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The Hague, Netherlands. 

1. THE PROBLEM 

In coastal engineering we often have to faoe the problem of 
high stormfloods. Especially if the land near the ooast is flat and 
low, if it is densely populated or if high economic values have to 
be protected. 
In all these oases, where life and economic values are at stake, a 
design flood has to be established as a basis for the construction 
of the works of protection. 

Obviously the height of the design flood will be dependent on 
two factors. On one hand it depends on the characteristics of the sea, 
on its probable and possible heights. On the other hand it depends on 
the values of human and economic nature, threatened by the sea. So 
the design flood may be regarded as a balance between the threatening 
force of the sea and the values at stake. 

In this paper we will investigate the nature of this balance. 
This will lead us to a close examination of the frequency curves of 
stormfloods, to a discussion of the question: What is a reasonable 
risk and to a discussion of the question: What is the space of time 
we have to take into account. 

2. DESCRIPTION OF A FREQUENCY CURVE OF HIGHWATER 

Let us suppose that tide gauge readings of highwater are 
available for a reasonable space of time. The first thing to do is to 
count the number of highwaters, surpassing every dm interval of the 
gauge. 
If we plot these numbers as abscissa against the heights as ordinates 
we obtain the distribution curve of excess, which henceforth for the 
sake of convenience we will call the frequency curve. 
Fig. 1 shows such a curve for the highwaters at the gauge of Hook of 
Holland. The vertical axis corresponds with the gauge heights. The 
Netherlands datum level NAP is practically equal to mean sea level; 
mean highwater equals NAP + 90 cm; a heavy stormflood reaches up to 
NAP + 280 a 320 cm and the disastrous stormflood of 1953 piled up to 
NAP + 385 cm at this gauge. In particular the higher floods will be 
the subject of our present study. 
The abscis gives the number N of the times each level has been ex- 
ceeded, reduced to the number per year. For practical reasons the 
scale of the abscissa is logarithmic. 
It is important to note, that this procedure leads to a fairly straight 
curve in particular if not all the values of highwater are counted, 
but only those in the winter season. 
As we are mostly interested in the higher and very high floods, the 
question arises how the curve should be extrapolated for higher levels. 
This is only a minor question in relation to the main subject of this 
paper. But for better understanding of what follows a short discussion 
of the higher part of the frequency curve may be useful. 
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Fig. 1. Frequency curve of highwater at Hook of Holland. 

Obviously the frequency ourve can not end abruptly at the highest oh- 
served highwater. She curve will continue beyond this point. 
From calculations we know that in Hook of Holland stormfloods up to 
NAP + 6 to 6,5 m may not be regarded as impossible from a physical 
point of view and there is no valid reason to assume that even such 
extremely high levels should never be exceeded. 
Shis consideration leads of necessity to an extrapolation of more or 
less straight character, at least for the levels, whieh will be of 
interest for the present investigation. Sueh an extrapolation is pre- 
sented in fig. 1. And if perhaps the frequency ourve in still higher 
regions will tend to defleet to some asymptotic value this does not 
interest us greatly. For this is in any ease far beyond the levels 
considered in the seope of the present study. 
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Owing to the general character of frequency curves, of which 
fig. 1 is only a sample, we are faced with three important aspects: 

1. nature confronts us with very high levels, liable to he 
exceeded; 

2. possibly there is no limit given by nature. So man is 
forced to consider a reasonable limit which is convenient 
to his purposes; 

3. the probability of the very high levels being exceeded is 
extremely small. 

Thus if we have chosen a definite height as a design level, we know 
in advance, that there always remains the chance of it being exceeded. 
A discussion of the real content of the term exceeding and the real 
meaning of the term chance is therefore necessary. 

3. A "SIAHDARD" FRIQUEHCY CURVE 

The exceeding curve of the gauge of Hook of Holland has been 
used only as a sample. Another gauge may have a somewhat different 
curve, with differences in general shape, steepness and gauge values. 
In order to simplify the explanation, in fig. 2 a "standard" frequen- 
cy curve is introduced, being an exaetly straight curve P . 

