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ABSTRACT

The proper design of a pipe line for the transport of gas or oil from
sea to land requires the solution of a number of engineering problems
either not encountered in pipe line engineering on land or found to be of
a different nature in the marine environment than in the terrestrial
environment, These include: (1) consideration of the vertical stability
of the pipe, (2) consideration of the lateral stability of the pipe and
its vertical risers in the presence of wave-induced forces, and (3) con-
sideration of the longltudinal stability of the pipe in the presence of
thermally induced tensile and compressive forces. The first of these
considerations is treated in the present paper.

In those areas where the bearing capacity of the upper sediments is
small, as is the case for certain regions of the Gulf shelf, downward sag
of a pipe line can occur and entrenchment of the line to considerable depths
may be necessary in order that excessive stresses within the pipe be avoided.
Because both the flexural and longitudinal tensile stresses, occurring
simultaneously, can be important in a sagging pipe line, both must be
evaluated., Appropriate formulas and graphs are presented for this purpose,
From these and a knowledge of the sediment characteristics along the proposed
pipe line route, it is possible to determine whether or not regions of
critical sag might develop in a pipe of given specifications,

* Contribution from the Department of Oceanography of the Agricultural
and Mechanical College of Texas, No. 1k, This paper is based in part
upon research sponsored by the United Gas Plpe Line Company through
the Texas A & M Research Foundation.
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INTRODUCTION

The present and potential source of offshore oil and gas in tideland
regions of the Gulf of Mexico demands an economical mode of transportation
from sea to land. Pipe lines can meet this demand, if designed not only
to endure the processes of deterioration in the sea, but also to withstand
the internal stresses induced by lack of adequate support, by severe wave
loads, or by thermal changes.

An introduction to the scope of problems encountered in the design
and installation of pipe lines to be laid upon or beneath long stretches
of the sediments such as the continental shelf of the Gulf of Mexico has
been given in another paper (Reid, 1951). The purpose here is to expand
upon some of the physical problems which are encountered and to present,
in summary, the results of theory and techniques which may be useful in
the design of a marine pipe line,

Some of the specific questions which arise in comnection with the
laying of & pipe line offshore are:

(1) Wwhat route should be followed in reaching a certain off-
shore destination?

(2) Can the pipe be laid upon the bottom or must it be buried
within the sediments?

(3) If the burial of the pipe line is indicated, what should be
the depth of burial?

(4) Will the pipe sink into the sediments; if so, how much sag
will be experienced and what will be the stresses induced
thereby?

(5) Will support of the pipe in regions of weak sediment be
required in order to insure vertical stability of the pipe,
either from the standpoint of downward sag due to excessive
net weight of pipe or from the standpoint of buckling
associated with thermal expansion?

The engineers of the United Gas Pipe line Company were confronted with
problems of this nature in planning the 15 miles of 20.5 inch pipe and
10 miles of 14 inch pipe which has recently been laid within the sediments
of the Atchafalaya Bay, Louisiana, and the adjacent Gulf. (A discussion
of the preliminary investigation appears in the Petroleum Engineer, March
1951, and the installation of this line is discussed by Paul Reed, 1951.)

Such questions can be answered or at least partially answered by con-
sidering the vertical stability of the pipe in the light of the general
stratigraphy and strength distribution of the sediments along the path of the
pipe line. 326
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VERTICAL STABILITY OF THE PIPE
GENERAL DISCUSSION

Adequate support of a pipe line resting upon or passing through the
sediments of & marine enviromment, such as encountered on the Gulf Shelf,
cammot be taken for granted. The conditions of sediment strength and
degree of consolidation are considerably different from those which are
encountered in the case of ordinary soils, According to the soil mechanics
classification given by Terzaghi and Peck (1948), those soils having an
unconfined compression strength of greater than 8,000 pounds per square
foot are considered extremely stiff and those soils having a strength of
less than 500 pounds per square foot are considered very soft. The
different degrees of stiffness which mske up the classification are
contained between these extremes, In comparison, the mean unconfined
compressive strength of silty clays and clayey silts encountered in the
upper strata of the sediments of the Atchafalaya Bay and adjoining Gulf
region, for example, has been found to be approximately 80 pounds per
square foot.¥* Values range from less than 10 to about 250 pounds per
square foot. All of these values fall in the very soft category. From the
standpoint of pipe line engineering, it appears necessary to refine the
classification since the relatively stronger portion of the very soft
sediments can adequately support certain pipe lines., As an arbitrary
limit those sediments having an unconfined compressive strength of less
than 100 pounds per squsre foot (or & shear strength of less than 50
pounds per square foot) will be referred to hereafter as extremely soft,
The extremely soft and very soft silty clays are of recent origin and increase
in thickness (from a few feet to about 15 feet) with distance from shore
in the Atchafalaya Bay area, forming a wedge of weak deposits resting on
top of relatively stronger, and more consolidated, marsh deposits of
considerable thickness. Even the latter deposits are soft in terms of the
above classification.

