angle, ’D, is small

With assumptions 1 and 2, equation (2%9) becomes
Y % D3 D2 4
(I+IDY + X)W+ (o2 - m)RP = Oy o T L (30)
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The preceding assumptions have reduced the equation of motion to
the exact form of the differential equation of motion of the single degree
of freedom spring-mass system with linear damping and a sinusoidal
driving force. The more practical case for the sphere problem involves
quadratic damping as given by equatior (10). In order to revise the
preceding analysis for square law damping it is only necessary to change
the damping term in equation (30). The damping torque is now given by

Damping torque = c, ('ill)zﬂ\ =C, y‘,z (31)
where
C, = ¢, L3 (32)
The differential equation of motion becomes
Asv+ c, \;12 + BPﬂFHom,Q cos ot @ Fyp, cos ot (33)
where
A=TI+1I' B-["%—a-pg-mg],l=NQ (3k)

Before treating the solution of equation (33) as written, the
special case of free oscillation of the moored submerged sphere without
damping will be considered. Setting the driving force and damping terms
to zero in equation (33) yields the differential equation of motion for
the free oscillation case.

AY + BY = 0 (35)

Equation (35) has the solution
VENTE cos‘}—i -t (36)

The motion is sinusoidal with amplitude or maximum angle and frequency
-2 {E
=i (37)

The frequency given by equation (37) is the undamped natural frequency.
From vibration theory the solution to the free oscillation problem with
linear damping included is known to be a harmonic oscillation with an
exponentially decreasing amplitude and a frequency somewhat less than the
undamped natural frequency. For small damping however, the damped natural
frequency is equal to the undamped natural frequency for all practical
purposes.

In Figure 3 experimentally determined naturzl frequencies are plotted
against sphere weight for the 0.518 ft. sphere. Also shown is the
theoretical curve computed for the test conditions from equation (37)
using the potential flow added mass coefficient of 0.5. The excellent
agreement between theory and experiment shows the neglect of damping in
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the free oscillation case is justified for the conditions of this study.

The non-linear forced oscillation equation of motion with quadratic
damping [equation (33)] can be solved as a linear equation by using the
techknique of Lorentz which was originally devised in 1926 for tidal
computations in shallow water (Dronkers and Schonfeld 1955). The dissipation
of energy in one wave period by the quadratic resistance term is equated
to the dissipation represented by the linear term in equation (29). A
similar method has also been used by Jacobsen (1930) in connection with
mechanical vibration problems. Under the above conditions the solution of
equation (33) is given by

)ll = Y, cos(ot - @) (38)

According to equation (38) the sphere moored in oscillatory waves
oscillates sinusoidally at the wave frequency and lags the driving force
by a phase shift @. The amplitude of oscillation is a function of the
ratio between the wave (driving) frequency and the natural frequency of
the system. In dimensionless form the amplitude and phase shift are

Yn | Py 1 BTN TN S
Won FHoym T n, (£/fn)? [{(1 (fn) )¥ - bng (fn) } (39)

—a- @Y

e b Y %
tan¢-—l—f{1+@-%ﬂrg—u} 2_1]2 (40)
V2 (1-(£/£n)?)
where i
Tom _ _ FHom £ - FHom (u1)

yém " 7E

[Pogmglk N

In view of assumptions 1 and 3, the parameter V/om represents the mooring
line angle which would obtain if the sphere were subjected statically to
the horizontal driving force maximum, Fg,.. The term Wn/ Y om is the
multiplication factor between the static deflection of the sphere under
the driving force, and the amplitude of the actual sphere motion.

