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The results of an analytical and experimental investigation into 
the dynamics of a buoyant sphere moored by a single line in shallow water 
waves are presented. The sphere motion and the mooring line forces are 
related to the sphere diameter, weight, submergence and the wave fre- 
quency, height and water depth. Analytically, the phenomenon is approached 
as a forced vibration problem. The sphere and its mooring line acts as 
a spring-mass system driven by the oscillating wave force. The relevant 
diraensionless parameters are the ratio between the natural frequency of 
the moored sphere and the wave frequency and the ratio between the 
dynamic mooring force due to a given wave and the force on the sphere 
held stationary in the same wave. Experimental values of the frequency 
and force ratios obtained from tests made at the Massachusetts Institute 
of Technology Hydrodynamics Laboratory over a range of sphere and wave 
characteristics are in essential agreement with the analytically 
determined values. The investigation was supported by the Humble Oil 
and Refining Company of Houston, Texas. 

ANALYTICAL DEVELOPMENT 

WAVE FORCE ON A STATIONARY SPHERE 

The forces on objects submerged in water waves result from the 
velocities and accelerations of the water particles comprising the waves. 
For waves having a steepness H/L less than 0.03 the particle kinematics 
are given by the Airy equations. The equations for the horizontal and 
vertical components of particle velocity and acceleration expressed in 
the notation of Figure 1 are 

oH /cosh kSs ...... /T \ 
U ' "2 (iinin^ sln<*- um sinat (1) 

v . 2g (2£*£§) cos at- v cosfffc (2) 
2 vsinh kd'       m v ' 

du     0?H ,cosh kSN _.      /du^ . /,x 
dt " T (Hnh"kd) COS<rt"  (dt}    COSa± (3) 

m 

dv (r^H /Sinh kSx    ,   _. /dv\      .      . ,, . 
dt - - "r (iTnire) sin<rb= - <dt>n 

sin<rfc (U) 

746 



THE DYNAMICS OF A SUBMERGED MOORED SPHERE 
IN OSCILLATORY WAVES 

e = o e = 90      e = i8o        e = 270      e = 36o 

Direction of Wave 
Propagation 

Still Water Level 

+ F„ 
u 

dt 

+ F„ 

T. 

*//////////////}/ / /////////// //// /// 
Pig. 1.   Definition sketch for wave motion. 

Sphere A — 0=0 418 
Sphere 8 — D = 0 516 

'•Still Water  Level 

jg I    wove   lani 
II    Bottom j 

W/////////////A 

(a) 

^ N = net buoyancy 

N. 

(b) 

d force 

(c) 

Fig. 2.   Definition sketch for moored sphere. 

747 



COASTAL ENGINEERING 

The speed of wave propagation or celerity is 

celerity - | - J&  tanh kd (5) 

In the absence of viscosity, the force exerted on an object in an 
unsteady flow field may be determined from classical hydrodynamic theory. 
The pressure gradient in the horizontal direction resulting from the 
local acceleration (convective acceleration terms neglected) is given by 
the equation of motion. 

dp „  du /,N 
~ d£ " p dt (6) 

By integration, the force on an object due to the pressure gradient 
becomes 

FH (pressure grad} - - f&Cjtal.) - p(.Vol) |S . H |S (7) 

where M is the mass of the displaced fluid. 

In addition to the pressure gradient force there is a force due to 
virtual mass which exists whenever there is relative acceleration between 
a fluid and an immersed body. The virtual mass force can be expressed 

FR (virtual mass) = K pfyol.) fj: - KM|| (8) 

where K is the added mass constant. Addition of equations (?) and (8) 
gives the total acceleration or inertia force. 

FHI-<1 + K>Mi-CM^V0lJ§ (9) 

In equation (Q) CJJ, the coefficient of mass replaces the term (1+K). 
The added mass constant K has been determined analytically for a sphere 
to be 0.5. % for a sphere in frictionless flow is therefore 1.5. 

