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ABSTRACT

This paper is concerned with the solution of the prob-
lem of correlating, on a two-dimensional basis, the meteor-
ological parameters of several off-shore storms with the
known surge induced by them in New York Bay and with the
application of the results to the prediction of likely effects
in New York Bay from a design hurricane of given strength
traversing a given path at a given speed. A purely theoret-
ical approach would have been beyond practical possibility
within the time available for this study; the method adopted
therefore is empirical but with some degree of theoretical
guidance. A recursion formula is evolved, using the method
of finite differences for time increments of 1/3 hour, which
relates tide elevation at the bay-mouth with two values of
the elevation at 1/3 and 2/3 hour earlier and with values of
wind-stress and pressure-gradient driving-force compo-
nents (directed towards New York Bay from several remote
two -dimensionally spaced offshore-stations on the continent-
al shelf) at times earlier by the periods taken for free long
gravity waves to travel from the stations to the bay-mouth,
The formula includes a comulative forcing function term
which allows for the geostrophic influence of the earth's
rotation and also for an "edge-wave'" effect northward
along the eastern seaboard, Moreover it takes into ac-
count the observed tendencies of hurricane storm tides in
New York Bay to develop resurgences at periods of 7 hours
with decay rates of 50% amplitude decrease per cycle. The
coefficients of the "forcing functions", determined by cor-
relation, tend to represent the storm size and speed and al-
so the dynamic augmentation of the forced wave, Predicted
maximum storm tide heights are in fair agreement with
crude empirical estimates based on central pressures with-
in the hurricanes, Predictions, however, provide complete
time-sequences of water level for periods up to 24 hours in-
clusive of the first resurgence after the main surge.
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1. INTRODUCTION

The two-dimensional problem of a non-radially symmetric
tropical storm approaching an irregular coastline over water of
shelving depth at variable speed is, theoretically, of formidable
proportions and, so far as is known, has not yet been solved. The
best hope for its eventual solution in special cases lies in the use
of finite-difference procedures. Some notable advances have been
made in this direction by such investigators as Hansen, Weylander,
Kreiss [Reid 1957 (1)], Kivisild [1954], Reid [1957 (ii)], Platzman
[1958], Fischer [1959] and others, and these lend hope that the
difficulties of the problem may finally be overcome. The major
difficulties concern the boundary conditions at the edge of the con-
tinental shelf, seaward of which the response of the sea surface
to the storm driving forces may be quite unknown; here also the
reflective properties of the continental slope may be difficult to
determine,

To avoid these inherent problems and withal reach reason-
able estimates ( within a short time) of the potential menace of
hurricane storm tides to New York Bay it was decided to use an em-
pirical approach under the guidance of theory. The method here
described differs rather considerably from other empirical methods
devised for the North Sea area by Schalkwijk [ 1947], Corkan [1950],
the Darbyshires [1956], Hansen [1957], Weenink and Groen [1958],
and others, It departs also from the several empirical endeavours
of American investigators who have previously studied surge effects
along the United States east coast, notably Miller [1956], Zetler
[1957], Kussman [1957], Donn [1958] and Tancreto [1958] as also
Reid [1955], Conner, et al [1957], Hoover [1957], Dunn [1957],
and Harris [1957, 1959]. Most of these empirical approaches are
unsuited to transient, fast-moving circular storms in which inertial
effects and influences of the earth's rotation are likely to be import-
ant,

In what follows an attempt is made to take due account of
the speed of the storm, the direction of its approach, the two-dimen-
sional topography of the continental shelf area which it would have to
traverse, the size of the storm, its meteorological parameters
(pressure and wind velocity) in a two dimensional sense, its geostro-
phic effect along-shore and its dynamic effect in producing inertial
oscillations of the observed period, magnitude and evanescence.
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2. TWO-DIMENSIONAL MOTION OF WATER UNDER IMPULSION FROM
ATMOSPHERIC DRIVING FORCES

With reference to a rectangular co-ordinate system having its origin
and xy-plane in the horizontal still water surface, the equations of motion
and continuity of the water at any point (x, y) may be rendered in the form,

for motion in the x-direction,

an T, T ap
. m SX. bx (d+n) ‘a
— - d - =

(i) P ny + g(d+n) pon o s

for motion in the y direction,

9 T - ap
-, Ey o _ sy by (d+1n) "a ?
(ii) pos + fo + g(d+wn) oy ) o —-—ay (1)

for continuity,

(iii) = 3-" A - J

In these equations Qx s (& are the volumes of water transported in unit time
in the x, y directions respectively across vertical sections of unit width
between the free surface and the bottom, n is the elevation of the water
surface above the still water level, d the nominal water depth (referred to
still water), f the coriolis parameter, 7., , Tg, the x, y components of
the surface wind stress, Ty, , Ty, the corresponding components of the
bottom frictional stress, p, the atmospheric pressure, and g, p, t the

usual respective designations for acceleration due to gravity, mass density

of water, and variable time,

The assumptions underlying the above equations are that vertical
accelerations of the water body resulting from the wind stress 7 and the
atmospheric pressure p, are quite negligible, as are any changes in shear
stress within the fluid in horizontal directions; further that the horizontal
flow of water is uniform with depth and changes only very gradually with
distance, while water density is constant,

l 1
It is convenient to approximate = =Ty as proportional

to Qx, Q respectively by use of a frlguo mping constant K so that,
on regardmg 7 as small in comparison with d , Egs. (1) modify to
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wherein F, and Fy are forcing functions representing the wind stress and
pressure gradient, as defined by

N
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3. ONE-DIMENSIONAL MOTION IN ABSENCE OF EARTH'S ROTATIONAL
INFLUENCE - INFLUENCE OF WIND STRESS