In accordance with assumptions 1 and 3

Yom | P,

Wom FHom

where Fp, is the maximum value of the horizontal component of mooring
line tensibn. Therefore equation (39) also describes the variation in
the horizontal mooring line tension multiplication factor with
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Table I: CHARACTERISTICS OF EXPERIMENTAL PROGRAM

Wave Wave Period
Test Height Length Period Freq. Wave Freq. Parameter

ft. 4. sec. cps Nat. Freq. Uy T/D
I-2-4 0.10 5.10 1.00 1.000 1.00-3.10 0.2
I-2-B " " " " 1.02-3.20 0.20
I-L-A 0.20 9.90 1.50 0.667 1.1L-1.08 1.10
I-L-B " " " " 1.14-1.08 0.88
I-6-A  0.29 1h.us 2.00 0.500 0.50-1.63 2.42
I1-6-B " " " " 0.50-1.56 1.95
I-7-4 0.33 16.65 2.75 0.4lh5  0.45-1.38 3.24
I-7-B " " " " 0.hk4~-1.L0 2.61

A1l tests: Water depth = 2 ft., Sphere moored at mid-depth
Sphere A: Diam. = 0,418 f%t.
Sphere B: Diam. = 0.518 ft.

2 s E Sphere Diam =0 51
E
8 ~~— c: S’|75o Line Length =0 92

Soal o]

075 100 125 150 375 200 225 250 275 300 325 350 375 400 425 450
Total Sphere Weight - ibs

Fig. 3. Variation of natural frequency with weight of sphere.
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frequency ratio.

The damping factor, n,, in equations (39) and (LO) is

C, FH
n, = & 220 f (L3)
n3 A% fn'

The constant co = CQ/JL3 is found from the drag force equation, equation
(10) with the cross sectional area of the sphere inserted

2

D
Fip = Cp 0/2 %T Jufu
.

2

Therefore
n. = 1 CD o) D? ,QLL FHom
2 12q° A7 £p? (Laks)

Figure L4 is a plot of the multiplication factor against frequercy
ratio computed from equation (39) for several values of the paramcter nj.
The phase shift given by equation (LO) is plotted in Figure G, Figures
L and S show the three primary modes of behavior of the oscillating sphere.
At very low frequency ratios the horizontal mooring line force component
is in phase with and opposed to the driving force. This is the cordition
of static response because at any point of the cycle the restraining force
is exactly equal to the applied force. At frequency ratios near unity,
the damping force is in phase with and opposed to the driving force and
the horizontal mooring line force achieves large magnitudes dependent
upon the amount of damping. This is the condition of resonance. At large
frequency ratios, the inertia force is in phase with and opposed to the
driving force and the horizontal mooring line force approaches zero. This
is the condition of complete dynamic recponse.

Use of the Analytical Relationships

To summarize the theoretical develcpment, the procedure for determ~
ining the maximum mooring line tension in a particular problem will be
reviewed, First, the period parameter is computed from equation (17)
to determine if the condition of predominart inertia force is satisfied.
To satisfy this condition, the period parameter should be less than 5,

Second, the maximum horizontal force on the stationary sphere,
FHom 1s computed. Since the drag component of the total force is small,
equatior. (1), the equation for the maximum inertia component may be used
to closely approximate FHom‘

Third, tho natural frequency of the sphere is determined from
equation (37) anddivided into the wave {requency to give the frequency
ratio.

Fourth, the multiplication factor is computed from cqualion (3%)
ucing the np value obtained from equation (bh). In this cemputation Cp
is determined frow the steady state dra. curve using as Reyrolds nunber
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uy D/A4J. The maximum force on the stationary spherc is multiplied by the
multiplication factor to give the maximuwm horizontal moorng line tension
component. The maximum mooring line angle is determined from the
relationship,

s/’m tan Taliadm (L3)

The maximum mooring line tension is determined from the relation

Maximum Tension = ‘/(Fﬁm)z + N? (L6)

EXPERIMENTAL PROGRAM
EXPERIMENTAL EQUIPMENT

The experimental program was conducted in a glass walled tank,
90 ft. long, 2-1/2 ft. wide and 3 ft. deep at the Massachusetts Institute
of Technology Hydrodynamics Laboratory. A piston type shallow water wave
generator was used to generate the experimental waves., A steel frame to
support the spheres in the rigidly restrained tests was located 1O ft.
downstream from the wave generator. A model beach at a slope of 15
horizontal to 1 vertical occupying the last 35 ft. of the tank served as
an encrgy dissipator, satisfactorily limiting undesirabls wave reflections

The spheres were moulded from 1/4 inch lucite. Provision was made
for attaching a 1/L inch rod for the rigidly restrained tests and a
mooring line for the mooved tests.

