
CHAPTER 3 

WIND TIDE AND SEICHES IN THE GREAT LAKES 

D. Lee Harris 
U.S. Weather Bureau, Washington, D. C. 

INTRODUCTION 

Because of the unusually high lake stages of recent years, the 
Weather Bureau was called on to forecast the short period variations of 
lake level, which were believed to be caused by wind stress and atmospheric 
pressure gradient.  It became necessary to investigate the feasibility of 
such forecasts.  In a review of the available literature, many papers were 
found which described methods of computing the free periods of oscillation 
for lakes when no external forces were acting. Other papers were found 
which described methods of computing the steady state relation between a 
constant atmospheric force and the lake surface when inertial forces are 
neglected. 

But in nature, a steady state different from the equilibrium state is 
rarely achieved, and neither the external forces nor the inertial forces 
can be neglected in any attempt to relate the atmospheric disturbances to 
lake level disturbances. 

A theory which relates the build up of the water level disturbance to 
the concurrent or previous weather conditions is needed, if forecasts are 
to be prepared with any degree of confidence. 

This report gives the preliminary results of an effort to develop such 
a theory. Since the theoretical study requires some knowledge of the 
phenomenon to be explained, the first part of the report is devoted to a 
description of observed water level disturbances. The middle section gives 
the essential development of the hydrodynamic equations leading to a more 
generalized theory of the forced oscillations of a lake. This is followed 
by a short discussion of the consequences of the extended theory. 

Most of the mathematical treatment not required for an understanding 
of the physics of the problem' has been relegated to the appendix. 

In scientific discussion the term "seiche" is usually restricted to 
the inertial oscillations which persist after the external force has 
ceased to act.  In popular usage this term is frequently applied to any 
disturbance which is believed to be produced by some meteorological force 
and whose period is longer than that of the surface waves. 

In the Great Lakes, these disturbances appear to fall naturally into 
two classes: those which involve all or a large part of a major lake, and 
those of a more local character. The first class is illustrated by figure 1. 
The surface water in Lake Erie is driven toward the eastern end of the lake 
by the wind. This causes an increase in the water level at Buffalo and a 
decrease in the water level at the western end of the lake. After the wind 
shifts or decreases in speed, the lake undergoes a series of damped oscil- 
lations as it returns to normal. 
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The second class is illustrated by figure 2. This is a tracing of the 
actual water level record for Two Harbors, Minn, for a seven-hour period 

, on May 5, 1950. This oscillation appears to be of a more local character 
than that shown in figure 1. 

For the purposes of this report, disturbances of the first class will 
be referred to as long period and those of the second type as short period. 
The division appears to occur with a period of about one hour. 

THE DATA 

In order to test the various hypotheses that have been proposed for 
the generation of lake level disturbances, all of the continuous lake 
level records of the U. S. Lake Survey for the year 1950, and selected 
portions of the records of several other agencies and for other periods 
have been examined. 

The ten or fifteen most prominent disturbances at each of the Lake 
Survey gages during 1950 were compared with synoptic weather charts and 
other meteorological data. The location of gages used in this part of 
the study is shown in figure 3* It was found that short period disturbances 
tend to occur in zones of disturbed weather, that is, near fronts, squall- 
lines, thunderstorms, etc., and that long period disturbances seem to 
conform to the classical picture of the surface water being driven to the 
leeward end of the lake by high winds* 

Both long and short period disturbances occur on all lakes. However, 
the long period disturbances are most prominent on Lake Erie, and the 
Short period disturbances are most prominent on the other lakes. Accord- 
ingly, the detailed study of long period disturbances was largely confined 
to Lake Erie. Southern Lake Michigan was selected for a detailed study of 
the short period disturbances because 6f the relatively large number of 
lake level gages in the neighborhood of Chicago. 

SHORT PERIOD DISTURBANCES 

The location of gages used in this study is shown in figure h.    The 
Wilson Avenue crib gage is located about 3 miles off shore in the open 
lake. Two gages, Chicago River and Navy Pier, are located in the Chicago 
Harbor. The Filtration Plant gage is loeated in a small basin protected 
by a breakwater open at both ends. The Calumet Harbor gage is located in 
the Calumet River. The Waukegan gage, also used in this study, is just 
inside the Waukegan harbor about 35 miles north of Navy Pier. 

Figure 5 shows an example of a short period disturbance as recorded 
by four of these gages. It should be noticed that the agreement between 
the two records for Chicago Harbor, is much greater than that between 
these records and those of the Filtration Plant and Calumet Harbor. 

Figure 6 gives a comparison between the records of a disturbance as 
recorded at the Wilson Avenue Crib in the open lake, and the Calumet and 
Waukegan harbors. It should be observed that the amplitude of the dis- 
turbance is much greater at the harbor gages than at the crib gage. This 
relation also holds for other harbors in this area and appears to be typical 
of at least the largest disturbances in the records examined. 
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Fig. 1.    Lake Erie wind tide, adapted 
from original drawing by U.S. Lake Survey. 
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fig* 2.    Example of short period harbor oscillation at 
Two Harbors,    Minn. 
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fig* 3. Locations of U.S. Lake Survey gages 
used in the study of wind tides and seiches. 