In order to justify our physical reasoning in what follows, we shall
temporarily depart from the two-dimensionality of the problem to consider
the one-dimensional (x) problem on the assumption that lateral flow, Q. ,
is non-existent, In these circumstances, Egs. (2,1i) and (2,iii) reduce to

. aQ an _
(i) 8t+KQ+gd3X_F
(4)
. aQ an _
(ii) _3_X- + '5—t— =0

For convenience the x subscript is discarded in Eqs, (4). We shall
make the further approximation that n can be divided into the separate
effects, m,, and deriving from wind stress and pressure gradient
respectively, with corresponding flows Qg and Q, , and driving forces
Fy (= x) and F_ (= P P

w(=_x) a p(""g._‘i)'

P p ax

Considering first of all the wind effect, it is possible to represent the
magnitude of the wind stress, assumed to have an equilateral-triangular
distribution (as for a hurricane) [ cf Reid, 1955; 1956(i)] over a storm
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fetch 2¢ and to be moving forward without change at constant velocity V
across a distance 2L from the coast, Fig. 1 (where L may be assumed
to be the shelf width)* , as the Fourier series:

o)
T
_8 L m 1 rwd roaVt . rwx
FW—- 21 o Z > (1 - cos ZL)sm >0 sin L (5)
T T
r=1
Function of
‘hji"'/—““ Wind Stress
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Shelf
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Fig. 1. Representation of Moving Wind
Stress Function as a Fourier Series

wherein 7., 1is the maximum value of the wind stress and r an integer of
successive values 1, 2, 3... It should be remarked here that constancy

of T, and £ with time and distance will really only obtain if the storm is
moving parallel to the direction x , The representation of Eq. (5) is there-

fore rather artificial, but will serve the purpose of demonstration,

It is convenient to consider just a general r-th term of the Fourier
summation, namely, (Fy),. and proceed to a solution of Eq. (4) by trial
of possible solutions

(i) (n,)p = M, (t) cos =7~

C®

(ii) (Q,), = N, (t) sin ==

* The adoption of 2L for the series expansion is merely a convenient
artifice to ensure that the moving fetch may initially be seaward of the
shelf edge if £ < L .
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in which Mr(t) and N_(t) are unknown functions of t which remain to
be determined and (T‘wgr and (Qy), are r thterms in the complete

solutions
®
(i) N = ‘Z (),
=1

e ¢)
(i) Q, =2 (Q,),
=1

> o

J

Upon inserting Eqs. (6) in Egs. (4), and solving the simultaneous
differential equations for Mr(t) , there results

r? w2
412

raV
L) ¢ (8)

M" + KM' + ( C%) M_ = Bsin (
r r r

wherein primes denote the order of differentiation of the function Mr(t)
with respect to t and

.
(i) c? = gd
. > (9)
(ii) B = Tér p—‘;‘ lr—(1 - cos rz‘Lﬁ)
J

SOLUTION OF THE FREE OSCILLATIONS - WIND STRESS EFFECT

Eq. (8) is the familiar expression for a linear damped oscillating
system excited by a disturbance of periodic character. To simplify
notation we rewrite it in the form

2
dy dY | &y = Bsi
& T K ac T Sry B sin w.t (10)
in which S, is an angular frequency very closely that of the free oscillation
and W, the frequency of the forced oscillation in the r-th mode,

We shall concern ourselves here for the time being only with the free,
inertial oscillations, represented by the solution of
..d_f_y + K ay + 8y =0 (1
dt? dt rY )
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By writing Eq. (11) in finite difference form with a small time increment 7 ,
we obtain

y. - 2y +y y, -7
n n-1 n-2 n n-1 2 _
7-2 + K - + Sr Vg = 0 (12)

wherein y, , Yp-1 » Yp-2 are consecutive values of y at receding small
intervals of time 7 with y, applicable to any time, nT . On solving
Eq. (12) for Y, »

"

ay

Y, n-1

n ) byn-Z (13)

in which the coefficients a, b have the values:

2 + Kr - (S1)

(1) a= 1+ K7

(14)
. b = 1
(i) "1+ Kr

Returning now to Eq. (6, i) and taking r =1 as representing the
fundamental mode of possible free oscillations, it would appear that the
relationship .

nw(t) = a'nw(t~'7') - b'qw(t-Z'r) (15)

would be descriptive of the free oscillations in the fundamental mode.
Since the frequency S (= 2#/T, T being the period of free oscillation)
and the damping coefficient K are measurable in the records of storm
tides, the coefficients a, b are prescribed by Eqs. (14). It may be
shown that the values of these coefficients must observe the conditions

(i) 4b > (a)?
(16)
(ii) b< 1

if numerical stability of Eq. (20) is to be ensured,

SOLUTION OF THE FORCED OSCILLATIONS - WIND STRESS EFFECT

Determination of the forced oscillations created by the moving wind
disturbance involves finding the Particular Integral of Eq. (8) or (10). This

554



HURRICANE TIDE PREDICTION FOR NEW YORK BAY

is readily shown to be

y = asinwrt + BCOS wrt (17)
where
B - ) )
(1) @ = 2 2 2
(s? - wi_) + (Ku,)
(18)
- B(Kwr)
(i1) p = 2 2 \2 2
(82 - &P + (Ku) ]

Discarding the modal subscgipt r for convenience, we now require
that this forced part of the solution [ Eq. (17 )] should comply with a finite
difference solution of the form of Eq. (13), but inclusive of a term directly
representative of the forcing function of Eq, (10); that is

V, T2V, - byn_2 + csin[ (n-1)wr - y] . (20)

in which vy is an appropriate phase angle.
Theoretically it can be shown that the coefficient ¢ is a function of

B,S,K,uwr,and p of which p is a dynamic augmentation factor dependent
on the forced-free frequency ratio (w/S), namely

po=[{1- (us)}? + (Ku/s? 2] "% (21)