In order to obtain a range of frequency ratios for each sphere in
each test wave, the natural frequency of the sphere was varied by changing
its weight. Filler materials were provided by mixing a commercially
available dry detergent, Vermiculite, and granulated salt.

For the rigidly restrained tests the spheres were supported from the
test stand as shown in Figure 6. The 3/L inch support rod was shielded .
by 1 inch inside diameter lucite pipe to minimize tare forces on the rod,

INSTRUMENTATION

Instrumentation was required in the test program to measure wave
characteristics, the horizontal and vertical force components in the
rigidly restrained tests and the monring line tension components in the
moored tests, Because of the unsteady nature of the phenomenon, most
data were taken electronically and recorded on a Sanborn Model 150 four
channel direct writing oscillograph. The recorder was equipped with a
timing marker which recorded one second pulses along one margin.

Wave profiles were measured using a capacitive type wave probe.

The horizontal force component on the rigidly restrained spheres
was measured using a portal gauge. The gauge is sensitive to shear alone
and therefore measures the horizontal force on the cantilever beam below
it irrespective of the distance to the point of application of the force.
The sensing element in the portal gauge is a Schaevitz L.V.D.T.
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The vertical force component on the rigidly restrained sphere was
measured with a double diaphram 1ift gauge using the same sensing element
as the portal gauge.

In the monred tests, the horizontal and vertical components of
mooring line tension were measured using a two component balance. The
gauge consists of a horizontal outer force beam to measure the vertical
component and a vertical inner force beam to measure the horizontal
component. Both force beams have sensing elements consisting of kL
SR-L-A-7 strain gauges. Since the two component balance was used under
water it was necessary to waterproof the strain gauges and wire connection.
This was done by applying three or four coats of Neoprene Bonding Cement.
Each coat was allowed to dry for 2L hours before the next was applied.
The waterproofing successfully withstood continuous immersion for periods
up to two weeks and intermittent immersion for a year.

RESULTS
RIGIDLY RESTRAINED TESTS

Experimental horizontal and vertical wave component histories for
test I-2-A are presented in Figure 7. The experimental force traces
show the inertial character of the wave forces of the test program as
predicted by the low period parameters. The maxima of the horizontal
component occur near 0° and 1800 -and the maxima of the vertical component
near 270° and 90¢, The horizontal component at 90° and 270° , the phase
angles where the drag contribution to the total force is a maximum, is
negligible.

From the experimental force histories, values of the inertia coefficien
Cy, were determined for all tests. These values were determined to give
the best fit between the experimental traces and the theoretical expressions
given by equations (12) and (21). The inertia coefficients determined from
the horizontal force component averaged 1.56 compared with the potential
flow value of 1.50, The coefficients determined from the vertical compomsent
averaged 1.30.

From the experimentally determined inertia coefficients and equations
(12) and (21) horizontal and vertical force component traces were computed
for test I-2-A. For both traces the steady state value of C., 0.42 was
used. The computed traces are shown as solid lines in Figuré 7. The
agreement with experiment#is excellent.

PARTTALLY RESTRAINED TESTS

Mooring line forces and angles

The experimental mooring line dynamic horizontal and vertical
tension component and mooring line angle histories for two tests are
presented in Figures 8 and 9. The tests selected represent the extreme
wave characteristics and period parameters of the test program. The
mooring line tension components were obtained directly from the experi-
mental records. The experimental mooring line angles were computed from
the tension component traces using the relation
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¥
W = tan™ G (u7)

For each experimental trace in Figures 8 and 9 a corresponding
theoretical history was computed. The theoretical expression for the
mooring line angle is given by equation (38).