The force on an object in steady viscous flow arises from surface 
shear, pressure gradients and wake formation. The hydrodynamic drag is 
expressed 

FHD ' CD 2^ea)N u "       (10) 

To obtain the wave force on a submerged stationary object the steady 
state drag force given by equation (10) is added to the potential flow 
inertia force given by equation (9) 

FH0 " FHI + FHD " CM etv°l.) ~ + CD p/2 (Areajlu! u       (11) 
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Substitution of the wave particle velocity and acceleration expressions 
into equation (11) yields 

FH0 " CM PtVol0 tf|j cos at + CD p/2(Areajv^
s|sinotJ sin at     (12) 

Assuming CM and Cn to be constant over a wave cycle, equation (12) may be 
rewritten 

FH0 " FHIm C0S °* + FHDm lsin <* Isin rt ^ 

where 

WS^Vol.)^] (H*) 
m 

Using the Stokes solution of a sphere oscillating in a viscous fluid 
at low Reynolds numbers and dimensional analys is _, Keulegan and Carpenter (195< 
successfully correlated experimentally determined inertia and drag coeffi- 
cients with a period parameter um T/D. The parameter um T/D is directly 
related to the ratio of the maximum wave dras force component to the 
maximum inertia component. For a sphere, equations {Ik)  and (15) with the 
use of equations (1) and (3) give 

From equation (16) a low value of period parameter signifies a predominant 
inertia force whilf a high value signifies a predominant drag force. 
Using a cylinder in the sinusoidal horizontal current under the node of a 
standing wave, Keulegan and Carpenter found the experimentally determined 
inertia coefficient equal to the potential flow value for low period 
parameters and the drag coefficient equal to the steady state value for 
high period parameter. Between these two extreme cases a point of 
maximum deviation of both the inertia and drag coefficients from their 
potential flow and steady state values respectively was found at a period 
parameter of 15. 

Keulegan and Carpenter's results indicate that equation (12) maybe 
used to determine the wave force on a submerged object provided the 
inertia and drag coefficients are known as functions of the period 
parameter. In the special casi° where the inertia force predominates and 
the drag force is small (lotf period parameters) the potential flow value 
of the inertia coefficient may be used. In the special case where drag 
force predominates and the inertia force is small (high period parameter) 
the steady state value of the drag coefficient may be used. 
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The reasoning outlined above is supported by the results of Harleman 
and Shapiro (1955) in their tests on single vertical cylinders in steep 
waves. In their analysis they used essentially the formulation of 
equation (12) to construct the total wave force history with the potential 
flow Cj{ and the steady state Cj). Their analytical results were in agree- 
ment with experiment for the cases of predominant inertia and predominant 
drag, but were not in agreement for the region of approximately equal 
inertia and drag. The greatest discrepancy between analysis and experimen 
occurred near um T/D - 15. 

The relationship between the period parameter and the wave and objec 
characteristics is found by substituting from equation (1) for 1%. 

timT  nH cosh kS /,_* 
D ' D sinh kd K1() 

The experiments in this study were conducted using waves of steepnes; 
H/L • 0.02. This small steepness was chosen to simplify the analysis of 
the problem through the use of the Airy equations for wave kinematics. 
In addition, wave and sphere dimensions were selected to yield low period 
parameters} that is, a condition of predominant inertia force. The 
subsequent analysis will be seen to depend upon this condition. The wave 
and sphere characteristics used in this study are shown in Table I and 
Figure 2a. 

The preceding discussion of wave forces on rigidly restrained 
bodies has been concerned with the horizontal wave force component. 
However, all the foregoing applies to the vertical component as well. 
The following are the relevant equations for the vertical component. 

Fyj - (l+k)p(y©l.) dv/dt - CMp(yol) dv/dt (18) 

FTO - CD p/2(Area)|v/ v (19) 

FV0 " F¥l + FVD " CM^01) dv/dt + V/2(&H'v/V (20) 

FV0 " FVTm Sin rt + FVDm l°0S rtl C0S <* (21) 

FVIm"CM^V0l> [dv/dtm (22) 

FVDm-CDp/2^ea)Vm2 <23> 

ANALYSIS OF MOORED OSCILLATING SPHERE 

Figure 2 is the definition sketch for the moored sphere analysis. 
It is assumed in the analysis that the mooring line remains straight and 
under tension at all times and that the sphere motion remains in the plane 
defined by the wave particle orbits. These assumptions permit the 
position of the sphere to be uniquely defined by the mooring line angle,y* 
alone. Thus the sphere and mooring line constitute a single degree of 
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freedom oscillating system. 