The ratio of frequencies w/S will be apparent on comparison of Egs. (8)
and (10). Thus

w/S = V/C (22)

making
- 212 K 21" %
b= [{1-(v/C)*}? + (3 v/CY] (23)
If thus transpires that the finite difference solution
'nw(t) = a'r]w(t -T) - b'r]w(t -27) + ch[(t -7) - To]
(24)
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wherein To is a time lag comparable to the phase angle y , will represent
the dynamic storm tide generated under the impulsion of the wind stress. I
the coefficients a and b are prescribed by Egs. (14) and the coefficient ¢
and the phase T are determined by correlation between

[n (t) - an (€-7) + bn_(t-2r)] and Fw(t - 7) , then the above dis-
cusion shows that the formu‘f.’a (24) will inherently allow for any dynamic
augmentation arising from the relative magnitudes of the speed of the storm
and the velocity of the induced free wave, Further, since the coefficient ¢
is inclusive of the amplitude B of the forcing function [ see Eqgs. (8), (9)
and (10)], which tends to depend on the size of the storm (through its fetch
214), it follows also that the scale of the storm is inherently allowed for in
the formula of Eq, (24).

INFLUENCE OF THE PRESSURE GRADIENT

Considering next the influence of the driving force from pressure
gradient, Fp (=-4d Bga ) , in a hurricane; we may, for purposes of

demonstration again, assume the pressure gradient distribution over a

. .d (a
moving fetch 24 to be unchanging and of the form -= (_5%.) max. X

sin ﬂ’_‘fﬂ) (Fig. 2). Adopting the additional simplification of uniform
depth over the distance 2L , the Fourier series representation of the
forcing function may be shown to be

®
F o= .8 (4Ld) (i’g) Z 1 ip UL oo TTVE L Twx
P o p 9x ‘max 412 - (re)? 2L 2L 2L
r=1
(25)
Punction of
Y 2 ) Pressure Gradient
pe—
paiR’
= d :’)_pi) Coast
- %, P ( X " max
K X
< Vt —=
le———— L — 5
et 2L >|

Fig 2. Representation of Moving Pressure Gradient Function as a Fourier Series
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ap,

wherein (_8—)%) max is the maximum value of the pressure gradient and

r is again an integer of successive values r=1, 2, 3.,...

Again we consider just a general r-th term of the Fourier summation,
namely (Fp)r ,and try as solutions of Eq. (4)

- - rux
(i) (m), = G, (1)cos ST

> (26)
(ii) (Q), = H,(t) sin rz"Lx

J
in which Gr(t) and Hr(t) are unknown functions of t , to be determined.

Substitution of Eqs. (26) in Egs. (4) results in

2 _2~2
" . " =°C - raV
Gr + KGI‘ + '(—'4—1:2—) Gr D cos ( 5L )t (27)

wherein primes denote the order of differentiation of the function Gr( t) with
respectto t and

(i) ¢ = g

(28)
(i) p- .4 % rt sin £74
p ' 9x 'max 4L° - (re)* 2L

It is possible to follow the same arguments of the preceding two
sections, by writing Eq. (27) in the form

2
4y Y g2y =
iz + K at + Sry D cos wrt (29)

and reach the more general conclusion that a finite difference solution of
the form

n(t) = an(t-7) - by(t-2r) + c[FW{(t--r) -TO} + Fp{(t-’r) -TO}]

(30)
will represent the combined dynamic storm tide generated by both the wind
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stress and pressure gradient driving forces acting together. The last
term may conveniently be designated simplyas cF(t- 7 - To)

ALLOWANCE FOR TWO-DIMENSIONAL EFFECTS

We return now to the two-dimensional nature of the problem with
special reference to the offshore environment in the neighborhood of New
York. If a number (N) of offshore stations is arbitrarily selected, as in
Fig. 3 (inset), to cover, in a two-dimensional sense, the shelf region of the
approaches to New York Bay, then, by evaluating the magnitude of the forc-
ing function F_(t -7 -~ T) at any such station, directed radially towards
the station A ‘at the bay-mouth, (in which Ty is the time taken for the free
wave to travel from the N-th offshore station to the bay-mouth), the formula

'qA(t) = a'qA(t-'r) - b'nA(t-Z'r) + cl[Fr]I(t-T -Tl)
+ CZ[Fr]2 (t"T'TZ) +...+c7[Fr]7 (t”T'T7) (31)

in which subscripts N=1, 2, ... 7 refer to station numbers, should have a
pseudo-two-dimensional capacity to correlate the storm-tide m, (t) atthe
bay-mouth A with the offshore disturbances occuring over a wide area,

The assumption here is that the local water level upheaval at any particular
offshore station, created by a driving force Fr(t -7 - TN) , requires the

interval of time Ty; to reach the bay-mouth and become merged in the
resultant superelevation n A (t) occurring there,

This assumption actually follows a false premise insofar as it asso-
ciates 'effect'(waves ) with'cause’(wind stress and pressure gradient) and
translates the ‘effect' instead of the 'cause' from station to bay-mouth, Thus
TN should correctly be based on the time that the meteorological forcing
function, F_ , directed radially to the bay-mouth, would take to travel the
intervening aistance, if its identity could be preserved. The value of, T, ,
in other words, should be some function of the speed of the storm and not of
the speed of the waves. K Ty were to be determined rigorously it would
require evaluation of the forcing function F_ for each station as a continuous
function of both t and of r , the distance from the bay-mouth. The manual
computing time that it would have required to do this would have been prohib-
itive so that some evasive tactics were necessary. The use of T,, based on
'effect’ seemed to offer the best way of circumventing the difficulN .
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At first sight it may seem that unwarranted liberty 1s being taken
with the physical structure of the solution given by Eq. (30). However
it is a well known dynamical principle that, if «/S , the forced-free fre-
quency ratio of Eq. (22) is less than unity, the phase difference between
cause and effect is relatively small. Hence for slow moving storms, at
least, Ty m Eq. (31), based on the wave travel time, will be reasonably
correct, Only when /S approaches or exceeds unity, in the linear oscil-
lating system we are dealing with, will TN become unreliable if founded
on the wave travel time. The dynamics of the system suggest that a lag
T, Wwill result between cause and effect as indicated by Eqs. (17), (24)
and (30). Since Ty will give the effect at the bay-mouth we must there-
fore correct by a time Ty 1n order to ensure that the cause will precede
the effect by the necessary lead T, . Thus it becomes necessary to re-
write Eq. (31) as N=7

m, (1) = am, (t-7) - bn, (t-27) + Z e [Py (8- 7 = Ty +Ty)

