
  
 

A SMALL-SCALE FIELD EXPERIMENT FOR THE VALIDATION OF A THEORY ON 
REFLECTION OF NONLINEAR SHORT-CRESTED WAVE GROUPS 

Alessandra Romolo1 and Felice Arena2 

A closed-form solution of free surface displacement and velocity potential for nonlinear short-crested (3D) wave 
groups interacting with a reflective sea wall is presented. The theory is applied to investigate the fluctuation wave 
pressures when an exceptionally high crest or deep trough occurs on the reflective wall. A characteristic behaviour has 
been observed. Due to non-linearity, on one hand, great reduction of the highest crest and enhancement of the deepest 
troughs on wave pressures are realized; on the other hand, the profiles show always a strong asymmetry between the 
absolute maxima and the minima and sometimes the formation of characteristic humped wave pressures corresponding 
to the impact on the structure of the highest wave crest. All the theoretical results have been validated through a small-
scale field experiment carried out at the Natural Ocean Engineering Laboratory (N.O.E.L., www.noel.unirc.it) of 
Reggio Calabria (Italy).  
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INTRODUCTION 
One of the most basic issues of coastal engineering has been the estimation of the wave pressures 

and wave loads acting on a vertical sea wall.  
In the scientific literature, it is possible to find several theories and models, based on different 

approaches, formulated with the aim, on one hand, to describe as the most correctly as possible the 
wave mechanics of sea waves interacting with a reflective structure in the absence of overtopping and 
without considering breaking waves generating impulsive pressure, and on the other hand, to find the 
most accurate solution for the calculation of wave pressure distribution acting on the structure for 
practical engineering applications. Many experimental investigations have been also conducted to 
validate theoretical solutions.  

First order solutions of periodic or irregular waves, are important since they are the basic approach 
for the prediction of wave pressure. More accurate results turn out by considering higher order 
contributions. Through the periodic wave theory, solution of second-order was obtained by Saintflou 
(1928), and by Svendsen and Jonsson (1976); of third-order by Tadjbakhsh & Keller (1960); of fourth-
order by Goda (1967, 1999). 

Moreover, numerical models have been developed to validate analytical results and to investigate 
effects of higher order components. Numerical solutions with perturbation approximations up to third-
order in wave steepness have been given by Jeng (2002), up to the 27th order by Roberts (1983a,b) 
and up to the 35th order by Marchant and Roberts (1987). Numerical solutions with Fourier 
approximation for short-crested waves up to 10th order have been derived by Roberts and Schwartz 
(1983), by Lin et al. (1987) and by Tsai et al. (1994).  

More recent numerical study with experimental comparison have been done by Kimmoun et al. 
(1999) and by Prabhkar and Sundar (2001). 

The problem of instability for the reflection of sea waves with the related effects and phenomenon 
was dealt, in the last years, by Mercer and Roberts (1992, 1994), Schultz et al. (1998), Longuet-
Higgins and Dommermuth (2001a,b), Longuet-Higgins and Drazen (2002) and Peregrine (2003). 

The linear Quasi-Determinism (QD) theory of the highest waves (Boccotti 1981, 1982, 1989, 1997, 
2000), which is able to describe the mechanics of three-dimensional sea wave groups, associated to the 
finite bandwidth of wave spectrum, has been applied by Boccotti to investigate the mechanics of linear 
sea wave groups in reflection (1988, 1997, 2000) and validated by himself through small-scale field 
experiments carried out in the natural laboratory of Reggio Calabria (1993b, 1997, 2000).  

The correction up to second-order of the linear solution of wave groups in reflection, achieved 
through the QD theory, has been derived by Romolo (2007) and described in Romolo and Arena for 
both long-crested wave groups (2D) (2007-2008a) and short-crested (3D) wave groups (2008b). The 
proposed solution points out as non-linearity strongly affects the linear predictions both in the time-
space evolution of the sea groups in reflection and in the time fluctuations of wave pressures and, thus, 
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in the wave force acting on the structure, when wave groups with very high crests or deep troughs 
impact the upright fully reflective structure. Interesting results have been outlined and will be 
described in the paper, which concerns also on the validation of the theoretical prediction with the data 
of a small-scale field experiment, carried out in May 2009 in the Natural Ocean Engineering 
Laboratory (N.O.E.L., www.noel.unirc.it) of the Mediterranea University of Reggio Calabria, Italy.  