In view of the assumptions made in the development of the theory,
that the dynamiec vertical force is much less than the net buoyancy and
that the mooring line angle is small, the mooring line an;le may be expressed

Y = %? (L8)

By substitution into equation (38), the theoretical horizontal force
component history becomes

Fy = Fg, cos (@t - @) (L9)

To solve for the theoretical mooring line angle and horizontal mooring

force histories 1t is necessary to know Fy, and the phase shift angle, @.
Equation (39) gives qu in terms of the multiplication factor, Fiy/FHom.

The phase shift, @, is given by equation (LO). The multipllcatzon factor

and phase shift are functions of the frequency ratio and dampingz factor, ns.
The damping factor, given by equation (L3), is a function of the coefficients
of inertia and drag and the maximum horizontal force component on the sphere
in the rigidly restrained condition. In evaluating the theoretical hori-
zontal force component and mooring line angle histories the following
quantities were used:

CM = 1,5, potential flow value
CD = 0,42, steady state value

FHo = average of positive and ncgative experimental
value in rigidly restrained tests

The agreement between the theoretical and expsrimental horizontal
eomponent and mooring line angle histories in Figures 8 and 9 is good with
respect to curve shape and phasing. For the longer wave, I-7, the masinma
of the theoretical curves are significantly higher than the experimental
maxima representing a enrresponding di:crepancy between the theoretical
and experimental muliipliczation factors. This teadency will be further
substantiated with the precentation of tha complete test resultbs.

Part of the discrepancy is due to the fact that the first assumption
in the development of the theory is not valid for thie greater wave lengths.
This is showyn in Figure 10 where the tntal vertical mooring line tension
component is plotted against wave phase angle for the two tests shown in
Figures 8 and 9. The total vertical component is equal to the dynamic
vertical plus the net buoyency. For the test in wave I-2, the total
vertical component is approximately egual to the net buosancy and assumption
1 is valid. For wave I-7, the dynamic vertical component, Fy, is a
significant proportion of the net buoyancy and assumption 1 is poor. The
physical reason for the difference is twofold. First, a given frequency
ratio entails a smaller net buoyancy in wave I-7 than ir wave T-2. Secoad,
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the rigidly restrained vertical component is greater for the longer wave
which results in a greater value of Fy.

The dynamic vertical mooring line tension component Fy has not been
previously analyzed. 1In the theoretical development it was considered a
second order effect. Physically, Fy results from the centrifugal force on
the sphere caused by its motion in a circular arc. This force is given by
Newton's second law with the mass term written to include the virtual

mass effect.
KonD3
FC = [m + ..93_—]31‘

The term a, is the radial acceleration.
a, = i ]
By differentiating equation (38), yb is obtained.
SL = -?,-%‘-\/'m sin(6- @) = - y;m sin(@ - @)

Therefore,

Fo = [m + ]—(%D—s] s&mz A sin®*(e-¢) = Fom sin®?(e - @)

In addition to the centrifugal force there is another contribution
to Fy. This is seen by considering the case of small sphere motion, i.e.,
small Y . In this case the sphere is nearly stationary and the vertical
force acting upon it approaches the vertical force component on the statior
ary sphere Fy,. The dynamic vertical mooring line component is, therefore,
taken to be the linear superposition of the centrifugal force and the
vertical force component on the stationary sphere.