(32)

In the absence of the correction T_ the functioning of Eq. (31) is
represented schematically in Fig. 3. The individual F,. contributions
from the different stations, at times earlier by Ty ,converge along the
radial distance-time paths to the point of time (t - v) at station A
giving, in effect, the uncorrected function

N=7
z CN[Fr]N (t-7- TN)
1

The gradients dr/dt of the propagation lines in the T -t plane (Fig. 3)
are the velocities C = Ngd at which the free waves travel along the rad-
ial directions (Fig. 3, inset) over the variable depths of the shelf. The
lag correction, Ty that is required for fast moving storms will be dis-
cussed further at a later stage.

ALLOWANCE FOR THE GEOSTROPHIC EFFECT

The influences of the earth’s rotation enter into the dynamical
equations in the terms involving the Coriolis parameter f [Eqs. (2)].
They are likely to be greatest in the relatively shallow water near the

coast, In discussion of these effects it is convenient to consider the y-axis
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of reference in Eqs. (2) as parallel to the coast and the x-axis normal
thereto. Then, if we can assume that the flow onshore, Qyx , resulting
from a superposed hurricane is appreciably less than the longshore flow,
Qy , because of the boundary effect, it is possible to simplify Egs. (2)

by discarding Qx relative to Q. . Further, available sources of infor-
mation [ eg. Moore, 1957] suggest that the storm tide gradient along-

coast is very much less than it is normal to the coast, making it possible to
approximate further by discarding —Il in comparison w1th :’fl . If these

adjustments are made in Eqs. (2, 1) and (2, ii) they reduce to

- =1 o
(1) Qy - £ (gd ox F X>
(33)
y 2 -
(ii) ( at T K) Qy
For the purposes of the further development of the correlation formula
Eq. (30), it is convenient to neglect the damping effect of bottom friction,

represented in the factor K in Egs. (33), and eliminate Q between
the two equations., There resuits

o _
gd 21 yth dt + F_ (34)

in which Fn(= Fx) and Ft(= Fy) are respectively the normal (n)

and tangental (t) components of the forcing functions [Egs. (3)]. Eq. (34)
compares with Eq, (4, i) and it is thus of quasi-one-dimensional form, from
which, by association, it is possible to extend Eq. (32) by addition of a term

comparable to é‘ f Ftdt in Eq. (34), to allow for the geostrophic effect.

This is most readily done by introducing the term
t=nT

CA Z [Ft]A (t-T) (35>

t=o

applicable to station A at the bay-mouth (Fig. 3, inset). The cumulative
summation of (F )p at increments of time T is equivalent to the integral
of F t with respect to time.

For the downcoast offshore station no, 2 (Fig. 3, inset), Eq. (34)
suggests that the normal component, F, , should be used in preference
to F,. , the radial component of the driving forces, to describe the effect
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induced there., Further since this effect must be allowed to travel along
the radial line 2-A towards New York and this route is not far removed
from parallelism with the coast, it is rational to base the travel time T,
of the disturbance upon the edgewave speed peculiar to the shelf slope. In
accordance with the finding of Stokes [ Lamb, 1932 Edn. § 260] this velocity
is

1
2
c = f‘z—“ﬂ (36)

in which s is the shelf slope and \ the wave length of the edgewaves.
The choice of N will be discussed later.

THE ADOPTED THEORETICO-EMPIRICAL CORRELATION-PREDICTION
EQUATION

Ag a final addition to Eq. (32) we include, besides the geostrophic
term applicable at station A at the bay-mouth, an equivalent pressure
gradient term SpA(t - - To) additional to (Fr)A(t -T - To) such that

6Py (t-7-T) = (), (t-7-T) - p (t-7-T,)
(37)

where (p,)  is the atmospheric pressure at A and p, the central
pressure in the eye of the storm at the same instant, Also, for the purposes
of satisfactory correlation, it is desirable to introduce an independent
coefficient C,

The final formulation then of a correlation and prediction equation for
storm tides in New York Bay includes the terms (35) and (37), but rejects ,
as too remote for consideration, the influences from offshore stations 1 and
6 (see Fig. 4, post). The formula as finally used (and found to be successful’
is thus

%
Earlier versions originally included effects of stations 1 and 6,
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n, (t) = an, (t-7) - bny(t-21) + ¢ + ¢, 8p, (c-7+Ty)

=T
+°A2§‘ [Ft]A(t-rr+TV) + cAS[Fr]A(t-rr+TV)
=0

+ cZ[Fn]Z(t—-r+T -T

v 2) + c3[Fr]3(t-rr+T -T3)

\'

+ c4[Fr]4(t-'r+T -T

v Ty o+ cs[Fr]S(t-'r+T -T

v 5)

+ c7[Fr]7(t»rr+T -T

v - T) (38)

AVAILABLE WIND AND PRESSURE DATA FOR EAST COAST STORMS

Data packages for selected storms were compiled by the Weather Bureau
and furnished to the project. These contained maps of storm tracks, isotachs
of surface wind velocity, isobars of surface pressure, profiles of pressure and
deflection angles of wind direction (in the case of hurricanes). The packages
embraced the following storms:

(a) Hurricane of September 21, 1938

(b) Hurricane of September 14, 1944

(c) Extratropical Storm of November 24-25, 1950
(d) Extratropical Storm of November 6-7, 1953,

In addition a similar data package was supplied in respect of a Design Hurri-
cane based on the 1938 hurricane, transposed to a new track crossing the

East Coast approximately at Atlantic City. The tracks of these several storms
are shown in Fig. 4 and provide good overall representation of possible approach
directions of severe storms to the New York area. The track of the 1938 hurri-
cane for instance runs almost due north, emerging from the South over deep
water before crossing Long Island and the New England coast almost at right
angles. In contrast, the 1944 hurricane track parallels the east coast, north

of Cape Hatteras, and lies well within the confines of the continental shelf, The
extratropical storm of 1950 was centered overland on a path roughly parallel
with the smoothed trends of the east coast, while that of 1953 runs approximately
due north over deep water and curves to the north-west over the continental

shelf to pass directly through the portals of New York Bay.
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In Figs. 5 and 6 are recorded the main features of the surface pressure
and wind distributions in two of these storms, as adapted from the data packages
It may be remarked from Fig, 5 that the 1944 hurricane was traveling at conside
able speed (cf the order of 40-50 knots ) over the continental shelf before strikir
the coast. The 1938 hurricane moved at roughly comparable velocities, The 19
and 1953 storms were very much slower-moving and it is not surprising that the
accumulations of water piled by them into New York Bay and its river system
exceeded in volume those from the more transient hurricanes of 1938 and 1944,

OBSERVED WATER LEVELS AT GAGING STATIONS IN NEW YORK BAY

Tide gage stations at which water levels are regularly recorded through-
out New York Bay are shown in Fig. 7. From the tidal records of these stations
predicted astronomical tides for the storm periods in question were deducted
leaving residual meteorological tides of which Figs. 8 and 9, as applicable to the
1938 hurricane and the 1950 extra-tropical storm respectively, are typical. The
figures show the histories of storm tide elevation at eight of the gaging stations
within New York Bay ( cf Fig. 7).

The somewhat striking differences between the storm tides created by the
1938 and 1944 hurricanes and those raised by the slow-moving storms of 1950
and 1953 are quite typically portrayed by the differences between Figs. 8 and 9,
The elevations at Sandy Hook may be considered representative of n A(t) in
Eq. (38).

The hurricane effects are characterized by low antecedent waves followec
by the main surge, which, as noted by Redfield and Miller [1956], tends to have
a more rapid descent than ascent. After the mam surge follow from two to three
(or more) resurgences at approximately regular intervals, which on the average
are considered to be of 7 hours period ( Redfield and Miller, 7.2 hours), The
storm tides induced by the 1950 and 1953 storms (cf Fig, 9) show a very much
more gradual ascent and are obviously more consonant with the steady state con-
ception of water super-elevation or 'set-up'. Resurgences, though identifiable,
are also much less prominent,

As might be expected, water level behavior at Mill Rock (Fig, 7) is con-
siderably influenced by the channel flow from Long Island Sound, In Fig, 8 the
first surge at Mill Rock is obviously that caused by penetration of the storm tide
up the East River, but the second (higher ) surge, occurring earlier than the
resurgences anywhere else in the bay, must represent the surge wave that has
reached Mill Rock via Long Island Sound, A somewhat similar effect is found in
respect of the influence of the 1944 hurricane at Mill Rock, These peculiarities
of the transient hurricanes are largely absent in Fig. 9, representative of the sl
extratropical storms.
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12, REDUCTION AND APPLICATION OF DATA

’

In order to apply Eq. (38) it was necessary to evaluate the forcing
functions, F , at the different offshore stations, which were selected in
the positions shown in Fig, 4.

The values of F,. , the resolved part of F in the particular direc-
tion ¢ of the bay-mouth, with respect to the x-axis of reference (Fig. 10),
are given by
\
(i) Fr = Fcos (¢ ~-8)

(ii) F = NFZ + I (39)
; -

. .
(iii) tan@ = Ffi

J
where O is the bearingof F , the resultant of Fx and Fy of Egs. (3),
taken anti-clockwise with reference to the x-axis.

Y , Wind velocity vector

Isobars
Radial -
Line to N
Bay-mouth
U Uy
15} | A
¢\9
— - - - X
Pz W Uy T E
/ 3 v Offshore
' Ax / \ Station
P3 %%_71_
P4 Ps”

Fig. 10: Measurement of x and y components
of velocities and surface pressure-gradients at
an offshore station,
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Egs. (3) for Fx and Fy may be reduced to the form

(Ap)
. _ _d X
(1) Fx B k[UUx kp AX ]
> (40)
(Ap)
. _ _d y
(ii) Fy = k[UUY —_kp Ay ]

where U, and Uy are the x and y components respectively of the surface
wind velocity U at a station, k is a constant in the wind stress relationship

T = kpU% | (Ap )x and (Ap) are the differential pressure changes over
the dlstanCes Ax , Ay respectwely, (Fig. 10), which are small in relation to
the scale of the storm The value of k taken as applicable to strong wind con-
ditions was 3.1x106 [cf, Wilson, 1960] .

To obtain F, at station 2 [cf Eq. (38)], the angle ¢ in Eq. (39i) was
arranged to make the direction of the forcing function vector normal to the aver -
age direction of the coastline between station 2 and the bay-mouth. Again Fg¢
at station A [ Eq. (38)] was obtained by choosing ¢ to make the forcing
function vector at right angles to the radial line CA (Fig. 4). Finally, the
values of 6p, Were evaluated directly from Eq. (37) without difficulty.