YEARLY MAXIMUM IB69-I9S4 MAXIMA IN IOO PERIODS OF IOOO YEARS 

Fig. 2. Standard frequency curve F and curve of "maximum values" 6 . 
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The absois shows on a logarithmic soale the exceeding value m . The 
ordinate shows h as an auxiliary height of an arbitrary character. In 
this diagram every value of *i is directly related to a value of h by 
the straight frequency curve. 
The frequency curve of highwater at a specific gauge such as e.g. fig. 
1 provides the relation between the same value of m and the correspond- 
ing level at that gauge. From this results a well defined relation be- 
tween any gauge reading H and the auxiliary height h , 
So we may introduce the straight line F of fig. 2 as a standard fre- 
quency curve, valid for all gauges in the world as an exact represent- 
ation, the ordinate being a nonlinear transformation of any gauge 
value into the uniform parameter h . 
The abscis represents the exceeding value (or frequency) m , appear- 
ing in a period of T years. If we put N to be the number of oases of 
exceeding per year we have the relation: 

m=T.N (D 
For the straight standard frequency curve the equation applies: 

h -k1 - -s log m (2) 

if hjis the height corresponding to the value m-1, which value is 
marked in the diagram by the central point M . 
The coefficient s represents the steepness of the curve, so: 

log m 
If hj corresponds tom=lj ho,i to MI=O,1| h0,oi towi = o,oi etc., then: 

S = ko,oi-ho.i " ^0,001 - h0>01 etc (4) 

This means that s represents the height Ah , which decimates the fre- 
quency m . 

As the standard frequency curve is a straight line, the value 
of s is a constant. This implifies the further investigations con- 
siderably. Yet this is not a simplification of the general problem. 
For the frequency curve of a special gauge may deviate considerably 
from a straight curve and the decimating value may vary for different 
levels. The nonlinear transformation of H into h takes this fully in- 
to account. 
From (1) follows: 

m.e -*^ (5) 

with°C» In 10 » 2,3 . 

4. THE MAXIMUM VALUE IN A GIVEN PERIOD 

If we ask for the probability k that in a given period of T 
years r facts oocur, the mean value of these oocurrenoies being nt, 
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Poisson's law states: 

k - J^f e-m      (e-2,7a.. ) (6) 

The chance of a given level h , corresponding to the exceeding value 
m , being not exceeded is given by the value of k for 1%= o. So the 
chance of not being exceeded in a period of T years is: 

k - e"m (7) 

The chance <\ of being exceeded is the complementary value: 

C[ = i-G"m (8) 

Starting from the standard frequency curve F of fig. 2 it is a simple 
matter to calculate the values of q once for all. The result of this 
calculation is presented in fig. 2 curve <3 . The ordinates of this 
curve correspond to the same values of h as already discussed. 
The abscis in this case gives the probability of exceeding q , ranging 
from 100$ to 0%. The formula of this curve <3 can easily be derived 
from (8), resulting in: 

q = i-e-e    s (9) 

This mathematical form is of little use for the present purpose, be- 
cause formula (8) enables to calculate the curve in a much simpler 
way. 
Gumbel uses this formula in general form as a starting point of his 
theory of maximum values. He does not use the whole universe but only 
the maxima. Our present work is based upon the use of the whole uni- 
verse of observations and we come to final conclusions without any 
speculations about laws or coefficients. 

4a. DISCUSSION OF THE FREQUENCY CURVE G 

The curve G represents the probability q that a parameter 
height h  will be exceeded in a period of T years. The oentral point 
of this curve is once more the mode M with the characteristic value 
m=land the corresponding height li^hj. For this point M the value of 
q is equal to: 

q=l -e-1 =0,63« 63% (10) 

If we have a period of T years and the height h^l^-with the exceeding 
value m = l , then the period T is exaotly what in Anglo-Saxon scienti- 
fic litterature is called "return period". Thus there is in a given 
period, which equals the length of the "return period", a probability 

-1 k = e-! = 37% 
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that the maximum value in that period will he lower than the corres- 
ponding height h (or the corresponding gauge height H ), and a pro- 
bability 

that the maximum value will be higher. 
If we take for m the value 5 the chance of not being exceeded is equal 
to: 

k = e-5=o,7# 

and the probability of being exceeded: 