Fy = Fg + Fy, (50)

This superposition is shown graphically in Figure 11 for a case where the
phase shift angle, @, is 1800 and F¢, = 2Fyoy,. The term Fyo in Figure 11
approximates a negative sine wave as shown by equation (21). The
resulting theoretical Fy history is non-symmetrical. The positive maximum
value exceeds the negative. Curves computed from equation (50) are shown
in Figures 8 and 9. The Fy, values used in computing there curves were
obtained from the experimental vertical component histories on the
stationary sphere., The agreement with experiment is good with respect to
curve shape and maximum positive values of Fy.

Force multiplication factors

For each sphere test .made in this study, horizontal force multipli-
cation factors were computed from the maximum experimental forces. The
multiplication factors for the 0.418 ft. sphere in each test wave are
plotted against frequency ratio in Figures 12 through 15. 1In each of the
figures the experimental points define resonance curves of the form of
Pigure 4, It is important to note, however, that theoretically the
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experimental points of a particular test should not fall on a single curve
of Figure L since these curves are drawn for constant values of the damping
factor np. For the conditions of the sphere tests the damping factor
varies slightly with the frequency ratio.

Waove
Phose [ Angle

|| %o | l 180 \ 270 ‘

l l

/ Mooring Line Angle \-

| | 90| | 80| |20} |

\\ / Vertical Force
/
~ /

Fig. 11_: Dynamic vertical
mooring force by superposition.

For each set of experimental data in Figures 12 through 15 a theoreti
curve is shown computed from equations (39) and (43). In all computations
an inertia coefficient, Cy = 1.5 and a drag coefficient, Cp = 0.42 were
used,

The agreement between theory and experiment is very good for short
waves and becomes poorer as the wave length increases. One reason for the
discrepancy between theory and experiment in the longer waves (involving
the validity of the first assumption made in the development of the theony)
has been discussed previously. Another possible cause of error is the
value of Cp used in the computation of the theoretical curves. Because
of the relatively small drag components encountered in this study it was
not possible to determine Cp values from the rigidly restrained test data,
The damping factor is shown by equation (L3) to be proportional to Cp
and the effect of the damping factor on the theoretical force multiplicatio
factor is shown in Figure 4. It is seen that an increased damping factor
would bring the theory into better agreement with experiment for the longer
waves at frequency ratios less than about 1.4. For higher frequency
ratios the damping coefficient has a small effect on the multiplication
factor and the discrepancy would still persist. In any event more informat:
would be needed such as would be obtained from a complete determination
of the Cp vs. unT/D curve before the use of a higher value of Cp could be
Justified,
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Two interesting features arec noted in the test results. In Figure 1l
the experimental points at f/fn = 0.5 appear high. This is probably due
to the fact that the waves have a second harmonic which is neglected in
the Airy thecry. Therefore, at f/fn near 0.5, the system resonates with
the second harmonic. In Figure 12 another high experimental point is
seen; this one at f/fn = 1.85. The phenomeron of a second resonance near
f/fn = 2 has been treated in mechanical vibration literature (Den Hartog,
195€) under the name "subharmonic resonance". There it is stated that the
phenomenon may occur in a system having non-linear characteristics and
that the analysis of the conditions under which subharmonic resonance will
occur is extremely difficult. The mechanical system investigated in this
study has non-linear damping and restoring force characteristics, the latter
being assumed lirear in the development of the theory. It is therefore
possible that the observed second resonance is an inherent characteristic
in the moored object problem. It is also possible that the second resonance
could have been caused by reflected waves in the wave tank having a
frequency equal to 1/2 the incident wave frequency. Extensive additional
study would be necessary for the analysis of the second resonance
phenomenon.,

CONCLUSIONS

It is concluded that the behavior of moored submerged buoyant objects
in oscillatory waves is adequately described by vibration theory with square
law damping. The relationships presented herein accurately predict the
mooring line tensions and motions of a sphere moored by a single vertical
line when the following conditions assumed in the development of these
relations obtain:

1) Predominant inertia force.

2) Small dynamic vertical mooring force with respect
to net buoyancy.

3) Small maximum mooring line angle.

L) Small amplitude waves.
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