Referring to Figure 2c, Newton's second law is written in the 
tangential direction for the element of mass dm. 

•• 
d Force « dm y*X 

where y> is the angular acceleration. Multiplying both sides of the 
equation by \ gives 

•• 
d Torque • X dm J^ 

Integration over the volume of the sphere yields 

T - I V> (2U) 

where I is the moment of inertia of the sphere about point 0 since 

J. X2 dm - I 
V»L. 

Equation (2U) is the standard form of Newton's second law for 
rotating bodies.    The torque, T, is the summation of the torques due to 
all the forces acting on the sphere.    The first of these is the spring 
torque.    Assuming that the mooring line angle remains small, so that 
siny/Sf V" > the spring torque is 

Spring torque - — N. J,  • - Njt. sinJP 

*- [^Pg-ngUP (25) 

The pressure gradient torque depends upon the fluid acceleration 
and is derived from equation (?). Here the flow field is specified in 
terms of horizontal and vertical components. To find the total pressure 
gradient torque it is necessary to take the sum of the projections in 
the tangential direction of the horizontal and vertical pressure 
gradient force components. Assuming again that the mooring line angle 
remains small 

Pressure grad. torque • -r-p [J+ cosyJ* - -rr sin ^ ]& 

(26) 

~  ^pldt dt"lJi- 

The virtual mass torque depends upon the relative acceleration 
between the fluid and the sphere. In view of equation (8) the virtual 
mass effect is assumed due to a sphere of fluid the same size as the 
actual sphere but having a mass equal to K times the mass of the fluid. 
Following the method used in deriving equation (2U) and using equation 
(8), the virtual mass torque may be written 
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Virtual mass torque - -l'y> + —r^- p [— cos^-|| sin^]£ 

(27) 
^       rt\u      KnD3       rdu     dv... -, o 

where I* is the moment of inertia of the fluid sphere about point 0 and 
the mooring line angle is assumed small. 

The damping torque depends on the relative velocity between the 
sphere and the fluid.    Assuming, for the present, the damping to be linear 
and the mooring line angle small,  the damping torque may be written 

Damping torque « c[-y/£ + u cosy>- v sin^]j2, 

(28) 
Ss c[-^X+ u - v^ ]JL 

The contributing torques given by equations (25) through (28) are 
added and substituted into equation (2U) to give the equation of motion 
of the oscillating sphere with linear damping — 

(I + I')f + c^A2 •  [^pg -mg+  (K + 1>2§^P H + cvlXV 

(29) 

Inertia Drag 

Equation (29) has the general form of the differential equation of motion 
of a single degree of freedom spring-mass system with linear damping. 
However, in its present form the equation is non-linear. 

The physical meaning of the various portions of equation (2°) is 
indicated by brackets.    To lineariz* and simplify the equation the 
following assumptions are made: 

Assumption 1    The vertical component of  fche mooring line force 
is equal to the net buoyancy N.    This is valid if 
the vertical dynamic wav« force Fv is small with 
respect to the net buoyancy. 

Assumption 2    The drag wave force component is small with respect 
to the inertia wave force component. 

Assumption 3    (previously stated)    The mooring line angle, 0, is small 

With assumptions 1 and 2,  equation (29) becomes 

(I • I')? + (cX2)£+  (*f pg-mg)JW - CM2^pgU (30) 
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The preceding assumptions have reduced the equation of motion to 
the exact form of the differential equation of motion of the single degree 
of freedom spring-mass system with linear damping and a sinusoidal 
driving force. The more practical case for the sphere problem involves 
quadratic damping as given by equation (10). In order to revise the 
preceding analysis for square law damping it is only necessary to change 
the damping term in equation (30). The damping torque is now given by 

Damping torque - c2 (j^X)ZX.  - ^2 Y * (31) 

where 

C2-°2A
S <32> 

The differential equation of motion becomes 

kf + C2 £
2 + Bf - FHom Jj cos at » FHlm cos at        (33) 

where 

A - I + I' j     B - [2^pg - mg]J^ - N£        (3U) 

Before treating the solution of equation (33) as written, the 
special case of free oscillation of the moored submerged sphere without 
damping will be considered. Setting the driving force and damping terms 
to zero in equation (33) yields the differential equation of motion for 
the free oscillation case. 