We may eonelude from this, that the height h5 •,  related torn-Sean 
practically be regarded as the lowest possible maximum height for a 
period of T years. Nearly, always the maximum height in T years will 
be higher. Though in theory there is no limit in downward direction, 
for praetieal purposes the height H5 has to some extent the character 
of such a limit. For if we take h7 or hl0 these heights will be found 
to be very close to hs , but their probability of not being exeeeded 
is only one hundredth of that of h5 . So it is nearly "impossible" to 
have lower maxima. 
The highest values of the maxima are not limited in this sense. If m 
is small, e.g. less than o,l » we have: 

q = l-e~m=ftt (11) 

So for all values of m smaller than o, 1 the chance of being exeeeded 
is equal to the exceeding value itself. 
She curve <3 corresponds to the mathematical form (9) and is represent- 
ed here in the ogee-form. The Gumbel*s diagram offers a possibility 
to draw the line G as a straight line. For our present purpose there 
is no need to make use of this possibility. 

5. A SUBDIVISION OF THE RANGE OF POSSIBILITIES 

From the preceding paragraphs we know, that the maximum values 
may range from h5 (with m-5)  up to every value of It without any limit. 
In order to discuss this wide range of possibilities it seems useful 
to introduce a division in classes, adapted to the needs of praetioal 
use. In order to attain this we divide the probability scale into 
classes. 
Five characteristic values of the exceeding value m that may serve 
our intention, can be chosen namely: 

m=S     1 0,1  0,01  0,OOl (12) 

The value 5 has been discussed already. The value wt»i represents the 
central value of the mode M and we have chosen the associated values 
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o,l , 0,01 and o,ool because we are living under the rule of the de- 
cimal system. 
These values of m divide the range of possibilities into the following 
classes: 

from m • 5    torn » 1 the class of LOW maxima 
from w. *  1    to m « 0,1 the class of NORMAL maxima 
from m *  0,1  to m • 0,01 the class of REMARKABLE maxima 
from m» 0,01 to m - 0,001 the class of EXCEPTIONAL maxima 
from m= 0,001 torn. 0,000 the class of EXTREME maxima 

The five mentioned values of m correspond to the five heights of the 
auxiliary scale h5 h^    h0)i    h0,oi h0,ooi  

as shown in diagram 2. 
Due to this relation we may connect the five classes immediately to 
the vertical scale, as is done in the right hand part of fig. 2. 
Moreover the five classes are written along the line F . 

A short discussion about these classes may be useful. There is 
no class below ^5 , for nearly never there will be a period of T 
years with a maximum value below hs  . 
If the maximum is found between hs and hi  it is justified to call such 
a maximum LOW. It remains below the central height M . If we could ob- 
serve a great number of periods of T years length, in 37% the maximum 
should be found to be below M , so belonging to the class of low maxi- 
ma. 
Maxima between ^ and h0,i have been named NORMAL, thus stressing the 
fact, that it is quite normal that the maximum value in a period of T 
years presents itself in this range. The percentage of maxima, falling 
in this class, is 6358 - 10% - 53%. So roughly speaking half of all 
maxima are normal. 
After this definition it is quite normal, that in a given space of 
time of T years a maximum height of a stormflood h0,i occurs. This 
means a height with an exceeding value m = o,l. or, still in other 
words, it is quite normal to meet in a period of T years a stormflood 
which has 10 x T as its "return period". 
The class next to the normal stormfloods has been named REMARKABLE 
maxima, which name seems to be fitting to the purpose. Of course just 
beyond the upper limit of normality we will have to distinguish a 
range of floods, being not quite normal at one hand, but being not real 
ly extreme in the usual sense of the word. So from h0,i up to Ji0,oi we 
may meet "remarkable" floods. So we may say that we have had a "remark- 
able" flood if we observed in a period of T years a stormflood of a 
height with a returnperiod between 10 x T and 100 x T years.10% - 1% « 
9% of all maxima belong to this class. 
Above the class of the remarkable stormfloods we distinguish the class 
of EXCEPTIONAL maxima. This class ranges from w = o,oiup to «t = o,ool. 
While a phenomenon, occurring at a rate of 1 in 10 can rightly be call- 
ed remarkable, for a phenomenon presenting itself at a rate of 1 in 
100, only, the term "exceptional" may be considered as justified. The 
total number of maxima, belonging to this class, is 1% - 0,1% - 0,9%. 
The small quantity of about 1% is in fair agreement with the current 
meaning of the word "exceptional". 
From h0,ooi 