Fig* 4. Location of lake 
level gages in Chicago. 
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Fig. 7.  Comparison of the records of lake level, pressure, and wind 
speed as recorded at the 79th Street Filtration Plant, Chicago, 

April 23-24,   1950. 
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Fig. 8. Water level variations at Marquette, Mich., June 26, 1950. 
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It should also be noticed that the mean water level at the harbor 
gages is about .3 to .5 feet higher than that recorded at the crib gage. 
This tendency for the mean water level to be higher in a harbor than in 
open water has been reported by McNown (1952) and will be mentioned again. 

The possibility that these short period disturbances may be produced 
by changes in atmospheric pressure has often been mentioned. A well 
organized atmospheric pressure wave crossed southern Lake Michigan on the 
morning of June 8, 1953. A copy of the barograph record for Midway Air- 
port, Chicago, is shown on the bottom of figure 6. The more intense 
pressure change wave passed the western shore of Lake Michigan about an 
hour before the sudden increase in the amplitude of the lake level oscil- 
lations. Supplementary data show that this wave of rising pressure had 
passed completely across the lake by the time that the large disturbance 
was recorded on the Waukegan record. 

In general all of the gages tend to become excited at about the same 
time, but the frequency and amplitude, as well as the phase of the most 
prominent components of the disturbance, vary from one harbor to the next 
in an apparently random manner. 

Figure 7 shows a comparison between the pressure, wind, and water 
level as recorded at the Filtration Plant on April 23, 1950. The re- 
semblence between the wind and lake records is much greater than that 
between the pressure and lake records.  In neither case, however, is the 
comparison between either wind or pressure changes and water level changes 
close enough to imply a one-to-one relationship. 

There were other well defined pressure waves unaccompanied by any 
significant change in the character of the lake records. There were also 
periods of large amplitude lake oscillations accompanied by a compara- 
tively smooth barograph record. If a time discrepancy of about two hours 
is allowed, approximately half of the pressure disturbances are accompanied 
by lake oscillations, and vice versa. Comparisons between the lake records 
and wind records lead to similar conclusions. 

The tendency for these short period oscillations to occur at the 
approximate time of an atmospheric disturbance indicates that there is 
some connection between the meteorological disturbances and the lake 
level fluctations. However, these data show that the relation cannot be 
very simple or direct. 

So far as could be determined, no wave recorders were in operation 
in Chicago during 1950, however, the Beach Erosion Board has prepared a 
"hindcast" of waves in southern Michigan based on the 6-hourly synoptic 
weather maps prepared by the TOAN Analysis Center in Washington. 
(Savillej this volume.) Little correlation was found between the ampli- 
tude of the observed lake oscillations and the expected amplitude of the 
surface waves. 
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Fig. 9. Hourly mean lake levels, as recorded at 3 Chicago gages, 
November 25-29, 1950. Northwesterly winds November 25-28, becoming 

westerly on November 29. 
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Fig. 10. Set-up on Lake Brie, and V2(effeotive wind ve- 
locity) for the period, January 13-19, 1955, as defined 

by Keulegan. 
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REPRESENTATIVENESS OF OBSERVATIONS 

The official records of the U. S. Lake Survey consist, for the most 
part, of the hourly readings of instantaneous lake level taken from the 
continuous recorder records. The primary purpose of this record, is the 
computation of the daily, weekly, and monthly mean lake level. Since 
each of these means represents the average of a great many individual 
readings, the method of sampling appears to be adequate for this purpose. 

However, these hourly reports are sometimes used as the basis for a 
study of lake level oscillations. The inadequacy of this procedure is 
clearly indicated by figure 8.  It can be seen that the use of hourly 
values only gives the appearance of spurious periodicities, and does not 
represent the true behavior of either the actual water level or the long 
period trend at the gage. Although these cases represent disturbances of 
unusual amplitude, the general lack of agreement between the true and 
apparent periodicities, and the tendency to obscure extreme values are 
typical of most of the gages in the Great Lakes network. 

In an effort to eliminate the effect of harbor oscillations from the 
lakewide disturbances, hourly means were computed from a number of gages 
on Lake Michigan for periods when systematic lakewide disturbances were 
suspected. The hourly mean lake levels for three of the Chicago gages, 
for the period November 25-29, 1950 are shown in figure 9. It will be 
noticed that the spread between the record of the three gages increases 
with the wind speed. Similar studies of other periods show that the 
sign of this difference depends on the wind direction. 

This report is concerned only with cases of unusual lake behavior, 
and the figures are selected to show extreme cases. It is pointed out 
that the hourly readings, and even the means computed from a harbor gage, 
may fail to represent the true behavior of the lake surface during a dis- 
turbed period. However, disturbances of the magnitude shown here are of 
short duration and infrequent occurrence, and these disturbances will not 
often lead to any significant error in the monthly mean. 

LONG PERIOD DISTURBANCES 

Keulegan (1951,1952) investigated the wind stress coefficient by 
studying the relation between the effective wind over Lake Erie, and the 
set-up. The set-up is defined as the difference in water level at the 
opposite ends of the lake, as measured by the gages in Buffalo and Toledo. 
He gave a formula for the effective wind velocity as a function of the 
observed wind at four stations on the southern shore. 