A$ + Bf  • 0 OS) 

Equation (35) has the solution 

V " Vm  C0SVI '* <36> 

The motion is sinusoidal with amplitude or maximum angle and frequency 

f „i n  2n 7F (37) 
The frequency given by equation (37) is the undamped natural frequency. 
From vibration theory the solution to the free oscillation problem with 
linear damping included is known to be a harmonic oscillation with an 
exponentially decreasing amplitude and a frequency somewhat less than the 
undamped natural frequency. For small damping however, the damped natural 
frequency is equal to the undamped natural frequency for all practical 
purposes. 

In Figure 3 experimentally determined natural frequencies are plotted 
against sphere weight for the 0.518 ft. sphere. Also shown is the 
theoretical curve computed for the test conditions from equation (37) 
using the potential flow added mass coefficient of 0.?. The excellent 
agreement between theory and experiment shows the neglect of damping in 
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the free oscillation case is justified for the conditions of this study. 

The non-linear forced oscillation equation of motion with quadratic 
damping [equation (33)] can be solved as a linear equation by using the 
technique of Lorentz which was originally devised in 1926 for tidal 
computations in shallow water (Dronkers and Schonfeld 1955). The dissipation 
of energy in one wave period by the quadratic resistance term is equated 
to the dissipation represented by the linear term in equation (29). A 
similar method has also been used by Jacobsen (1930) in connection with 
mechanical vibration problems. Under the above conditions the solution of 
equation (33) is given by 

f  - \}/m cos(ot - 0) (38) 

According to equation (38) the sphere moored in oscillatory waves 
oscillates sinusoidally at the wave frequency and lags the driving force 
by a phase shift 0. The amplitude of oscillation is a function of the 
ratio between the wave (driving) frequency and the natural frequency of 
the system. In dimensionless form the amplitude and phase shift are 

P . 2& . —1     f {(1- (f )•)«• - U n2*  (f >*}* 
Com     PHota       JTM (r/£„\* L<- fn fn   •> yom     PHo^       JZn2 (f/fn)2 

(39) 

" <* " <£>">'] JL^21 \ 

and 

ten 0. .1. f u , to! < W ,\f 
>nlx   (i-(f/fn)2rJ   J 

(W>) 

where 
...        Tom "om X **om /,_» 
Vom " T " TiDS 7; IT ihl) 

In view of assumptions 1 and 3, the parameter y/om represents the mooring 
line angle which would obtain if the sphere were subjecte'd statically to 
the horizontal driving force maximum, FHom. The term ym/ J^0m is the 
multiplication factor between the static deflection of the sphere under 
the driving force, and the amplitude of the actual sphere motion. 

In accordance with assumptions 1 and 3 

J%m  ^Hom 

where FHTO is the maximum value of the horizontal component of mooring 
line tensibn. Therefore equation (39) also describes the variation in 
the horizontal mooring line tension multiplication factor with 
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Table I:     CHARACTERISTICS OF EXPERIMENTAL PROGRAM 

Test 
Wave 

Height 
ft. 

Wave 
Length 
ft. 

Period 
sec. 

Freq. 
cps 

Wave Freq. 
Nat. Freq. 

Period 
Parameter 

%iT/D 

I-2-A 0.10 5.10 1.00 1.000 1.00-3.10 0.2U 

I-2-B ti II II II 1.02-3.20 0.20 

I-U-A 0.20 9.90 1.50 0.667 1.1U-1.08 1.10 

I-U-B ti II it n 1.1U-1.08 0.88 

I-6-A 0.29 m.us 2.00 0.500 0.50-1.63 2.U2 

I-6-B it II II II 0.50-1.56 1.95 

I-7-A 0.33 16.65 2.75 0.UU5 O.U5-1.38 3.2U 

I-7-B ii II II II 0.UU-1.U0 2.61 

All tests:    Water depth » 2 ft. , Sphere moored at mid-depth 
Sphere A:    Diam. • O.U18 ft. 
Sphere B:    Diam. - 0.518 ft. 