UP *° ^y possible height a stormflood may be called 
"extreme". The word "extreme" is used here in another sense than 
Gumbel does in his theory of extreme values. Gumbel's "extreme values" 
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in the present paper are called "maxima". This is only a matter of 
using words. But nevertheless it is my intention to discuss here the 
necessity to distinguish low maxima well from high maxima. For this 
purpose a more refined distinction is needed which leads to reserve 
the word extreme for those maxima beyond the class of "exceptional" 
maxima. That means that the word "extreme" encompasses all those oc- 
currencies, lying beyond the normal, the remarkable and even beyond 
the exceptional occurrencies. 
This classification will prove to be very useful for an understanding 
of the true nature of the variability of maximum stormfloods in a li- 
mited or even unlimited space of time. 

6. AN ANALYSIS OF THE PERIOD TO BE TAKEN INTO ACCOUNT 

We shall now discuss the character of the period of time of 
years. For this  we can ohoose an arbitrary number, adapted to the 
situation we want to consider. As an illustration we take into view 
three distinct values, via: 

* T • 1 year, representing interests of only short duration 
(merchandise on wharves for some weeks or months, execut- 
ion of coastal engineering works for a few months or 
years etc.). 
Although to the intellect one year is quite a short period 
in relation to a life time or seen as a part of history, 
in the daily walk of life, psychologically, we do not look 
beyond it as a rule. 

T» 50 years, representing a "life time". With a fifty years 
period we take in view a whole life time of interests of 
rather restricted and individual oharacter (factories, 
harbour works, buildings and also human life in the person- 
al sense of the word). A period of fifty years has a de- 
finite significance, although it is not constantly before 
our mind. 

T - 1000 years. With this third period the scope is widened 
to a time interval during which works of public character 
as an entity have to function in order to secure safety 
of life and existence of the community as a whole. Though 
the individual hydraulic constructions may have a life 
time of not more than 50 to 150 years, their collective 
aggregate forms a continuous entity, exposed to a constant- 
ly threatening force of nature. 
From this "social" point of view we have to consider the 
life time of a whole community. 

The three periods of 1, 50 and 1000 years are of course an ar- 
bitrary choice. They are meant to represent certain fields of interests 
for each of which a somewhat different figure could equally well be ar- 
gued. The fields of interest themselves, however, we do consider as 
significant and their discussion may be useful as a guidance. 
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7. THE MAXIMUM STORMFLOOD IN EACH OF THE THREE PERIODS 

It has been argued in the preceding paragraphs, that the 
"maximum height" is not a single value. Fig. 2 has shown that the ma- 
ximum in a given period of T years may take any value between about 
h5 and K00 or infinitely high. Wow attention must be paid to the 
fact, that the length of the period T plays an important role. 
In order to translate the frequency or ezceedingvalue ^/jr,  as given 
by the abscis in fig. 1, into the exeeedingvalue m ,  to be read at 
the abscis in fig. 2, a period T has to be defined. We will now see, 
what the maximum values will be for eaeh of the three periods arbi- 
trarily chosen in par. 6. 

Let us suppose we want to know the distribution of the yearly 
maxima of a 66 year time interval. Curve <3 of fig. 2 gives "all" pos- 
sibilities. We divide the abscis of curve <5 into 66 equal parts. Each 
part corresponds on curve <3 with a value of h ,  Eaoh value of h  cor- 
responds on line F with a value of m . Each of these values m can now 
be divided by the value of T , being 1 in this case. In this way every 
value of t" leads to a corresponding value of H . Eaoh value of M gives 
on the exceeding curve of fig. 1 a corresponding value of H , being 
the height of a stormflood at the gauge at Hook of Holland. 
The result of this calculation can easily be compared with the observ- 
ations of 66 years. This has been done in an earlier publication (see 

1 ). A perfect correspondence was found. In connection to this for 
the present investigation the calculated heights have been replaced 
by the observed heights. Fig* 3 part A presents the sequence of the 
observed yearly maxima of the period 1889-195^. The higher values are 
marked by a date. 