 
ANALYTICAL MODEL 
Governing equations 

In this study the wave field resulting from short-crested (three-dimensional) wave groups 
interacting with a vertical sea wall and fully reflected by it, is considered.  

The fluid is assumed inviscid, incompressible and the flow irrotational in a constant depth. Thus the 
hydrodynamic equations governing the problem to the second-order with the two nonlinear boundary 
conditions are   
the continuity equation (Laplace’s equation): 
 02

2 =∇
R

φ  
RRRz-d 21for ηηη +=≤≤ ,  (1) 

the Kinematics Free Surface Boundary Condition (KFSBC): 
 )( ,,,22 TzYXH

RR zT =∂−∂ φη  at z = 0,  (2) 

the Dynamic Free Surface Boundary Condition (DFSBC):  
 )( ,,,22 TzYXKg

RR T =∂+ φη  at z = 0,  (3) 

the Bottom Boundary Condition (BBC ): 
 02 =∂

Rzφ  at z = -d,  (4) 

and the Wall Boundary Condition (WBC): 
 02 =∂

RY φ  at Y=-y0 with  y0 ≤ 0,  (5) 

where 
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define the Quadratic Transfer Functions (QTFs), respectively, of the first-order velocity potential and 
of the linear free surface displacement and their partial derivatives.  
In all the expressions [(1)÷(7)], the subscripts denote the partial differentiation.  

The complexity to obtained a closed-form solution for both 
R2η and 

R2φ  is just in the analytical 

resolution of the two Quadratic Transfer Functions (6) and (7). 
 
Solution of 

R1η and 
R1φ through the linear Quasi-Determinism theory 

The linear Quasi-Determinism (QD) theory, formulated by Boccotti (1981, 1982, 1989, 1997, 
2000),  allows for the achievement, under specific assumption, of an expected configuration in space 
and time of both the free surface displacement and the velocity potential.  

If a very high wave crest, of elevation HC, occurs at a fixed point x0 at a given time instant t0, in a 
stationary Gaussian process, like a wind-generated sea state, through the QD the expressions of the 
free surface and of the velocity potential tend, with very high probability, to closed-forms in the limit 
HC/σ→∞ (σ being the standard deviation of the wave field where HC is realized). 

The deterministic surface elevation is  
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and the velocity potential is  
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with ),( TXΨ  and ),( TXΦ  respectively the autocovariance of the surface displacement and the cross-
covariance of the surface displacement and the velocity potential, defined as 
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 >++=<Ψ ),(),(),( 00 TtXxtxTX ηη , (10) 

 >++=<Φ ),,(),(),,( 00 TtzXxtxTzX φη , (11) 

where η and φ are stationary Gaussian processes. 
That one described is the first formulation of the QD theory (Boccotti 1981, 1982, 1989, 2000). 

Expressions (8) and (9)  are exact to the first order in a Stokes expansion and, above all, hold for 
nearly arbitrary bandwidth and solid boundary, as proved by Boccotti (2000). 

The solution of the linear deterministic functions (8) and (9) for the reflection of short-crested (3D) 
wave groups  was achieved  by Boccotti (1988, 1993b, 1997, 2000)  giving the following  equations  
for the free surface displacement and the velocity potential as a function of the directional wave 
spectrum S(ω, θ) of the incident waves:  
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with wave frequency, ω, and wavenumber, k, satisfying the dispersion relation  
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From the Bernoulli’s equation, the linear wave pressure acting on the wall is calculated  
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Equations (12), (13) and (17) are referred to the frame of reference depicted in Figure 1.  
 

Solution of the second-order components 
R2η and 

R2φ  

Starting from the equations (12) and (13) of 
R1η and 

R1φ , the Quadratic Transfer Functions (6) and 

(7), governing the examined problem, have been derived. The line of reasoning is the same of that 
proved in Romolo (2007) and Romolo and Arena (2007, 2008a) for long-crested (two-dimensional) 
wave groups. Initial results were shown in Romolo and Arena (2008b).  