In deriving his formula, Keulegan assumed the existence of a steady 
state relation between the effective wind velocity and set-up. He sought 
to offset the error involved in this assumption by time averages of the 
wind stress and set-up. 

Figure 10 is a plot of the set-up and effective wind velocity as 
defined by Keulegan for the period January 13-19, 1950.  It can be seen 
that a steady state did not exist at any time during this period. The 
effective wind velocity rises and falls three times during this period. 
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Keulegan recognized that the steady state could not exist for any pro- 
tracted period, but he assumed that it would hold at the time midway be- 
tween the maximum displacement at Toledo and Buffalo. Roughly this 
corresponds to the peaks in the set-up curve as shown in figure 10. 

Using the above assumptions, Keulegan derived the data shown in 
figure 11 for the relation between the set-up and the effective wind 
velocity. The linear regression line (dashed line) has been added. The 
correlation coefficient between this line and the plotted data is .°iu 
The straight line was used because of its greater simplicity. It does 
not appear that the correlation could be greatly improved by considering 
the curved line. 

It is evident from figure 10, that Keulegan's results ean not give 
all the information needed for forecasting. However, the high corre- 
lation between set-up and wind velocity, even though obtained under some- 
what special conditions, leads one to believe that a useful forecasting 
procedure could be obtained from a similar analysis in which changes 
with respect to time are considered. 

HYBRODYNAMIC THEORY 

In order to derive an expression relating the atmospheric pressure 
and wind variations to the behavior of a lake, it is necessary to consider 
the hydrodynamic equations of motion. Since attention is focussed on the 
displacement of a free surface it will be convenient to integrate the 
equations from the bottom to the top of the lake and to consider only the 
mean motion, averaged through the vertical.  The appropriate linearized 
equations of motion become 

#u/0t « -gdh/dx + Fx + fv (1) 

dv/dt « -gdh/dy + Fy - fu (2) 
dh/dt + d(Du)/dx «•  d(Dv)/dy - 0     (3) 

where: 
h • displacement of water surface 
D - mean depth of the water 
^"x> Fy • components of atmospheric force 
f « Coriolis parameter - effect of earth's rotation. 

and the other symbols have the usual meaning. 

A slightly different form of these equations is given by Lamb (1932 
Chapter VIII). The method ©f derivation is given in detail by Haurwitz 
(19*1). 

SEICHE ®$JAftC«S — TWO DIMENSIONAL THEORY 

It will be convenient to consider the inertial motion, that is the 
true seiches, before taking tap the forced motions. In order to accomplish 
this, the applied forces, Fx and Fy, are neglected, and it is assumed that 
u, v, and h are periodic in time. That is, it is assumed that 
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u - f1(x,y)ei«'t 

v = f2(x,y)eivt (h) 

h - $ (x,y)ei«'t 

where fl5 f2 and $ are as yet undetermined functions of x, and y and V   is 
the frequency of the disturbance. 

If equations (It) are differentiated and substituted into equations 
(1-3), u and v can be eliminated from equation (3) to obtain 

Jx( ^5)  dy( Jy)  v  *GF£y W T*) (5) 
whe re „    0 

X - (v2 - f2) /g (6) 

The terms on the right in equation (5) are at least one or two orders 
of magnitude smaller than those on the 3 eft over most of the lake, and if 
they are neglected, we obtain 

d(Dd$/dx)/dx  + d(DdO/dy)/dy  +X0-o (7) 

The boundary condition is determined by the requirement that no 
fluid passes through the sides of the lake. This may generally be ex- 
pressed in the form 

d<P/dn • 0    on the boundary 
where n is a unit normal to the boundary. 

Equation (7) can be solved only for certain discrete values of X, 
known as eigenvalues. Corresponding to each eigenvalue, there will be 
one natural frequency of oscillation and one or more eigenfunctions. Each 
eigenfunction will describe a different mode of oscillation, and each mode 
of oscillation will be completely specified by the number and location of 
the nodes, that is the lines of no vertical displacement. 

The effect of the earth's rotation is often neglected in the deri- 
vation of the equations for seiches. This is equivalent to assuming that 
f - 0, or that 

X - V /g (9) 

The permissible values ofXare obtained by solving the differential 
equation subject to the appropriate boundary conditions, and the fre- 
quencies of free oscillation can then be obtained by means of equations 
(6) or (9). Since the Coriolis parameter, f, is not involved in the 
computation of X, it appears that the principal effect of the rotation 
of the earth is to increase the frequency of the free oscillations above 
that which would be experienced on a nonrotating earth. The amount of 
this increase can be obtained by eliminating X between equations (6) and 
(9)> °r 2. 9 2 Yc (rotating earth) -y^ (nonrotating earth) + f (10) 
Since f is approximately 10-k in middle latitudes, this correction will 
amount to about 1% for a period of 2.5 hours and to about 10$? for a free 
period of 7.8 hours. 
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It appears that satisfactory results can be obtained by neglecting 
the Coriolis term initially and correcting the computed frequency as in- 
dicated in equation (10). 