YEARLY MAXIMUM IB89-I954 MAXIMA IN IOO PERIODS OF IOOO YEARS 

Fig. 3. The distribution of the maxima in periods of different lengths. 
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For the 50 yearns period we suppose that we want to know the most pro- 
bable maxima of 20 periods. Dividing the abscis of curve <3 into 20 
parts we can read on curve G the corresponding twenty parameter height; 
h. and via curve F the corresponding values of w . After dividing each 
of the twenty values ofm by 50 (T»50) we obtain twenty values of N . 
These values of N correspond in fig. 1 with 20 heights H . These 
heights are drawn in fig. 3 part B in an arbitrary order. 
For the period ofTa 1000 years we find after an identical procedure 
part C of the diagram. 
The diagram as a whole demonstrates clearly the distribution of the 
maxima. Such a distribution is always present, in the yearly maxima 
as well as in the maximum values in 50 year periods or in 1000 year 
periods. 
This diagram illustrates the fact that a single maximum value is of 
little importance, which means also that the maximum stormflood, known 
by observation, is of little importance. It may be just a quite arbi- 
trary choice by nature out of the whole range of possibilities. If we 
adjudge any importance to such an "observed maximum stormflood" we 
probably are misleading ourselves and others. 
For what is presenting itself to us as an absolute maximum, being the 
highest level we ever observed, may, after diagram 3, possibly be only 
quite a low maximum. 

This important discussion can be supported by pointing to fig. 
3 B. This part of the diagram presents the most probable maximum 
height of 20 periods of each 50 years length. From observations we 
know 3 maxima of 50 years period, viz: 

period 1850-1900 the 189^ flood is the highest one. 
period 1900-1950 the 1936 flood is the highest one. 
period 1950-2000 the 1953 flood will probably prove to be 

the highest one. 

We have placed these three dates at the top of the three heights which 
are approximately the same as the three corresponding heights in fig. 
3 A. From this we see, that the stormflood of 1936, being indeed a 
•'very high flood" (in the opinion of observers of those days) and the 
maximum of a fifty years period, in reality has been only a low maxi- 
mum for a period of that length. Even the disastrous flood of 1953, 
being in the one-year class an exceptional flood, proves to be in the 
50 years group only a NORMAL maximum. 
Turning over now to part C of fig. 3, we see the height of 1953 as 
number three from the bottom. In a period of 1000 years there is 97% 
probability, that the highest value will be higher than the 1953 flood 
Thus part A shows the stormflood 1953 as a Gulliver among the dwarfs, 
but part C shows the same 1953 as a Gulliver among the giants. This 
demonstrates the importance of the length of the period T . 

8. APPLICATION OF THE CLASSIFICATION, PROPOSED IN PARAGRAPH 5 

From fig. 1 can be taken immediately the heights of L , M , 
10%, 1% and 0,1% for 1, 50 and 1000 years periods. These figures are 
presented in table 1. 
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period of period of period of 
height in the proper period 1 year 50 years 1000 years 

(A) (B) (O 

I nearly lowest maximum (m=5) + 185 + 290 + 380 
M most probable maximum (m=1) + 225 + 335 + 430 
10% upper limit normal maxima + 290 + 405 + 500 
n upper limit remarkable maxima + 355 + 480 + 570 
0,1% upper limit exceptional maxima 

beginning of extreme maxima 
+ 430 + 550 + 640 

Table 1. Characteristic heights of the periods A, B and C. 