075     100    125      150     175    200    225    250  275     300   325    350    375    400   425     450 
Total   Sphere    Weight - lbs 

Fig. 3.   Variation of natural frequency with weight of sphere. 
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frequency ratio. 

The damping factor, n2, in equations (39) and (bO) is 

2 C2FHomil 
2  3  •* .2 ^ * n3 A* frt 

(U3) 

The constant c2 • C2/j!,
3 is found from the drag force equation, equation 

(10) with the cross sectional area of the sphere inserted 

Therefore 

FHr '% p/2 

"^2 

nD |u|u 

1 CD pD: 'J^^om 
12n2 A* *na n

2 " 12*2    A* f„s (WO 

Figure U is a plot of the multiplication factor against frequency 
ratio computed from equation (39) for several values of the parameter n2. 
The phase shift given by equation (I4O) is plotted in Figure 5>. Figures 
h  and $  show the three primary modes of behavior of the oscillating sphere. 
At very low frequency ratios the horizontal mooring line force component 
is in phase with and opposed to the driving force. This is the condition 
of static response because at any point of the cycle the restraining force 
is exactly equal to the applied force. At frequency ratios near unity, 
the damping force is in phase with and opposed to the driving force and 
the horizontal mooring line force achieves large magnitudes dependent 
upon the amount of damping. This is the condition of resonance. At large 
frequency ratios, the inertia force is in phase with and opposed bo the 
driving force and the horizontal mooring line force approaches zero. This 
is the condition of complete dynamic response. 

Use of the Analytical Relationships 

To summarize the theoretical development, the procedure for determ- 
ining the maximum mooring line tension in a particular problem will be 
reviewed. First, the period parameter is computed from equation (1?) 
to determine if the condition of predominant inertia force is satisfied. 
To satisfy this condition, the period parameter should be less than 5. 

Second, the maximum horizontal force on the stationary sphere, 
Fnom is computed. Since the drag component of the total force is small, 
equation (lb), the equation for the maximum inertia component may be used 
to closely approximate FH . 

Third, the natural frequency of the sphere- is determined from 
equation (37) and divided Into the wave frequency to give the frequency 
ratio. 

Fourth, the multiplication factor ip computed from equation (3f?) 
using the 12 value obtained from equation (lib). In this computation CQ 
is determined from the steady state dxac curve using as Reynolds number 
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um D/tf. The maximum force on the stationary sphere is multiplied by the 
tmiltiplication factor to give the maximum horizontal moorng line tension 
component. The maximum mooring line angle is determined from the 
relationship. 

Vm '  *«"1 ^ ^ M) 
The maximum mooring line tension is determined from the relation 

Maximum Tension - V(FH )3 + Ns (U6) 

EXPERIMENTAL PROGRAM 

EXPERIMENTAL EQUIPMENT 

The experimental program was conducted in a glass walled tank, 
90 ft. long, 2-1/2 ft. wide and 3 ft. deep at the Massachusetts Institute 
of Technology Hydrodynamics Laboratory. A piston type shallow water wave 
generator was used to generate the experimental waves. A steel frame to 
support the spheres in the rigidly restrained tests was located )i0 ft. 
downstream from the wave generator. A model beach at a slope of 15 
horizontal to 1 vertical occupying the last 35 ft. of the tank served as 
an energy dissipator, satisfactorily limiting undesirable wave reflections 

The spheres were moulded from l/lt inch lucite. Provision was made 
for attaching a l/U inch rod for the rigidly restrained tests and a 
mooring line for the moored tests. 

In order to obtain a range of frequency ratios for each sphere in 
each test wave, the natural frequency of the sphere was varied by changing 
its weight. Filler materials were provided by mixing a commercially 
available dry detergent, Vermiculite, and granulated salt. 

For the rigidly restrained tests the spheres were supported from the 
test stand as shown in Figure 6. The 3/U inch support rod was shielded < 
by 1 inch inside diameter lucite pipe to minimize tare forces on the rod. 