Typical of the trends of the forcing functions for the four reference storms
are the results shown in Figs, 11, 12 and 13,

COEFFICIENT VALUES FOR PAST-TIME 1-TERMS IN CORRELATION FORMUL

As a convenient time increment for numerical correlation between
[nA(t) - anA(t -T)+ bnA(t - 27)] and the forcing functions in Eq. (38), T
was selected as 20 mins or 1/3 hour, The period of resurgences has already
been noted as being of the order of 7 hours (cf.Fig. 8), a period which can also
be justified theoretically as being the fundamental natural period of oscillation of
the ocean on the continental shelf off New York [ Kajiura, 1959]. Accordingly S
in Eq. (14i) has a value (2w/T) of 0.898 radians/hr. From examinatjon of
the resurgences of the 1938, 1944 and other hurricanes that have affected New
York the conclusion was reached that the oscillations decay with an amplitude
ratio, e -(KT)/2 , per cycle, of about 0.5 , in agreement with an observation of

Redfield and Miller [1956]. From this the damping factor K is found to be
0.198 (hr)™ . The values of a and b , defined by Eqs. (14),are accordingly
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1

a 1,850

i}

b 0.937

which duly satisfy the stability requirements of Eqs. (16).

14. TRAVEL TIMES OF FREE WAVES FROM OFFSHORE STATIONS TO BAY-MOUTH

The travel time, Ty , taken by a free, long gravity wave to travel
at speed C (= Ngd) from any station N (=1, 2...7) to the bay-mouth at
A can be computed from

dr
TN = E—@ (42)

in which the depth d is a function of radial distance r , in accordance with
the nature of the shelf topography (Fig. 4). Numerical integration of Eq. (42)
establishes the following values of Ty .

TABLE I: TRAVEL TIMES OF FREE WAVES

Station No. Distance Time, TN - (hours)
N T
(naut, mi.)
Eq. (42) Adopted Value
2 169 5 3-1/3*
3 95 2-2/3 2-2/3
4 50 1-1/4 1-1/3
5 88 2-1/3 2-1/3
7 92 2 2

The asterisked figure of T, = 3-1/3 hrs is the travel time for a long-
shore edgewave to cover the distance from station 2 to station A, Since the
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wave length X in Eq. (36) is expressible as X =CT , where T is the
edgewave period, elimination of X\ in Eq. (36) yields an edgewave speed of

= (&8
C = h)T (43)

The average uniform shelf slope, s , normal to the coastline between sta-
tions 2 and A is1in1500. By assuming that the resurgence period of 7 hours
is also a manifestation of edgewaves [ cf Munk, Snodgrass and Carrier, 1956]
the travel time of the waves at the speed of 86.4 ft/sec [Eq. (43)] is 3-1/3 hrs

LEAST SQUARES DETERMINATION OF COEFFICIENTS c

N AND LAG
CORRECTIONS, TV

With a, b and TN known, along with the time histories of m A(t) and
the forcing functions at each offshore station, for each of the four reference
storms, all the necessary data are on hand for conducting a multiple regression
correlation for determination of the most appropriate values of the coefficients
cN and the lag Ty, in Eq. (38). For lack of space the mechanics of this corr«
lation will not be discussed here since they are fairly routine numerical opera-
tions in high speed digital computing.

The data from the four reference storms were pooled to provide a total
of 237 equations involving the unknown coefficients, cy - For both the slow
moving storms of 1950 and 1953, Ty was taken zero, as justified in Section 7.
The values of Ty, for the fast moving hurricanes of 1938 and 1944 had to be
determined by successive approximations based initially on intelligent guesses;
thus, specific values of Ty had to be assumed in order to perform any least
squares determination of the best fit values of the coefficients, ¢y

Each time a correlation was run,a simple feed-back operation, in which
nA(t) was computed from Eq. (38) by making use of the true,known values of
Ma(t - 7) and mu(t - 27) , gave a general check on the correctness of the
overall procedure. Such a feed-back is indicated by the chain-dot curves in
Fig. 14 which invariably compared favorably with the actual (full-line) storm
tides. The real test of adequacy of the correlation results came from the use
in Eq. (38) of the coefficients cy; together with the assumed values of Ty
(for the 1938 and 1944 hurricanes), starting with just two initial values of
na(t -7 and mp(t - 27). These starting values were taken identical with the
actual storm tide elevation at t =0 for each storm. From then on, - for
example, at the very next time-step of T =1/3 hr, - the computation was entire
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dependent on its own predicted values of m,(t) , which had to be success-
ively fed into the right-hand side of Eq. (3?).

Fig. 14 shows the predicted storm tides ( dash-line curves) calculated
in this manner for the values of cy and Ty , as finally adopted. The best-
fit values of the lag correction Ty were found to be 1.67 and 1.33 hrs for
the 1938 and 1944 hurricanes respectively. The values of c in Eq. (38)
(yielding an overall correlation coefficient of 0,89) were as follows:

c, = 10074576 49* )

cpy = 29460220 48 -

cy, = 14493105 44

cpg = 27135231 45

c, = 24016580 45 - > (44)
03 = 38117168 45 -

c, = 51729379 45

cg = 40529138 45

¢, = 47817714 44 -

J

The predictions shown in Fig, 14 for each of the four reference
storms were considered to be in sufficiently good agreement with the actual
storm tides to justify the use of Eq. (38), together with the coefficient
values of (44), in application to any other storm in the New York Bay area,
regardless of its nature, direction and velocity of approach. The formula
was therefore applied to several design hurricanes.