These heights have been marked in fig. 3* The practical value of the 
proposed classification can now easily be seen. 
First the height L , computed with the exceeding valueHI=5. It is 
clearly shown that this height h  indeed represents practically the low- 
est maximum height, to be expected in any given period. This applies 
as well to 1 year as to 50 or 1000 year periods. 
As to M , the modus, characterized by the value nt=1, fig. 3 shows, that 
this height is found not very far above L. . The exact definition of M 
is that this height will be surpassed onee (as an average!) in a given 
period. From fig. 3 however we see, that this value is of little im- 
portance when we are looking for a design flood. Quite many floods 
(63%) are higher than M. 
This unimportance of Mmay be stressed once more. In scientific litte- 
rature often expressions are used like "a hundred years flood" or 
"a thousand years flood". With such expressions is meant the height of 
a flood exceeded in that period once as an average. This is exactly 
the height M. The expression "a thousand year flood", however, gives 
the impression of an extremely high flood, not to be exceeded in 1000 
years. This is misleading. There is 63% chance that the maximum height 
in 1000 year will be higher, possibly even to a large amount, as clear- 
ly shown in fig. 3. 

We now consider the 10% height. This means 10% chance of exceed- 
ing in a given period. From fig. 3 part A we used 66 observations. 
10% of these values or about 7 will be higher than the 10% height. As 
such we see the maxima of the years: 

1894 1904 1906 1916 1928 1953 1954 

These 7 gales are well known in our country as "big gales". Nearly all 
of them caused more or less serious damage. The stormfloods 1894, 1906, 
1916, 1928, 1954 are known to the public and 1953 has a worldwide re- 
putation. 
It is important to point out, that none of these stormfloods of impor- 
tance is below the 10% limit. All the storms below the 10% limit have 
aroused no great interest, are "normal" storms. This agrees with the 
philosophy of pragraph 5, where the class betweenm«1 andw-0,1 has 
been called the class of normal stormfloods. 
From the 7 floods mentioned above 6 are comprised between the 10% and 
the 1% limit. So all these floods belong to the class of "remarkable 
floods". This is in fair agreement with common parlance. All these 
floods are well known. The lower floods are unknown, they have not been 
remarkable. 
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From 1% to 0,1% we distinguished the zone of "exceptional floods". 
So in this nomenclature the disastrous flood of 1953 is an exceptional 
flood for the one-year scope. 
Floods above the 0,1% height have not been recorded. Perhaps they have 
occurred in earlier centuries before the characteristic heights were 
registered. 

This short discussion may show that the proposed classification 
is in fair agreement with common parlance. It shows moreover that the 
10%, the 1% and the 0,1% limits are directly related to physical real- 
ities, to faots. 
It has to be borne in mind, that up till now we have been discussing 
part A of the diagram. That is the series of annual maxima. It means, 
that all floods between M and the 10% height are to be called "normal" 
only in their quality as a n n u a 1 maxima. And the floods of 1894, 
1904, 1906 etc. are to be called "remarkable floods" only in their 
quality as a n n u a 1 maxima. The big 1953 flood is an "exceptional 
flood" only in the sense of a maximum of one year. 
From this we see, that the common nomenclature is closely related to 
a one-year period. Human awareness of natural processes such as storm- 
floods may be called a one-year embracing awareness. We appreciate the 
violence of a stormflood only in relation to the very moment we are 
living in. 
If we had to our immediate disposal an organ to embrace more than only 
the few days of our present living our scale of appreciation would be 
another one. Fig* 3 part B shows what we should experience. In this 
part B the unit of time is 50 years. 