This is a greatly oversimplified picture of the stratigraphy.
Superimposed on this structure are 'pockets" of nearly fluid sediment
which apparently extend to depths as great as 10 or 15 feet. These
pockets lie prinecipally between regions of hard reef, and consequently
represent a situation to be considered with caution because of the
possibility of differential sag of the pipe. A route which passes through
such zones may demand entrenchment of the pipe to considerable depth in
order to avoid the possibility of overstressing in the pipe walls due to
sag. Whether or not such sag could be critical depends upon such factors
as the net weight and length of the section subject to deformation, the
initial tenaion in the pipe, the strength of the sediments adjacent to the
weak zone, and the depth of the weak zomne,

* Ieipper, et. al. (1951)., Oceanographic Analysis of Marine Pipe Line
Problems. Final Report to the United Gas Pipe Line Company.
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The sag of a pipe section, having a length of the order of 200 feet
or more, introduces a complex problem from the standpoint of computation
of induced stresses. One is dealing here with a beam which is so long
that when vertical deformation occurs it is accompanied by a significant

.elongation. The firmer sediment adjacent to the weak zone will tend %o
restrain the movement of the pipe at the ends of the sagging portion of
the pipe so that practically all of the elongation will occur in the
sagging section, This can induce a net axial tension of considerable
magnitude, The tensile stress thereby induced in the material is in
addition to the tensile and compressive flexural stresses induced by the
bending of the pipe.

In the case of a very long pipe the bending effect can become so
small that the sagging pipe can be considered essentially as a flexible
cable. In this case the pipe will assume the shape of a catenary under
the action of a uniform load per unit length, with the tensile force
carrying the full load. If the pipe section is very short or if the
deflection is very small, then the theory of simple bending may apply.
In this case the net tension would be negligible and the load is carried
entirely by shear forces. The situation regarding pipe sag in the sediments
in general, involves both bending stresses and net tension, and the load
is carried partially by shear and partially by tension. In order to
insure a gafe design where sag is likely to occur, it is therefore
necessary to compute both flexural and pure tensile stresses induced by
the sag.

CRITERION FOR SINKING OF THE PIPE

An offshore pipe line which is resting upon the bottom will exert a
downward load on the underlying sediment which is simply the submerged
weight of the pipe in water, or absolute weight minus the weight of
water displaced by the pipe. In order that static equilibrium exist,
the sediment must develop an equal and opposite reaction. There is a
maximum reaction which the sediment can exert. This may be referred to
as the ultimate load bearing capacity of the sediment, In general
the bearing capacity depends not only upon the nature of the sediment but
is a function of the applied load distribution as well. Thus a pipe will
have an effect on the sediments which differs from that which a flat
plate of the same weight would induce., The criterion for sinking of the
pipe is that the net downward gravitational load exerted by the pipe is
greater than the ultimate load bearing capacity of the sediment.

If the pipe is entrenched within the sediment, the problem of
evaluating the net downward gravitational load of the pipe becomes
somevhat complex., Evidently the load exerted by the entrenched pipe
depends upon the structural nature of the sediment itself. In contrast
to a suspension (which represents a dispersion of discrete particles in
a fluid), the sediment consists of a continuous network of solid materials
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which includes water within the interstices of the structure. The
solid phase presumably supports its own weight and does not add to the
hydrostatic pressure of the water phase as in the case of a suspension.
In a fluid sediment, neglecting capillary forces, there will be a
buoyant force exerted upon the pipe which will be equal to the weight
of water displaced by the pipe. However, since only part of the total
volume of sediment is water, the buoyancy will be less than that ex-
perienced by a pipe submerged in water alone., The water content of a
sediment is generally evaluated in terms of the per cent of the dry
mass of sediment., ‘his will be denoted by the symbol . The
buoyancy per unit volume of the pipe in the sediment, however, is egual
to the mass of water per unit volume of the sediment., If B repre-
sents the buoyant force per unit volume of the pipe, then

(1) - Fs&
B |+ 100/Q

where .PS represents the density of the sediment (i.e., the wet density).
As an éxample, consider a sediment having a specific gravity of 1l.L and

a moisture content of 100 per cent of the dry weight., In this case

Ps3 = B87.h pounds per cubic foot, which leads to a value of B of
3,7 pounds per cubic foot. This represents a buoyant force which is about
70 per cent of that which would be experienced by a pipe submerged in
water alone.