INSTRUMENTATION 

Instrumentation was required in the test program to measure wave 
characteristics, the horizontal and vertical force components in the 
rigidly restrained tests and the mooring line tension components in the 
moored tests. Because of the unsteady nature of the phenomenon, most 
data were taken electronically and recorded on a Sanborn Model 150 four 
channel direct writing oscillograph. The recorder was equipped with a 
timing marker which recorded one second pulses along one margin. 

Wave profiles were measured using a capacitive type wave probe. 

The horizontal force component on the rigidly restrained spheres 
was measured using a portal gauge. The gauge is sensitive to shear alone 
and therefore measures the horizontal force on the cantilever beam below 
it irrespective of the distance to the point of application of the force. 
The sensing element in the portal gauge is a Schaevitz L.V.D.T. 

758 



THE DYNAMICS OF A SUBMERGED MOORED SPHERE 
IN OSCILLATORY WAVES 

The vertical force component on the rigidly restrained sphere was 
measured with a double diaphram lift gauge using the same sensing element 
as the portal gauge. 

In the moored tests, the horizontal and vertical components of 
mooring line tension were measured using a two component balance. The 
gauge consists of a horizontal outer force beam to measure the vertical 
component and a vertical inner force beam to measure the horizontal 
component. Both force beams have sensing elements consisting of h 
SR-U-A-7 strain gauges. Since the two component balance was used under 
water it was necessary to waterproof the strain gauges and wire connection. 
This was done by applying three or four coats of Neoprene Bonding Cement. 
Each coat was allowed to dry for 2U hours before the next was applied. 
The waterproofing successfully withstood continuous immersion for periods 
up to two weeks and intermittent immersion for a year. 

RESULTS 

RIGIDLY RESTRAINED TESTS 

Experimental horizontal and vertical wave component histories for 
test I-2-A are presented in Figure ?• The experimental force traces 
show the inertial character of the wave forces of the test program as 
predicted by the low period parameters. The maxima of the horizontal 
component occur near 0° and 180° -and the maxima of the vertical component 
near 270° and 90°. The horizontal component at 90° and 270° , the phase 
angles where the drag contribution to the total force is a maximum, is 
negligible. 

From the experimental force histories, values of the inertia coefficien 
CM, were determined for all tests. These values were determined to give 
the best fit between the experimental traces and the theoretical expressions 
given by equations (12) and (21). The inertia coefficients determined from 
the horizontal force component averaged 1.56 compared with the potential 
flow value of 1.50. The coefficients determined from the vertical compoaent 
averaged 1.30. 

From the experimentally determined inertia coefficients and equations 
(12) and (21) horizontal and vertical force component traces were computed 
for test I-2-A. For both traces the steady state value of Cn, 0.U2 was 
used. The computed traces are shown as solid lines in Figure 7. The 
agreement with experiment»is excellent. 

PARTIALLY RESTRAINED TESTS 

Mooring line forces and angles 

The experimental mooring line dynamic horizontal and vertical 
tension component and mooring line angle histories for two tests are 
presented in Figures 8 and °. The tests selected represent the extreme 
wave characteristics and period parameters of the test program. The 
mooring line tension components were obtained directly from the experi- 
mental records. The experimental mooring line angles were computed from 
the tension component traces using the relation 
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Phase  Angle   in Degrei Phase  Angle   in  Degrees 

Fig. 7. Force component variation Fig. 8. 
with wave phase - rigidly restrained riation 
•sphere (test I-2-A). 

Force and mooring angle va 
with wave phase (test I-2-A-5 

Mooring   Line 
Angle - Degrees- 

H =0 333 ft       d = 2 00 fl 
L =16 65   fl       0=0 418ft 7- =0891 
T = 2 25   sec S/d = I 00 ft 

EO 38 

Fig. 9.   Force and mooring angle variation 
with wave phase (test I-7-A-3). 