The complete solution for 
R2η and 

R2φ is  
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Figure 1.  A sketch diagram of the considered three-dimensional wave motion produced by sea wave groups 

interacting with a vertical sea wall: the tridimensional cross section (a) and the plan (b) are 
depicted. The absolute Cartesian coordinate system (x,z)=(x,y,z) is fixed at the structure and a 
relative Cartesian coordinate system (x0,z)=(x0,y0,0) at point where the exceptionally either high 
crest or trough amplitude occurs, which could be at or in front of the structure.   
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HCR  is  the  exceptionally linear high crest elevation, σ is expressed by relation (15), and m
nA  and m

nC  

(n =1,2) parameters are the so called interaction kernels respectively of the nonlinear free surface and 
of the velocity potential related to their quadratic transfer functions (the expressions are reported in the 
Appendix). S(ωn, θ n) (n =1,2 ) is the directional wave spectrum of the incident waves. φn, αn, λn (n =1,2) 
are defined by relations (14). 

Retaining the terms up to the second-order by the Bernoulli’s equation,  the nonlinear deterministic 
wave pressure is achieved  
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In solutions (18), (19) and (21), the parameter Ξ  is expressed by relation  
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SMALL-SCALE FIELD EXPERIMENT IN THE NATURAL OCEAN ENGINEERING LABORATORY 
(N.O.E.L.) OF REGGIO CALABRIA, ITALY. 
General description of the experiment 

The laboratory of ocean engineering N.O.E.L. (www.noel.unirc.it) is located on the waterfront of 
Reggio Calabria in the East coast of the Strait of Messina. Thanks to some exceptional natural 
conditions of the site, in the laboratory it is possible to carry out experiments directly in the sea 
operating through the techniques of the laboratory tanks. The feasibility of these procedures and the 
effectiveness of the results were explained and verified in detail by Boccotti (Boccotti et al. 1993a, 
Boccotti 1997, 2000).  

In May 2009, an experiment to study the interaction of sea wave groups with a vertical sea wall 
was carried out in the N.O.E.L. laboratory. The feature of the experiment is reported in Figure 2. The 
structure is a small upright breakwater with the frame in reinforced concrete, with a length of 16.4m, a 
height of 3.0m and placed in a depth of 1.9m with respect to the MWL (mean water level).  

The fluctuating wave pressures acting on the sea wall were measured by 16 pressure transducers, 
placed, in the sea beaten side, along the cross-section of the central caisson making the breakwater.  

The incident waves (in the undisturbed field), not influenced by the presence of the structure, were 
measured by means of two ultrasonic probes and two pressure transducers. One of each instrument was 
assembled on a thin pile (diameter of 0.05m), located 20m far from the sea wall. The configuration is 
reported in Figure 2.  

The local wind of Reggio Calabria often generated waves, which consist of pure wind waves 
without swell components, with significant wave height ranging among 0.20m <HS <0.40m and peak 
period among 1.8s <Tp <2.6s. That represent, in the hydraulic Froude similitude, the scale model of 
severe storms. Moreover, the wave spectra are very typical of wind wave spectra.      

 During the experiment of May 2009, 95 sea states of pure wind-waves were recorded with 
frequency sampling of 10Hz, each having duration equal to five minutes. 

The significant wave height, in the undisturbed field, in the analysed record was between 0.21m 
and 0.41m, and the peak period between 1.9s and 2.74s; thus the relative water depth was such that 
0.16≤d/Lp0≤0.32. Because of the excursion of the water depth d ranged between 1.76m and 1.95m. The 
dominant wave direction, θdom, ranged in [-9°; 15°]. The sign of θdom  is represented in Figure 2.   

For the analyses carried out in this study, only the records of pure wind waves have been 
considered, with spectra similar to a mean JONSWAP-Mitsuyasu (Hasselmann et al., 1973; Mitsuyasu 
et al., 1975). More details of the experiment are given in Boccotti et al. (2010). 