The first Important fact to be noticed is that the maxima of 
diagram B as a whole are much higher as those of diagram A. And the 
heights of L , M , 10% and 1% are higher just as well. (The 0,1% 
height has been omitted) The lowest maximum height L in graph B is 
exactly equal to the 10% for the one-year period, graph A. The three 
floods 1916, 1894 and 1953, being marked in diagram B, have already 
been discussed in paragraph 7 as being of less importance, in relation 
to 50 years periods. 
In the class of remarkable floods (from 10% up to 1%) there is only 
one height present in B. It is marked Q. and represents a stormflood 
45 om higher than 1953, which is an exceptional flood in the one-year 
period. Relatively the flood Q. corresponds with 1916, 1928 and 1954 
in the one-year period. 
The community as a whole is interested in a much longer period. This 
may be different from case to ease, but dor the convenience we intro- 
duced a period of 1000 years. Fig. 3 part C gives the answer to the 
question what may be the maximum height in the course of any 1000 
years period. The zone between L and M shows the"lower" maxima for a 
1000 years period. Up to + 500 (the 10% height) we find the "normal" 
maxima. Above this height there are another 10 "remarkable" maxima. 
The stormflood Q, being in diagram B a remarkable maximum in relation 
to a 50 year period, is in diagram C in relation to a 1000 year period 
a rather unimportant level, just equal to the mode M. 
This discussion may have illustrated that a classification, based upon 
the exceeding value m , applies to periods of every chosen length. The 
classification can be applied to any speoifio gauge. 
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It is, however, immediately related to a given period. So one has to 
bear in mind the necessity to determine first of all from ease to cast 
the length of the period that has to be taken into account. 

9. PERIOD AHD RISK 

It is quite usual to regard the frequency of stormfloods as a 
one dimensional quantity. The relation between level and frequency is 
very simple and direct. Only one frequency curve, as e.g. given in 
fig. 1, is sufficient to translate a height at a given gauge into an 
exceeding value vice versa. 
In the preceding paragraphs, however, we have argued, that this simpl- 
icity is misleading. In reality the question of the highest values is 
a matter of t w o dimensions, i.e. period and risk. 
In order to explain this the one-dimensional fig. 1 has been trans- 
formed into a two-dimensional diagram: fig. 4. 

I IO 

SHORT   LASTING   RISKS 

IOO IOOO 

LONG   LASTING   RISKS 

IN PRIVATE 
SPHERE 

IN   SOCIAL 
SPHERE 

Fig, 4. Probability as a function of period and risk. 

629 



COASTAL ENGINEERING 

This diagram gives exactly the same as fig. 1. Yet the general im- 
pression differs considerably. The ordinate in fig. 4 gives the levels 
of highwater at the gauge at Hook of Holland, just as the ordinate in 
fig. 1. 
The abscis gives on a logarithmic scale the length of the period T in 
years. This period T has to he regarded as the length of the duration 
of any risk. From 1 year or less up to 10 years or 25 years we may 
speak of "short lasting risks". From 50 years upward we could speak 
of "long lasting risks". These long lasting risks are divided into a 
"personal sphere" and a "social sphere". The longer periods are relat- 
ed to the social sphere. 
The diagram shows 5 curves, respectively form»5 (ourve L ), forni-1 
(curve M),m»o,1 ,m »0,01 andm«0,Q01. Each height, given by these 
five curves can immediately be derived from fig. 1 by application of 
formula (1). 
For ourve M applies m »1. SoN» 1/T and since the scale of N in fig. 1 
is identical to the scale of the inverse value of T in fig. 4, the 
curve M in fig. 4 is identical with the curve in fig. 1. 
The curve L represents the "lowest possible maximum" for any period, 
given by the abscis. This curve is rising, as all the curves are, with 
increasing length of the period. This means that with increasing length 
of the period the lowest possible maximum height grows higher and high- 
er. 
Between the curves we find the classes, mentioned in paragraph 5. The 
heights, belonging to each of these classes, move upward as the period 
increases. 
Proceeding horizontally from left to right we see, that a given level 
of highwater may be called "exceptionally high" for the abscis value 
1 (one-year period). This applies to the stormflood 1953f marked in 
the diagram. The same level however is only "remarkable" for a 10 
year period, only "normal" for a 100 year period and even ?low" relat- 
ed to a 1000 year period. 
This graph shows that when time passes on every high flood is loosing 
its importance more and more. Going through the diagram along a line 
of constant height, (it may be some Important stormflood) from left 
to right, there will come a moment, that we cross the curve L . About 
that time we may be sure, that our initial height will be exceeded. 
If we cross the curve of 1% there is already 1% chance of being ex- 
ceeded. If we cross the curve of 10% the chance of being surpassed by 
a higher flood is increased to 10% etc. 
From this investigation it is clear that the design level depends upon 
two factors: 

a) acceptable risk (w) 
b) duration of the risk     (T) 