The actual solution of equation (7) for an arbitrary lake is quite 
difficult, but some insight into the character of such a solution may be 
obtained from an examination of the known solutions for lakes of regular 
outline. We consider first a circular lake. The nodal lines are given 
by concentric circles and equally spaced diameters.  (See fig. 12a.) If 
the circle is flattened slightly so as to form an ellipse, the nodal 
circles become ellipses, and all but two of the nodal diameters break 
away from the center to form nodal hyperbolas as shown in figure 12b. 
As the ellipse is flattened still further the hyperbolas tend to become 
more nearly straight lines perpendicular to the lake axis. This is 
illustrated in figure 12c which has the approximate proportions of Lake 
Erie. For rectangular lakes the nodal lines are parallel to the shores 
as shown in 12d. 

SEICHE EQUATIONS — ONE DIMENSIONAL THEORY 

Since the more important nodal lines for long narrow lakes appear to 
be approximately straight lines at right angles to the lake axis, it 
appears that further simplification may be gained by reducing the problem 
to one dimension. This can be accomplished by considering the average 
value of u and h for each cross section of the lake.  The resulting 
differential equation is 

d (Ad(J)/dx)/dx + Xbg*i|>- 0 + higher ordered terms     (11)* 

A » A(x) - Area of cross section 
b - b(x) - Width of the lake 

The boundary condition is determined by assuming that no fluid flows 
through the ends of the lake, or 

d$/0x * 0 at x =0 and x * L. (12) 

This is equivalent to the equations used by Chrystal (1905) and Defant 
(192^), and several methods have been given for obtaining a solution. 

The effect of the earth's rotation can be taken into account in 
computing the natural frequency by using the definition of X obtained in 
the study of the two dimensional problem in which the Coriolis terms were 
considered. 

It should be emphasized however, that the averaging process elimi- 
nates all transverse modes of vibration. It can give only the average 
value of h as a function of distance along the axis of the lake. The 
nodal lines predicted by the one dimensional theory are necessarily 
straight lines crossing the lake. The true nodal lines are, in general, 
curvilinear, and will not necessarily intersect the shore. The importance 
of this point is illustrated in figure 13 which shows one mode of oscil- 
lation of a circular lake. This mode of oscillation in a laboratory 

^Derivation of equation (11) is given in Appendix I 
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Pig. 12. Characteristic nodal lines for lakes of regular outline. 

Fig. 13. An example of the true nodal line and the nodal lines 
as defined by the one dimensional theory for one mode of oscil- 
lation of a oiroular lake. 

37 



COASTAL ENGINEERING 

model hss been photographed by McNown (19?2). The true nodal line is a 
circle. The nodallines in the mean value of h which is to be investi- 
gated by the one dimensional theory are given by lines aa« and bb'. It 
can be shown, however, that all modes of oscillation predicted for a 
symmetric lake by the one dimensional theory must have a nodal diameter 
running through the center of the circle. Thus it appears that the one 
dimensional theory can not give even an approximate description of all 
modes of oscillation of a lake. 

NATURE OF THE EXTERNAL FORCES 

Before discussing the equations of forced oscillations of a lake, it 
may be well to examine thp nature of the forces to be considered. The 
forces considered here are those due to the atmospheric pressure gradient 
and the frictional stress of the wind on the water surface. We may write 

Fx - -(dPa#x -Tx/D)4 <n) 

where 
|L » density of water, assumed constant 
Pg m  atmospheric pressure 
*T^ « component of the wind stress in the x direction. 

A similar expression may be given for F . 

It is generally assumed that T can be expressed in the form 
x 

where 

\ "*Hi v cos ® (13a) 

X =• wind stress coefficient 

V • wind speed 

© - angle between the wind direction and x axi3. 

We can investigate the approximate ratio between the magnitude of 
the wiaSd and pressure components of the external force by expressing the 
pressure gradient in terms of the geostrophic wind by the relation 

dPa/dn - £afVg <U») 

where Vg * geostrophic wind 

ftt • density of the air, 

and writing 
Force due to wind stress  « XV (\<\ 
Force due to pressure      fTJV_ 

gradient     & 
Most determinations of the wind stress coefficient show that X is 

between 10"^ and 3 x 10 , and f is approximately lO"*4 in middle 
latitudes. Hence if we assume that the true wind is quasigeostrophic 
we have the approximation 

Force due to wind stress     • lO^g 
Force due to pressure gradient 
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The depth of Lake Erie varies from 10 to IjO meters, and in all lakes 
the depth within a few miles of the shore is rarely much greater than ten 
meters. Since important set-ups do not occur until the wind velocity is 
about 10 m/sec, (20 mph) or more we see that the wind effect will 
generally be an order of magnitude greater than the pressure effect in the 
shallow waters near the shores of all lakes, and over all of Lake Erie. 
In the deeper parts of the other lakes, where the depth may exceed 100 
meters, the effects of wind and pressure will be of about equal importance. 

In the case of sudden pressure changes such as that shown for 
Chicago on figures 5 and 6, the actual wind will be much less than the 
geostrophic value and the pressure gradient term may exceed the wind term. 