 

         
Figure 2.  The scheme of the field experiment executed on the sea of Reggio Calabria in May 2009. Three-

dimensional plan and section of the reflective upright structure utilized for the experiment, map of 
the gauges at the structure and on the piles in undisturbed field.  
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COMPARISON BETWEEN THE PROPOSED NONLINEAR WAVE THEORY FOR THE 
REFLECTION OF SEA WAVE GROUPS WITH DATA OF THE SMALL-FIELD EXPERIMENT  
Theoretical results 

The proposed nonlinear solution is able to describe the space-time evolution of nonlinear sea 
wave groups propagating in front of a vertical sea wall and interacting with it, when a very high wave 
crest, HCR, is realized on the structure or in front of it (Romolo 2007). 

Considering the configuration associated to the occurrence of the highest wave crest at the time 
instant T=0 at the structure (y0=0), in Figure 3, the linear and the nonlinear wave pressures in time 
domain at different water depth along the cross section of an upright wall are represented. 

The non-linearity on the water surface produces an increment of the highest wave crests and a 
reduction of the deepest sea troughs. An effect which increases when the relative water depth (d/Lp0) 
decreases. A complete survey of these results is in Romolo (2007) and, for long-crested wave groups, 
in Romolo and Arena (2008a).  

An opposite behaviour is observed on the fluctuating wave pressure. On the wave pressure, the 
non-linearity reduces the highest crest elevations and enhances the deepest trough depths. That is 
because a minimum of the second-order component is found to be in phase with both the linear highest 
crest and the deepest troughs, as it can be well-appreciated on Figure 3. 

A further important result comes out from the theoretical nonlinear solution. In the time domain, 
the pressure fluctuations show profiles with strong asymmetries, with the amplitude of the deepest 
wave trough markedly exceeding the elevation of the highest wave crest. This feature turns out to be 
enhanced at the bottom depth with respect to mean level water. 

For i.e., for the case represented in Figure 3, the ratio between the amplitudes of the maximum 
crest and the minimum trough of the nonlinear wave pressure is equal to 0.69 at depth  z/d = -0.26 
along the cross-section of the structure; 0.62 at z/d = -0.53 and 0.60 at z/d = -1.00. 

Moreover, moving from the water surface to the bottom depth, another important feature in time 
variation of the wave pressure becomes evident, this is a distortion on the crest profile with the 
occurrence of characteristic humped wave pressures. At time instant T=0, when the theory expects the 
occurrence of the highest wave crest, a local minimum of the pressure may be observed with the 
formation of  two pressure maxima for each wave crest impact (see Figure 3). 

The formation or not of the characteristic humped wave pressures could be well understood by 
analysing all the contributions defining the second-order wave pressure. The 

Rwp
2 

 [Eq. (20)] is given 

by a constant term proportional to the constant Ξ  of Eq. (22) [term (e) of Figure 4], the terms due to 

R2φ  and that due to 
R1φ  [term (c) of Figure 4]. Those derived by 

R2φ  are the positive and the negative 

kernels of interaction respectively proportional to the parameters −
nC  and +

nC  (n =1,2) with  ω 1≠ω2 

and θ 1≠θ2 [respectively, the term (b) and the (a) of Figure 4] and the self-interaction term [term (d) of 
Figure 4] proportional to the parameters m

nC  (n =1,2) with ω 1=ω2 and θ 1=θ2. 

In Figure 4 (for the case represented in Figure 3), we have analysed the trend of all the terms 
previously defined at the relative water depth, z/d,  -1 and -0.16. As we can observe, the presence or 
not of the characteristic humped wave pressures is essentially due to the combined behaviour of the 
positive interaction kernels and of the term proportional to the linear potential. At the sea bottom (z/d = 
-1) the nonlinear term associated to 

R1φ  does not give contribution. Instead, the positive kernels show 

double maxima under the linear highest crest producing double positive peaks. Going towards the 
water surface (z/d = -0.16), on one hand, the trend of positive kernels keeps constant reducing in 
amplitude; on the other hand, the term derived by the linear potential produces two minima just in the 
correspondence of the two maxima of the positive kernels becoming of the same order of magnitude at 
the mean level water. These effects explain the progressive disappearance of the humped wave 
pressure profiles.  

All the described properties are greatly influenced by the water depth and wave conditions, by 
which every phenomenon could be enhanced or reduced.  
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Figure 3.  Theoretical linear and nonlinear fluctuating wave pressures acting on the reflective sea wall, when 

an exceptionally high crest elevation HCR is realized at time instant T=0 on the  structure (y0=0). 
Validation of the theory with experimental data  

First of all, all the records of the experiment have been analysed to single out those with the 
occurrence of the overtopping waves and those without overtopping (see Boccotti et al., 2010). In the 
present paper only the records without the occurrence of overtopping have been considered.  