I1Oo6o0 
_N«J_ Buoyoncy 0Q O 

Pounds 
08 

06 

04 

Test I-2-A-Z 
H • 0 102 ft 
L • 5 10 ft 
T = I 00 sec 
f   =  I  00    cps 

0 90        180       270       360 
Phase   Angle, Degrees 

1 0 1              1             i     0 

Net               0      0                 00 
08^ t Bears!-11 0 _ J, 

[0°00°o°               °00°              J 
Fv+N   06 

Test   I-7-A-3 
Pounds H   . 0 333  ft       , 

04 - L   =16 65     ft      7-.0891     _ 
T  . 2 25     sec      " 

02 
_ f   = 0 445 cps 

1               1              1 
90 180       270      360 

Phase  Angle, Degrees 

Fig. 10. Variation of ver- 
tical mooring force with 
wave phase. 
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For each experimental trace In Figures 8 and ? a corresponding 
theoretical history was computed. The theoretical expression for the 
mooring line angle is given by equation (38). 

In view of the assumptions made in the development of the theory, 
that the dynamic vertical force is much less than the net buoyancy and 
that the mooring line angle is small, the mooring line angle may be expressed 

St,.** 
r      K 

By substitution into equation (38), the theoretical horizontal force 
component history becomes 

FH - FHm cos  (fft - 0) (k9) 

To solve for the theoretical mooring line angle and horizontal mooring 
force histories it is necessary to know Fnm and the phase shift angle, 0. 
Equation (3?) gives FHm in terms of the multiplication factor, Fjjm/FHom« 
The phase shift, 0, is given by equation (UO). The multiplication factor 
and phase shift are functions of the frequency ratio and damping factor, 112. 
The damping factor, given by equation (ii3), is a function of the coefficients 
of inertia and drag and the maximum horizontal force component on the sphere 
in the rigidly restrained condition. In evaluating the theoretical hori- 
zontal force component and mooring line angle histories the following 
quantities were used: 

(X, • 1.5, potential flow value 

CQ » 0.U2, steady state value 

Fu  • average of positive and negative experimental 
value in rigidly restrained tests 

The agreement between the theoretical and exparimental horizontal 
component and mooring line angle histories in Figures 8 and 9  is good with 
respect to curve shape and phasing. For the longer wave, T-7, the ma/ima 
of the theoretical curves are significantly higher than the experimental 
maxima representing a corresponding discrepancy between the theoretical 
and experimental multiplication factors.. This tendency will be further 
substantiated with the presentation of the complete test results. 

Part of the discrepancy is due to the facb that the firjt assumption 
in the development of the theory is not valid for the greater wave lengths. 
This is shown in Figure 10 where thp total vertical mooring line tension 
component is plotted against wave phase angle for the two tests shown in 
Figures 8 and 9. The total vertical component is equal to the dynamic 
vertical plus the net buoyency. For the test in wave 1-2, the total 
vertical component is approximately equal to the n<=i buoyancy and assumption 
1 is valid. For wave 1-7, the dynamic vertical component, Fy, is a 
significant proportion of the net buoyancy and assumption 1 is poor. The 
physical reason for the difference is twofold. First, a given frequency 
ratio entails a smaller net buoyancy in wave 1-7 than ir wave T-2. Second, 
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the rigidly restrained vertical component is greater for the longer wave 
which results in a greater value of Fy. 

The dynamic vertical mooring line tension component Fy has not been 
previously analyzed. In the theoretical development it was considered a 
second order effect. Physically, Fy results from the centrifugal force on 
the sphere caused by its motion in a circular arc. This force is given by 
Newton's second law with the mass term written to include the virtual 
mass effect. 

!_.[•• &3£]a C  l    6  r 

The term a_ is the radial acceleration. r 
a r 

By differentiating equation (38), \jf is obtained. 

V   " " T ^m sin(9 ' # " *  K sin(G " 0> 
Therefore, 

Fc -  [n + *£fl]   fj X sin2(9-0) « FCm sin2(9-0) 

In addition to the centrifugal force there is another contribution 
to Fy. This is seen by considering the case of small sphere motion, i.e., 
small p . In this case the sphere is nearly stationary and the vertical 
force acting upon it approaches the vertical force component on the statior 
ary sphere Fy0. The dynamic vertical mooring line^ component is, therefore, 
taken to be the linear superposition of the centrifugal force and the 
vertical force component on the stationary sphere. 