• 
However, apart from resonance effects, to be discussed later, the 

effect of the pressure gradient cannot exceed that of the equivalent 
water barometer, or approximately one foot of water for each inch of 
pressure. Since even the most violent of these sudden pressure changes 
rarely exceed .2 or .3 inch it appears unlikely that pressure changes 
could ever explain as much as one foot of the observed variation in water 
level. 

FORCED MOTION * 

The mathematics involved in the solution of the equation for forced 
motion is much simpler in one dimension than in two. However, the 
physical principles involved are the same. Therefore only the one di- 
mensional problem will be discussed in this paper. The method presented 
can be extended to cover the two dimensional problem. 

The one dimensional differential equation for forced motion is 

d(Adh/dx)/dx - bg-idVdt2  -   g"1 d(AFx)/9x (17)* 

The boundary condition is again determined by the requirement that no 
fluid can flow through the ends of the lake. This leads to the require- 
ment that the slope of the free surface must be in equilibrium with the 
applied force at the ends of the lake.  This may be expressed in the form 

dh/dx - Fx at x = 0 and x = L. (18) 

The solution of this equation can be expressed as a sum of the 
eigenfunctions obtained in the study of seiches. This solution has the 
form 

h - lan(t)0n(x) (19) 

where the coefficients are functions of time.  It is shown in Appendix II 
that the differential equation for a (t) has the form 

d2an/dt
2 + Xan - R(t). (20) 

This is a standard form of the equation for forced oscillations, and 
its solution is known for many different kinds of functions R(t). 

^Derivation in Appendix I 
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It is shown in Appendix II, that if 

FX - dFx/dt - h -dh/(9t - o (21) 

at time t » 0, then 
L      t 

hs"g*£{/ vn/FSinj/(t-T)dT<&ndx}<Dn(x) W 
A  study of the observations shows that there are frequent periods 

when these assumptions are justified. 

This equation gives the theoretical relation between the applied 
meteorological forces and the displacement of the free surface of a lake. 
It provides the connection between the seiche theories and the wind tide 
theories which is necessary to the development of any logical forecasting 
system. 

BEHAVIOR OF THE LAKE IN RESPONSE TO CERTAIN SIMPLE FORCES 

The significance of equation (22) will be clarified by a few simple 
examples.  If a steady state solution exists, it can be found by inte- 
grating the first equation of motion in the proper form (see Appendix I). 
The resulting expression is 

h(x) - hQ + F(x)/g. (2 3) 

This is equivalent to the wind tide equation given by Keulegan (1951, 
1953). This expression can be expanded in a series of the form 

*-l[/F(*>*W<**]tyx) <2fc) 
rO 

If we assume that a constant force is suddenly imposed on a quiet 
lake, it is found that 

h*l[(l-Co»ynt)/F(x)0n(x)dx]$ntx) (25) 
The coefficient of each mode of oscillation fluctuates around its steady 
state value with an amplitude equal to the steady state value, so that 
the resulting displacement reachs a maximum of approximately twice the 
steady state value. In the absence of damping it is not obvious that a 
steady state condition can ever be achieved. 

In figure 10, it is noticed that on Lake Erie, the force function 
rose from a value near zero to a maximum and returned to zero several 
times. The simplest mathematical expression for a force of this kind 
is given by 

F - 0 for t 5 0 /,n 
- F*(x,y)(l - cos***)      t J 0 v ; 

In this case we have 

h .£{[,- >Aof yt - y'pOf Wt] jV»(x) dx} #(X) (27) 
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The term in square brackets is obviously a function of the ratio W/y 
If we set tt) * 0 V , this becomes 

0 m""   1. 
(28) 

A jklot af an(t, 0) for low values of t and various values of 0is given 

in figure LU, For small values of 0, corresponding to forces with a 
period long in proportion to the natural -period, the lake is always in 
approximate equilibrium with the applied force. For large values of 0, 
corresponding to forces whose period is short compared to the natural 
period, the lake behavior approximates that which would result from the 
sudden imposition of a constant force with the same mean value. 

As ©approaches unity, the amplitude of an(t,0) grows because of 

the term (0 - I)'1. The apparent period varies with time, but the 
average period agrees with the period of the forcing mechanism, or with 
the natural period, whichever is greater, and the water level disturbance 
often becomes out of phase with the applied force. 

In the above discussion, oily one harmonic of the atmospheric force 
has been considered. The natural atmospheric disturbances may be con- 
sidered as the sum of many component eddies. These eddies vary in size, 
speed, and other characteristics. Only those eddies whose size is com- 
parable to that of the lake can be efficiently expanded in terms of the 
eigenfunctions. The effects of those eddies which are much smaller than 
the lake are observed as "noise" or interference superimposed on the 
basic pattern of the water level movements determined by the larger eddies. 
This noise will always lead to some error in the forecast, and useful 
forecasts will be possible only in regions in which the amplitude of the 
noise is small compared to that of the basic disturbance. 

This noise appears in the lake level records as fluctuations of the 
lake level with periods that are very short compared to the fundamental 
natural period of the lake. It is believed that most of the variations 
in lake level shown in figures 2, 5, 6, 7 and 8 are due to noise of this 
type. 