In Figure 5, the time series recorded by pressure transducers 6, 11 and 16 of the record 951 are 
shown. As we can see, in the correspondence to the wave crests at the structure (that are identified by 
the   signal  of  the  upper   pressure  transducers),  we   recognise,  almost  always,  the  formation   of 
characteristic humped wave pressures in the deeper instrument. Similar trends were well observed and 
described by Peregrine (2003).  

From the measured wave pressures, by simple integration along depth, the wave forces acting on 
the structure can be computed.   

As for the theory, it can be applied when an exceptionally linear high crest elevation HCR, or an 
exceptionally high trough amplitude HTR, is realized at the reflective structure (y0=0) or in front of it 
(y0<0). This implies that the nonlinear water elevation will be evaluated as  
  ),,(),,(),,( 00200100 TtzxTtzxTtzx XXX

RRR ++++++ += ηηη , (24) 

by considering the occurrence of an exceptionally linear high crest elevation HCR, and as  
 ),,(),,(),,( 00200100 TtzxTtzxTtzx XXX

RRR ++++++ +−= ηηη , (25) 
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by considering the occurrence of an exceptionally high linear trough amplitude HTR. Same laws 
regulate also the nonlinear velocity potential and the nonlinear wave pressure.  

In the applications we have considered only the case when the very high elevation, HCR or HTR, is 
realized at the structure, that is to say y0=0, since it is more interesting for practical engineering 
applications. The theory has been applied always by considering all the characteristic parameters 
defining the undisturbed wave field, like the significant wave height, HS, the peak period, Tp, the tide 
level, TL, the dominant wave direction, θdom, and the relative water depth, d/Lp0, equal to those of the 
analysed record. The analytical directional spectrum has been a JONSWAP mean- Mitsuyasu. For the 
spectra bandwidth the Boccotti’s Ψ* parameter (Boccotti, 2000) is calculated for each sea states, Ψ* 
being the quotient between the absolute value of the first minimum and maximum of autocovariance 
function. It ranges between 0 and 1, it is equal to 1 for an infinitely narrow spectrum and equals 0.73 
for the mean JONSWAP spectrum.  

HCR or HTR  are assumed equal to eight times the standard deviation of the recorded water 
elevation in undisturbed wave field.  

The record 951 is characterized by the following values  HS=0.31m,  Tp=2.2s,  TL=-0.05m, 
θdom=3°,  d/Lp0=0.24,  Ψ*[z=0]=0.67,  Ψ*[z=-0.60 m]=0.82, Ψ*[z=-1.90m]=0.82. That is the record with the 
occurrence of the maximum, in absolute value, wave force of the experiment, which corresponds to the 
negative peak of the wave force Fw of the record.  In value, it  is equal to 4.48σFw, σFw being the 
standard deviation of the wave force process Fw.  

Instead, in record 1002, characterized by the values: HS=0.312m, Tp=2.34s, TL=-0.052m, θdom=8°, 
d/Lp0=0.208, Ψ*[z=0]=0.65, Ψ*[z=-0.60 m]=0.87, Ψ*[z=-0.60m]=0.86, the maximum positive peak of the 
wave force is realized, which is equal to 4.09σFw. 

The comparisons between the theoretical and the experimental wave pressure profiles are shown 
in Figure 6 for the record 951, and in Figure 7 for the record 1181. 

For the record 951 (Figure 6) the theory has been applied with the occurrence of a very deep 
wave trough at time instant t/Tp=0 (Eq. 25). For the record 1181 (Figure 7), we have considered the 
occurrence an exceptionally high crest amplitude at time instant t/Tp=0 (Eq. 24). The theory seems to 
match well with the experimental data in terms both of values and of trends.  Characteristic behaviours 
have been indentified in both cases.   

A strong non-linearity in wave pressures has been observed, with a time shift between the crest of 
the free surface displacement (which is associated to the pressures measured by the highest pressure 
transducers) and the corresponding crest of the wave pressures measured by the deepest pressure 
transducers.  