Fv - Fc • FyQ (50) 

This superposition is shown graphically in Figure 11 for a case where the 
phase shift angle, 0, is 180° and Fcm " 2Fv0m* 

The term Fvo in Figure 11 
approximates a negative sine wave as shown by equation (21). The 
resulting theoretical Fy history is non-symmetrical. The positive maximum 
value exceeds the negative. Curves computed from equation (50) are shown 
in Figures 8 and °. The Fy0 values used in computing there curves were 
obtained from the experimental vertical component histories on the 
stationary sphere. The agreement with experiment is good with respect to 
curve shape and maximum positive values of Fy. 

Force multiplication factors 

For each sphere tes-fc -made in this study, horizontal force multipli- 
cation factors were computed from the maximum experimental forces. The 
multiplication factors for the 0.iil8 ft. sphere in each test wave are 
plotted against frequency ratio in Figures 12 through 15. In each of the 
figures the experimental points define resonance curves of the form of 
Figure U. It is important to note, however, that theoretically the 
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experimental points of a particular test should not fall on a single curve 
of Figure k since these curves are drawn for constant values of the damping 
factor n2. For the conditions of the sphere tests the damping factor 
varies slightly with the frequency ratio. 

/     Vertical   Force 

Fig. 11. Dynamic vertical 
mooring force by superposition. 

For each set of experimental data in Figures 12 through 15 a theoretii 
curve is shown computed from equations (39) and (U3). In all computations 
an inertia coefficient, CM - 1.5 and a drag coefficient, Cn - 0.U2 were 
used. 

The agreement between theory and experiment is very good for short 
waves and becomes poorer as the wave length increases. One reason for the 
discrepancy between theory and experiment in the longer waves(involving 
the validity of the first assumption made in the development of the theory) 
has been discussed previously. Another possible cause of error is the 
value of CD used in the computation of the theoretical curves. Because 
of the relatively small drag components encountered in this study it was 
not possible to determine CD values from the rigidly restrained test data. 
The damping factor is shown by equation (U3) to be proportional to % 
and the effect of the damping factor on the theoretical force multiplicatioi 
factor is shown in Figure h.    It is seen that an increased damping factor 
would bring the theory into better agreement with experiment for the longer 
waves at frequency ratios less than about l.U. For higher frequency 
ratios the damping coefficient has a small effect on the multiplication 
factor and the discrepancy would still persist. In any event more informat: 
would be needed such as would be obtained from a complete determination 
of the CD VS. umT/D curve before the use of a higher*value of Cn could be 
justified. u 
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Two interesting features are noted in the test results. In Figure Ik 
the experimental points at f/fn = 0.5 appear high. This> is probably due 
to the fact that the waves have a second harmonic which is neglected in 
the Airy theory. Therefore, at f/fn near 0.5, the system resonates with 
the second harmonic. In Figure 12 another high experimental point is 
seen; this one at f/fn * 1.85. The phenomenon of a second resonance near 
£/?n "  2 has been treated in mechanical vibration literature (Den Hartog, 
1956) under the name "subharmonic resonance". There it is stated that the 
phenomenon may occur in a system having non-linear characteristics and 
that the analysis of the conditions under which subharmonic resonance will 
occur is extremely difficult. The mechanical system investigated in this 
study has non-linear damping and restoring force characteristics, the latter 
being assumed linear in the development of the theory. It is therefore 
possible that the observed second resonance is an inherent characteristic 
in the moored object problem. It is also possible that the second resonance 
could have been caused by reflected waves in the wave tank having a 
frequency equal to 1/2 the incident wave frequency. Extensive additional 
study would be necessary for the analysis of the second resonance 
phenomenon. 

CONCLUSIONS 

It is concluded that the behavior of moored submerged buoyant objects 
in oscillatory waves is adequately described by vibration theory with square 
law damping. The relationships presented herein accurately predict the 
mooring line tensions and motions of a sphere moored by a single vertical 
line when the following conditions assumed in the development of these 
relations obtain: 

1) Predominant inertia force. 
2) Small dynamic vertical mooring force with respect 

to net buoyancy. 
3) Small maximum mooring line angle. 
h)    Small amplitude waves. 
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