PREDICTED DESIGN-HURRICANE STORM TIDES

The design-hurricane to be discussed here (one of several for which
computations have been made ) was quite similar to the 1938 hurricane but
its path was transposed to a new track ( Fig. 4), likely to bring more severe
effects to bear on New York, The pressure and wind patterns for this storm
are shown in Fig, 15,

This number indicates the position of the decimal point according to the
IBM floating point classification in the Bell system. Thus for 49,

c, = 0.10074576 ; for 45, c2 = - (0,000024016580,

575



COASTAL ENGINEERING

*B3Je JJOX MSN OU} UL }8€00 }5ed *Q [} oY} SurpeAul suevOIIINY-uSisep B JOJ (JIOMOT) SUOT}OIIP
pu® s8TIID0I9A pulm 3delans pue (19ddn) seamssead Suimoys ‘ sdew opydouds jo sousnbag °gi * Srq

KL oL 2L a8 ¥l &L oL 0L sl 2L o£L obL 5L 9L <0L di 2L &L bl oS 9L 0L ol 2L 282 &L 5L 9L
m—— e T T T ~— —
0090 3MIL  S1ONA O oNWAdY 20 d3dS (2 OEP0 "SHIL  SLONX OF ONWIY 40 GIISS (2) §120 WL SLONY OF 2ONWAQY 40 033dS () 0000 WL SIONN Oy 3ONVAQY 40 03345 (O
0090 IMIL  SLONX OF 3ONyAQY 40 033dS (1) 0090 IWIL  SLONM OF 3ONVAQY 40 Q33dS {1} 00S0 ML SIONY Of 3INVAQY 40 d33ds (1) 00.00.3MIL SIONX OF 3ONVAQY 0 J33dS (1}
ANVIENH  NOISIA ANVOENH  NOISIq SNVIMUH  NOIS3Q ~ INVINUH  NOIS3Q
_ NHILLYd  ONIM NHILLY  ONIK _ NHIL1Yd NI A N¥3Llvd  ONIM A
L / > J . Ak\ Vol
VOUING G o, L Jm " /\.I
) aomwn poai < 7 %
S S A, X

\ﬁhq_g~ /,m‘\ . /\/ i w\\
IEEASY |

4
ansc fINN
\( \
N\

e

<Y |
7
¥ /k
(W72
]
\/

1 /8 9 s
' N ¢ v * i N :
\ N\ 8 ) NI 3 —T /
\ : E = 3
/ [of X N ov R s e oid —_— A R
| o \ —~ AT (S A Wt
> g / » X Lo .L.W f~0f. . o R R A
B e ? B e 0 v e o sy § N e 1
g acnee o L o IS SN 7. SR B AR a (i oA
wRe L N WS e g X 2 s g T Lobond S¥- s 52 Bt
OL  dl 2L 8L wL &L S OL WL 2 S WL 5L o8 0L o2 W8l bl S 9L PV S TR T )
0£90 JML  SIONN O¥ FONVAGY 0 0334 (2) OS 0 INIL  SIONM OF 3ONVAQY 40 0335 (2) G120 INIL  SLON Ob IONYAOV 40 03345 () 00 3L SLONM Ov 3ONVAOY 40 03345 (2)
0090 3WIL _S1ONY OF 3ONVAQY 0 033dS (1) 00:90 3Wis SLONM OF JNVAQY 40 033dS (1) 0G50 INIL _SLONY OF 3I9NvAGY 40 033ds () 0000 INIL _SIONM OF IINVAQY 40 433dS (1)
INVOUNNN NOIS30 neonsnu Nois3a _ wvong Noisaa ’ NVOWMIN_ NOIS3G
NH3Livd USSR Wu3Livd | INSSIHA 1¥d_3HNSS38d NUdLivd 3uNS3ud
=] | IHb RN
£ \ \
o \ \ RaNAN
Y e O¥E2—
Lo 96% es\ Y f /J/ J
“ — p
< ad e < /' / < / AN// .
\ L g 62 xf & - \ / f 1///#@
y 8,
r ! - N N\
A 1A 9 Ll AR NANNGe!
s A { NS NS
4 cez s 4 A / \ Nl eI
262 oone 05y \ Ding i
\ \ 62 P \X \ ow..vm/ (Y 2ol s N * "
N 2 AN AN S
LS 1N WG WSO ™ u T
\ b, -» 3 . , P f
| L <A /b e v\ ok Bpral o
. w s off Ne i
. / 2 - X e S N 3 -3y
» (s} o S ¥5) 1 s, 3 o4
o 7 N O BN " 3 e AT iy - R P oy AR any g o
- ™~ S SR A S S P Y P

576



HURRICANE TIDE PREDICTION FOR NEW YORK BAY

"GER1 PU®B yGH1

JO SWJIO0}E 9ATJ JO B}EP UO pOseq
§97YOBOJ JOATJI pue LBE HJIOX MON
ur suore}s Surded snoraea Y
UOjTTWeH 1J0 }® SUOTIBASIS 9PN}
~WJO)S JO SUOIIB[OLI0) ‘LT *S14g

=
i
74

R

H

D AT mE

]
il 1 ] ]
!

N

AR
!

g
11

] b ol
[
T

QJ}—
[
1

*(sj0uy QG pu® 0% ‘G¢

‘08 ‘GZ 0Z) A speads xI8 j® Suraowr
auBOdIIINY~uSdIsop JoI (Aedq HJIOX MAN
JO YInOoW 1B Y UOT}E}S JOJ) SUOT}BA
-91d 9p1 W.I03S pajorpadd 91 *Srg

(o — seus Aovassar

oom_oow 9oz 0ol Qw0 MO _00wa 00 QO 0Owy OOM_0A 00K _O0WQ 9000 00 _GO. %0,

oo
e

i 4

¥ NOUYIS Ou INYOREIH
AUmKous 1DV 20

ALD R Y gy 19%00
NISTND v 20

(398 ouacunsso N
) 30U MOLS G —ik

NPTT

3

L

1

i
==-be

-

¥
!
]

]

e
H
2|
H
K
>!