There is little evidence of noise of this type in the records for 
Buffalo, Toledo, and Gibraltar at the ends of Lake Erie. Hence it 
appears that useful forecasts of the lakewide disturbances on Lake Erie 
should be possible. However, some additional development work is still 
needed. Equation (22) should provide the starting point for the develop- 
ment of a practical forecasting procedure. 

However, the available records for the other Great Lakes indicate 
that the amplitude of the noise is usually as great as or greater than 
that of the lakewide oscillations. In view of this fact, it appears 
unlikely that useful forecasts of the lakewide disturbances on these 
lakes can be based on the available records. 
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Fig. 14. Plot of an(e,t ) for several values of © and low values of t. 
The dashed line gives the value of an applied foroe.  The solid line 
shows the relative displacement of the lake surface at a point. The 
unit of time is the free period of oscillation.  The slanted numbers 
inside the chart give the extreme values of the displacement. 
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MOVING DISTURBANCES 

Proudman (1929) has shown that resonance will occur between the 
atmosphere and a lake of constant depth if the atmospheric disturbance 
moves with the same speed as the long waves in the water.  It can also be 
shown by the theory developed in this report, that resonance should occur 
in a rectangular basin of constant depth, if the wave length of the 
atmospheric disturbance corresponds to the distance between two successive 
nodes of any mode of oscillation of the lake. 

Since the speed of long waves, and the effective wave length of the 
large scale lake disturbances depend on the depth of the lake, it appears 
that in a natural lake, these parameters vary from point to point so that 
a temporary state of resonance between the atmosphere and the lake can 
occur in some sections of the lake without having much effect on the lake 
as a whole. These disturbances, once created, are dispersed throughout 
the lake according to the laws of solitary waves. 

HARBOR DISTURBANCES 

The differential equation for the disturbances of harbors and other 
small basins opening into a larger body of water is the sane as that for 
disturbances in the entire lake. However the boundary conditions are 
somewhat changed. For seiches in a harbor opening onto a smooth lake, the 
boundary conditions are 

dh/dn » 0 on the closed boundary (29) 

h = 0   at the harbor opening (30) 

There are mouth effects similar to those found in the study of organ 
pipes in acoustics, and the effective harbor opening will usually be dis- 
placed slightly toward open water, from the geometrical opening of the 
harbor. 

In the general case, however, the lake surface is not smooth, and 
the boundary condition at the opening becomes 

hharbor * hlake * h(*> (31) 
In this case, the oscillations of the lake at the harbor entrance will 
force an oscillation of the harbor with the same frequency. Since the 
boundary condition (29) requires that the elevation of the water surface 
must be maximum or a minimum on the closed boundary, it is evident the 
amplitude of the disturbance must be greater at the closed boundary of 
the harbor than at the opening. 

By means or a suitable change in the dependent variable, it is 
possible to transfer the effect of the lake oscillation into the non- 
homogeneous term of the differential equation of the harbor oscillation. 
Here it will be added to the effects of the wind stress and the atmos- 
pheric pressure gradient to determine a total forcing term. The solution 
may then be expanded in a series of the eigenfunctions of the harbor 
defined by the differential equations for seiches and boundary conditions 
(29), (30), as in the case of an entire lake. 
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If the periods of any of the individual components of the noise, 
referred to above, approach any free period of oscillation of any harbor 
or other restricted basin opening into the lake, that component will be 
amplified by resonance within the harbor. From the study of a great 
many records of water level variations in harbors, similar to those shown 
in the first part of this report, it appears to the writer that most of 
these disturbances were established in this way. That is to say, atmos- 
pheric disturbances give rise to a wide spectrum of disturbances on the 
open lake. All of these are somewhat amplified by convergence and some 
are greatly amplified by resonance within the harbor. This hypothesis 
can explain the following observed characteristics of the short period 
disturbances, 

(1) All harbors in the same area tend to become excited at 
approximately the same time. 

This is to be expected if all harbors are forced by the same agency, 
either lake or atmosphere, 

(2) The characteristic period appears to be different in 
each harbor. 

This is to be expected if the disturbance is due in any way to resonance. 

(3) The harbor disturbances may occur as much as an hour or 
two before or after the apparently associated atmospheric 
disturbance passes the harbor. 

(h)    Harbor disturbances may occur when no atmospheric 
disturbance passes the immediate area of the harbor. 

These latter two characteristics imply that the energy of the disturbance 
must be communicated to the lake at some distance from the harbor and 
advected to the harbor in the form of a water level disturbance in the 
lake. 

If this theory is correct, it may be impossible'to forecast these 
short period oscillations primarily from meteorological considerations. 
However, the situation is not altogether hopeless, since it would be 
possible to minimize the undesirable features of these short period 
fluctuations of water level in harbors by changes in the harbor design. 
In order to accomplish this, it would be necessary to observe the 
spectrum of disturbances occurring in the open lake near the harbor 
entrance, and to make sure that all changes in harbor design tend to 
decrease the resonance between the harbor and the more common frequencies 
of the open lake. The importance of this subject has been discussed more 
fully by Vanoni and Carr (1951), Carr (1952), McNown (1952), and McNown, 
Wilson, and Carr (1953). ' 

All disturbances which do not have a node at the harbor entrance, 
may be regarded as progressive waves which enter the harbor, are re- 
flected by the opposite shore, and after some attenuation in amplitude 
emerge from the harbor. Since the volume of water carried by the waves 
xs a function of their amplitude-, it is evident that the waves carry 
more water into the harbor than they carry out. While most of this 
excess water will eventually be carried out of the harbor by a gravity 
current, the average water level inside the harbor will be greater than 
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at the entrance. 