In detail, we have, from Figure 7, the crest of the Rη  process at sea wall and the crest of pressure 
transducer 6 with time shift -0.12Tp. Also in Figure 6 we find that, the crests before and after the 
deepest wave trough suffer a time shift between the Rη  process and the wave pressure process: the 
crest of  Rη  ahead of the deepest trough occurs at time -0.45Tp and the crest of pressure transducer 6 
occurs at time -0.63Tp; the crest of  Rη  following the deepest trough is realized at time 0.42Tp and the 
crest of pressure transducer 6 occurs at time 0.59Tp.  

On the whole, as regard to the mechanics of the interaction of nonlinear three-dimensional sea 
wave groups with an upright structure, for the case of perfect reflection and without overtopping, the 
proposed analytical nonlinear theory shows interesting results.  

It reveals the presence of characteristic humped wave pressures when the highest wave crest 
occurs at the structure. A trend, which is not realized with regularly at sea. Anyway, the theory is able 
to catch and well describe, on one hand the great reduction of the highest crests and the enhancement 
of the deepest troughs on wave pressures and, on the other hand, the strong asymmetry between the 
absolute maxima and the minima of the wave pressure profiles, which are distinctive effects of non-
linearity.  

Nevertheless , further in-depth studies are required in order to better analyse and to understand the 
mechanics of generation of all the described phenomenon.  
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CONCLUSIONS  
The nonlinear closed-form solution proposed in the paper is able to describe the space-time 

evolution of three-dimensional sea wave groups propagating in front of an upright structure, for the 
case of  reflection without overtopping. The theory has been applied to evaluate the wave pressure 
fluctuations in time domain acting on the structure and the relative wave force process, when a very 
high wave crest, HCR, or wave trough, HTR, impacts the structure. Theoretical results have been 
validated through a small-scale field experiment carried out at the Natural Ocean Engineering 
Laboratory (N.O.E.L., www.noel.unirc.it) of Reggio Calabria (Italy). Records with the occurrence of 
either the maximum or the minimum wave force recorded during the experiment have been analysed. 
The comparison between analytical and experimental results has shown a good agreement.  

The theory is able to describe the characteristic humped wave pressures, which often occurs at sea  
when either a high wave crest or a deep wave trough impacts the structure. Anyway, the theory is able 
to catch and to well describe,  the great reduction of the highest crests and the enhancement of the 
deepest troughs of wave pressures at wall, with respect to linear predictions, and, as a consequence, the 
strong asymmetry between the absolute maxima and the minima of the wave pressure profiles, which 
are distinctive effects of non-linearity.  
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Figure 4.  Theoretical linear and nonlinear fluctuating wave pressures acting on the reflective sea wall, when 

an exceptionally high crest elevation HCR is realized at time instant T=0 on the structure. The trends 
of all the terms defining the second-order components versus time are shown. (Note that the scale 
in ordinate are different). 



  
 

 
 

 
Figure 5.  RECORD 951 where the maximum Fw

– occurs, which is also the maximum Fw in absolute value of the experiment. Time series of the wave pressures at the reflective wall 
recorded just at the sea. 
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Figure 6.  RECORD 951, centred at time instant tM, when the maximum Fw

– occurs. That is the maximum Fw in 
absolute value realized during the experiment of May 2009. Points are the data recorded at the sea 
and the continuous line is obtained by analytical solution, which is applied when an exceptionally 
linear high trough elevation HT1(=8σund) occurs at the structure at time instant t/Tp=0.  The minimum 
of Fw has been individualized in the time interval 159s-171s of the record. 
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Figure 7.  RECORD 1181 centred at time instant tM  when a local theoretical minimum of the wave pressure 

occurs by considering, with the theory, the occurrence of an exceptionally linear high wave crest 
elevation HC1(=8σund) at the structure at time instant t/Tp=0. Theoretical trends are the continuous 
line, points are the data recorded at the sea. 

1^ pressure 
transducer on the 
wall; instrument N. 6
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APPENDIX 
The interaction kernels m

nA  and m
nC  (n =1,2) respectively of the nonlinear free surface 

R2η  and of 

the velocity potential 
R2φ  are defined as sum and difference of frequencies as follows  
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the vectors of wave numbers.  
 