13001 “WOMONGHLSY STHIN) UTB-1HE NOUWIT) 301L WIS

577



COASTAL ENGINEERING

s
©
8 =
s £ WHITEHALL (BATTERY)
4 & 1A SANDY_HOOK
% \
£ : g Vi o
I =
g,
g ©
s
g s EAST_NEWARK
g . FORT HAMILTON
g 2
£ o 5 VA \ £
& -2 | i 5
§' -4
10
o
e £
: PERTH AMBOY SPUYTEN DUYVIL
g A 41
- 2 iy - o
0 £
9 fr
£ .
)
g o .
2 e
8 s ARK L ROCK
g 4 Y ELM ML
; 7z kY y.
4] Z 3 %
2 § N
- 5
-6
0400 2400 0400 0800 1200 1600 2000 0400 2400 _ 0400 080G 1200 KOO 2000 2400

ARBITRARY TIME —~(hours)

Fig. 18. Predicted storm tide elevations at eight gaging stations inside
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Forcing functions for this storm were worked out for 6 different
storm speeds; 20, 25, 30, 35, 40 and 50 knots. In applying the prediction
formula, Eq. (38), with the coefficient values (44), it was necessary to
start with two initial elevations na(t - 1/3) and np(t - 2/3) . Since there
is invariably a small superelevation of water level above normal for many
hours preceding the advent of a hurricane it was appropriate to adopt 6 ins
(0.5 ft) for each of these elevations,

The results of applying the prediction formula (taking Ty = 0) are
shown in Fig, 16. The predicted storm tides all show the antecedent minor
surge, characteristic of the 1938 hurricane in Fig. 8, before the main surge
which occurs at or near the time of the hurricane’s crossing of the coast.

At the lower storm speeds (V = 20 and 25 knots) the peak surge occurs

before arrival of the hurricane; at the higher storm speeds (V = 35, 40

and 50 knots) the peak follows after the hurricane® The other direct influence
of the storm speed is to increase the height of the peak surge from 6 ft, at

V = 20 knots to a maximum of 8.9 ft. at V = 35 knots after which at the higher
speeds it declines slightly. The critical speed for the design~hurricane would
thus appear to be about 35 knots (or higher), with very little to choose between
the magnitudes of the resulting surges at speeds greater than 35 knots,

Reverting to Figs, 8 and 9 it may be noticed that phase differences
between storm-tide superelevations at the various gaging stations are not very
considerable in relation to the 7-hour period of the resurgences, This suggests
that correlations between levels at different stations might obey simple linear
regression. The results of graphical correlation using data for five storms of
1954 and 1955 are shown in Fig. 17 and indicate, by and large, that the relation-
ships are linear though the confidence limits become rather broad for the up-
river gaging stations, presumably owing to the influences on water level there
of the ocean outlet through Long Island Sound (cf.Fig. 7). The regression lines
of Fig. 17 are supported by the data of the four reference storms (not shown),

In Fig, 18 use is made of the relationships of Fig, 17 to predict the
design-hurricane storm-tides at eight of the gaging stations in New York Bay.
Thus the predicted tide at Sandy Hook is taken the same as 1, (t) predicted for
station A at the bay-mouth (Fig. 4) for the design-hurricane at the speed
V = 35 knots, This prediction has been extended somewhat further in time than the
version shown in Fig. 16, but is otherwise the same, It must be remarked that

£
This is inferred from estimates of applicable values of TV
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the four curves on the right-hand of Fig. 18 are liable to considerable
fluctuation in height and relative phasing.

PROOF-TEST OF THE PREDICTION METHOD; HURRICANE "HAZEL™ OF 1954

Until quite recently the prediction formula, Eq. (38), had not been proof-
tested by applying it to any fifth storm whose meteorological parameters were
known and whose effects in New York Bay had been measured and could be compare:
with the predictions. The necessary data for doing this were not available at the
time of completion of the study in 1959. D. L. Harris of the United States Weather
Bureau, meanwhile, has evaluated the forcing functions [cf, Eqs. (39) and (40)]
for hurricane "Hazel", of October 15-16, 1954, which crossed the U, S. east coast
south of Cape Hatteras and pursued a track overland into the heart of the north-
eastern states. These functions have now been used in the prediction formula,

Eq. (38), in conjunction with the coefficient values (44), with the end-results shov
by the chain-dot curve in Fig. 19. In making this computation the lag correction
TV was taken zero, in the absence of any specific knowledge of its value.

For comparison with the prediction Fig. 19 shows two versions of the stori
tide recorded at Sandy Hook, as supplied to the writer by D. L. Harris, It is not
known which of these is actually correct, but in either case the prediction is in
reasonable accord as to the magnitudes of the main surge and the first resurgence.
The fact that the predicted resurgence is out of phase with the actual may possibly
be ascribed to the assumption of a zero lag correction, Ty . However, the con-
sequences of adopting different trial-values of TV have not yet been explored.

CONCLUSIONS

It would seem from the above that the storm-tide prediction formula, Eq.
(38), has emerged from a singularly stringent test with considerable success and
may be assumed to be capable of providing a reasonably reliable estimate of the
effects on water level in New York Bay which any given hurricane or storm can
produce. Further confirmation of this is forthcoming from the available rather
crude correlations that have been made between maximum storm-tide height and
central pressure p, within the hurricanefcf Fig. 20]. These suggest that a
storm-tide of from 10 to 12 ft could be expected of the design~hurricane. The
predicted maximum of 8.9 ft at Sandy Hook and 10.5 ft at Perth Amboy (Fig. 18)
is within reasonable range of this spread, but accords better with the somewhat
more refined empirical system of Kajiura [1959] , which suggests 10 ft.

It is felt that the prediction formula is based on sound physical reasoning
and may therefore justly claim to be comprehensive in its capacity to deal two-
dimensionally and dynamically with any storm moving at any speed along any given
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track.

The methods of surge prediction outlined 1n this paper could readily
be applied to coastal stations anywhere provided sufficient data existed regard-
ing specific storms of the past and their effects on the coastal station.
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