It appears that the water level in all harbors should be greater 
than that in the open lake, but that the amount of this difference would 
depend on the amount of water carried into the harbor by wave action. 
Thus on calm days this difference would be vanishingly small, but on 
disturbed days it would increase by an amount depending on the meteoro- 
logical situation and the harbor exposure. 

CONCLUSION 

This investigation was undertaken to determine the cause of the 
short period oscillations, and to evaluate the possibility of forecasting 
oscillations of both long and short periods. 

The ultimate cause of the short period oscillations has not been 
definitely determined. However, a theory which is consistent with the 
observations and with hydrodynamic principles has been presented. The 
validity of this theory can be adequately tested only by additional field 
and laboratory studies planned for this purpose. 

It appears that useful forecasts of the larger long period oscil- 
lations of Lake Erie should be possible.  It appears unlikely that useful 
forecasts of the short period disturbances or of the long period dis- 
turbances on any of the lakes other than Erie will be possible within 
the next few years. 

The discussion of the representativeness of the lake level as 
measured by gages located in harbors was an unexpected by-product of this 
study, and no attempt has been made to evaluate the discrepancies between 
the records of nearby gages in engineering terms. However, it is believed 
that ah effort should be made to locate gages in the open lake whenever 
this is possible, 
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APPENDIX I, DERIVATION OF THE ONE DIMENSIONAL EQUATIONS 

FOR THE OSCILLATIONS OF A LAKE 

By integration from one side of the 'lake to the other it follows 
from equations (l) and (3) that 

y2 .      y2 >     y2 

/ It*--*/ -£*•/ Vy 

*1 'I *! 

f2    > 7 ' ft*   */' ft-*  " °     " 
yi ^i yi 

where y-, and y^ are single valued functions of x forming the boundary of 

the lake and the Coriolis term is neglected. 

A theorem in advanced calculus states that 

y2      y2 

£f     G(x,y)dy.J  |£:dy-G(x,y1)dy1/dx + G(^y2)dy2/dx 1-3 

yl yl 

where G is any function of x and y. The condition that no fluid pass 
through the boundary requires that 

v(y1)  - u(y1) dy-j/dx,  and v(y2j  - u(y2)dy2/dx I-i* 

By repeated use of 1-3 and I-k,  equations 1-1 and 1-2 may be trans- 
formed into 

1-5 

f J dy s - g -fcf& dy +/ fa + gMy^dy/dx-ght^dy/dx 

We Introduce the new variables 

—          «y? —         *y? 
D - _L  /   Ddy FY - _L /   F dy 

b   J b    J           x 

yi yi 

y2 _    y2 
"u - 1   f       udy h - _!_ t       hdy 

b  J ^V 
yi yi 
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where b s y2 —   lT\t anc* set 

h(y1) - E +€x h(y2) -   TJ + 62 

With the aid of these substitutions, we may write equations 1-5 and 1-6 
in the form 

ds/dt  +   gdh/dx  * FX + gb"1(€2dy2/dx - 61dy1/dx) 1-7 

bdh/dt   +    d(b5u)/dx   - 0 1-8 

In most cases the term in parentheses in equation 1-7 is small compared 
to the terms on the left and can be neglected. By neglecting this term 
and eliminating u between these equations, we obtain 

.a (A dVdx)/dx- bg-1 aVat2 - g-1 a(AFXVax, 1-9 

where A ±s the cross sectional area. Equation (17) is equation 1-9 
excepting that the bars indicating average values have been omitted. If 
the force term on the right is omitted, this corresponds to the equation 
for wave motion in a canal of variable section given by Lamb (1932, 
p. 273-271). 

When the force term is omitted, h" may be written as the product of 
two functions of the form 

h«0(x)T(t) I-1C 

where T (t) is periodic, and the differential equation for $ is given in 
the form     _   .      . 

d(Adii/dx)/dx+Xbg~1<j>    - 0. 1-11 

When the bars are omitted, this becomes equation (11). 

The steady state solution for one dimension is obtained from 1-7 ;eadv sta 
by setting dO/dt *  0 and neglecting the term in parentheses. This gives 

dh/dx - g"1^, 

or h - g_:4Fxdx - g-1F 1-12 

which gives equation (23). 