And though m and T are connected together by formula (1) to 

and N is connected only to one definite height, to establish a suit- 
able design flood diagram fig. 4- should be preferred above fig. 1. 
This may be emphasised once more in other words. To indicate a design 
flood as a flood, occurring once in its returnperiod, is misleading in 
a fourfold sense. 
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ON THE USE OF FREQUENCY CURVES OF STORMFLOODS 

Firstly a very high flood does not return as such as shown in the dia- 
grams of fig. 3. Secondly it is not a question of occurring of this 
particular height, but of exceeding it. Thirdly it is not exceeded 
"once" in the period T , but "as an average" it is exceeded once in 
that period. The main objection, however, is this. In relation to a 
design flood the so called returnperiod has no practical meaning. 
The height h^ , corresponding to the point M and the valuew-1, which 
is being exceeded just once in the period T , is such a low maximum, 
that it has no use as a design level. 
As a design level only ho,i , h0,oi ov  h O,ooi can be taken into con- 
sideration. 
If we take, e.g.: ho,oi as design level, we accept 1% risk of it being 
exceeded in a period of T years. This height h0,oi corresponds with a 
value of N given by: 

N= m _ 0,01     { 
T     T    lOOT 

So the inverse value of N , being traditionally named "returnperiod", 
is in our example a hundred times the period T . 
Let T in a special case be 200 years. If we accept a risk of the de- 
sign level being exceeded of 1%, then we have to take from the fre- 
quency curve a height with an exceeding value N • 0,5 x 10"*. This 
value has no relation with a "returnperiod" of 20000 years. A period 
of 20000 years does not really enter into the argument. So the use of 
the term "returnperiod" in this sense should be avoided. 
In principle the seemingly one-dimensional exceeding value has to be 
translated into the product of the two-dimensional value of acceptable 
risk with the Inverse value of the duration of the risk. 
Therefore, if a design level has been established at a height, deter- 
mined by N * 10-*, one has to translate this into 1% risk in a 100 
years period, (or 10% risk in a 1000 years period), but never as 100% 
risk (which means certainty) in 10000 years. 

10. ON THE ESTABLISHMENT OF THE DESIGN LEVEL 

The preceding investigation provides a basis to establish a 
design level for each particular ease. What we have to do is: 

1) establishing a frequency curve for the gauge in question, 
including extrapolation (par. 2 and fig. 1); 

2) determining the period T , during which the risk is present 
continuously for the interests, taken into account (par. 6); 

3) choosing an acceptable value for the total risk on serious 
damage during the period T (par. 5). The total risk should 
never exceed 10%; for life and well-being of thousands a 
total risk of 1% or even 0,1% has to be taken into consider- 
ation. 

After having established in this way a provisional design level one 
may come to the conclusion, that the costs, necessary to realise the 
safety aimed at, are not in right proportion to the economic and human 
values to be protected. Here a second question may arise viz: 
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what can we realise with the technical and economic means at our dis- 
posal in a special case. 

Another important point may be kept in mind. If we have erecte 
a hydraulic construction with the design level arrived at and safety 
is fully guaranteed against stormfloods up to this level, this does 
not mean that we have to expect a total loss if the stormflood is on- 
ly 1 cm higher. There is a margin between the first unimportant damag 
and the stormflood level which leads to total loss of the protected 
Interests. Moreover there is in several cases, as for instance embank 
ments an extra freeboard against wave runup whioh includes a consider 
able reserve. 
The Netherlands Delta Commission has taken this into account. This 
commission establishedftl- 10"* as a basis for the design levels. But 
in fact safety is considered to be guaranteed up to a stormflood leve 
corresponding toTtl* 10-5. This indeed corresponds with a risk on 
"total loss" of 155 in a 1000 years period. 
For some islands of no great economic value and a not very dense popu 
lation the design level is lowered to about td" 2 to 5 x lO"*. 

Litt. 1) 
F.J.Wemelsfelder. Wetmatigheden in het optreden van stormvloeden. 
De Ingenieur (Holl.), 1939, nr. 9. 
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