If we neglect the terms on the right side of equation 1-7 and use 
1-8 to eliminate h from 1-7, we obtain the differential equation for u 
in the form 

aVdt2 - (gbA)-l d2u/dt2  « 0 1-13 

By introducing a new independent variable defined by the relation 

v - /  bdx i-m -f 

48 



WIND TIDE AND SEICHES IN THE GREAT LAKES 

and assuming that u , is periodic in time this may be transformed into 

d2(Au)dx2 + k2(gbA)-1(Au) - 0 1-15 

The boundary condition for this equation becomes 

(Au) •> 0 at x - 0 and x « L 1-16 

when (Au)is known, h may be found by the expression 

h - b'^AuJ/dx. - d(Au)/dv 1-17 

Equations 1-15 through 1-17 are in the form given by Chrystal. This 
appears  the most convenient form of the equations for the computation 
of the one dimensional seiche functions. It is not as convenient as 
equation I7H for generalization to two dimensions or for the study of 
forced seiches. 

It will be instructive to use equation 1-15 for an investigation of 
the seiches of a circular lake of constant depth and to compare the results 
with the complete solution as given by Lamb (1932, p. 28JU ff) and McNown 
(1952). If the origin of coordinates is taken at the center of the circle, 
the width of the circle 2y *  2(a2-x2)!' and equation 1-15 becomes 

d2(Au)/dx2 + k2[og(a2-x2)] _1(Au) - 0 1-18 

with the boundary condition 
(Au) • 0 at x • ->*a. 

The boundary conditions and the coefficients of the differential equation 
are all even functions. Hence the solution must be an even function and 
all solutions will have either maxima or minima at x * 0. The first 
derivative of the solution therefore must vanish along the y axis. This 
implies that the vertical displacement at the center of the circle must 
always be zero.  It is well known, however, that there are modes of 
oscillation in which all nodal lines are circles, and the maximum dis- 
placement of the free surface occurs at the center of the circle. This 
result can be generalized to apply to any basin which is symmetric with 
respect to some axis. It appears that the one dimensional theory can 
not even approximate the solution of modes of oscillation, whose nodes 
do not intersect the shore, 

APPENDIX II, SOLUTION OF THE ONE DIMENSIONAL EQUATION 
FOR THE FORGED OSCILLATION OF A LAKE 

The method employed here involves the expansion of the differential 
equation for forced motion, equation (17), in terms of the eigenfunctions 
of the lake, obtained as solutions of equation (11). In order to ac- 
complish this we define two new quantities 

F -^JAC II-l 

1)1  *   F - gh II-2 

By means of these substitutions equation (17) is transformed into 

gd(Ad||J)/dx -d2lll/dt2   -    -bg"1   d2F/dt2 n-3 
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with the boundary conditions 

dl|)/dx     =0    at x = 0,  and x - L II-U 
If we assume that l|) may be expressed in the form 

1*1 -  0(x)T(t) n-5 
where 0 is a solution of equation (11),  equation (22) may be expressed in 
the form 

$(x)  (XT+d2T/dt2) «d2F/dt2. 11*6 

We define two functions of n and t by the relations 

o 

*o *• " n 

„(n,t) » J      lil (x,t)0  (x)dx .     H-7 
*o 

n(n,t) - J   [d2F(x.t)/dt2]0  (x)dx II-8 

where$(x) is the nth normalized eigenfunction defined by equation (11). 

Thus we see that$(n,t) and R(n,t) are the generalized Fourier co- 
efficients of {f (x,t) and d  F/dt , when these quantities are expressed as 
a series of the eigenfunctions,$ * These coefficients are functions of 

time. By introduction of equations II-5, II-7> and II-8 into equation 
TI-6 , we obtain the differential equation for an(t) in the form 

d2an/dt
2 + \an - Rn(t) II-9 

where we can use the symbol for a total derivative since a depends only 
on t. This is a standard form of the equation for forced oscillations. 
The general solution of equation II-9 may be given as 

a  « a n + a „ 11-10 
n    n,l    n,2 

where 

a„ = a      cosy t + da /dt  y   " sinV t: 11-11 n        nj 'n n'    J rn n iX x± 

t= 0 t=0 
and depends only on the initial conditions. 

an    s rj- / R(T)S1n(t-T)dT 11-12 
» n *o 

and depends only on the applied force* 

If the initial conditions are known, an j can be evaluated for any 

future time by standard methods. In the following discussion it will be 
assumed that an ^ • 0, and only an 2 will be discussed. This is equiva- 

lent to assuming that at the time t » 0, an and da /dt are both zero. 

Observations show that there are frequent periods in which this 
assumption is valid, and we may choose t - 0 in any such period. 
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Equation II-9  is the differential equation for the coefficient of a 
single mode of vibration. The complete solution is composed of the sum 
of all modes of vibration. Hence the complete solution for x under the 
condition assumed here is 

HI * l{ / /  [<*' F m/dt*] $n (x) Sin (t -T )dx df} ^ (x) n-13 

Since h «(F -lj))/g, and it is permissible to change the order of integration, 
we have 

h= fl"£{/ [F-/^^Sin(t--'ndT]0n(x)dx}0nCx)      
u'lh 

o   o 
After performing the integration this becomes 11-15 

h s "i"Z{/ ($fl Sin v t + F1 CosM + y/FSinMt-T)dTto dxW <*) 
9    »-»o wtJ|sQ   n JfaO   n o / n   J  n 

If F and   dF/0t - 0 at t- 0,  this becomes 

hs"fl"^{/yn/FS,ny <t-T>dT0ndx}$n(x) n-16 

This is equation (22). 
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