J

If equilibrium is to exist, the sediment must support a greater
percentage of the actual weight of the pipe than in the case of a pipe
resting upon the bottom., The maximum reaction which the sediment can
develop with respect to the pipe will in general depend upon the
adhesive property of the sediment with respect to the pipe, the pressure
existing at the depth of entrenchment, the shear strength of the sediment,
the cohesive property of the sediment, and the size of the pipe. The
combined effect of bearing reaction at the bottom of the pipe and
adhesion along the sides and top of the pipe, under conditions of

maximum restraint,represents the uliimate load bearing capacity in this
Case,

For silty clay sediments, the ultimate load bearing capacity is
evidently independent of the pressure within the sediment, and depends
only upon the shear strength and load distribution., If ’Fﬁ represents
the ultimate load bearing capacity per unit length of pipe, D the
overall diameter of the protected pipe, and 2; the ultimate shear
strength % of the sediment, then presumably

(2) B = k,DT.,

* This can be measured directly for a sample of sediment or can be
taken as one-half of the ultimate unconfined compressive strength
for clayey sediment.
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for a silty clay. For the case of a flat strip load of width I acting
on a flat surface of clay soil, Terzaghi (1943) gives 5.1l for the factor
of proportionality kb « In the case of a pipe, kb is probably much
smaller than this, judging from the limited information svsilable on
sinking of pives. The circular shape of the pive evidently leads to a
stress concentration in the sediments beneath the pipe which is greater
than that experienced in the case of a flat plate. For concrete coated
pipe entrenched in silty clay sediment, an approximate value of Ry,= 2
is indicated from the experience gained in the installation of United's
pipe line,

It must be emphasized, however, that further information is needed
for establishing the empirical validity of equation (2) as well as
evaluating the proportionality factor. At the pres.nt time it is not
possible to state the exact threshold of equilibrium existing for a
pipe loaded sediment, It can be stated, however, that there is a signi~
ficant probability that sinking will occur 1f the net load per unit
length, exerted by the pipe, exceeds 2D7T, , and little chance that it
will not sink if the load exceeds & D Twu . If sinking is to be avoided
the net load should be less than 2DT, .

SYMMETRICAL SAG F A PIPE LINE IN PLASTICALLY DEFCRMED SEDIWVFKT

The problem of determining the combined flexural and tensile stresses
induced in the case of differential sinking of the pipe line is exsmined
in this section. Two simple end conditions are considered for the sagging
section of pipe. In the section which follows, an analysls of the end
conditions for a relatively firm (but non rigid) supporting materisl is
made by taking into accohunt the elastic deformation of this material,

If the vertical restraint per unit length, ~Fms , offered by the
plastically deformed sediment is uniformly weak in the zone of pipe sag,
and if the conditions of support at the ends of the sagging section are
similar, then the vertical deformation of the pipe will be symmetrical
with respect to the center of sag.

The net vertical load on the prpe per unit length, W, is simply the
net weiibt of the pipe in the sediment minus the reaction T o IF LU}
represents the weight of pipe per unit length in air (including the
weight of transported fluid-gas or petroleum), then

T P
(3) w o= ur_(,—4_‘DB "i?")

where B is the buoyancy as already defined. The reaction, T , of
the distorted sediment is not necessarily the same as the bearing capacity,
’F’ s of the undisturbed sediment.

b
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The criterion for sinking, however, is that

(wy - %D”‘B) >TF .

Thus, if the net weight is great enough, then the sediment deformation
exceeds the elastic state and its structure i1s broken down, reducing the
possible reaction which it can develop,

The Theoretical Model

A model is envisaged in which a pipe line spans a pocket of
excessively weak sediment of horizontal distance AZD along the pipe
resulting in a net downward force 4~ on the pipe over the length ,éi .
The weak material is homogeneous from the standpoint of maximum restraint,
and is of sufficient depth that the point of maximum sag of the pipe does
not reach a layer of strong sediment below. Furthermore, conditions of
elastic flexural deformation and elongation are presumed, such that the
amount of sag is very small compared to » and hence the slope of the
sagging section is very much less than unity. The assumptions regarding
the loading of the pipe and the elastic theory are summarized below:

(1) The net downward force per unit length, ¢¢" , acting on the
pipe is uniform along the pipe and essentially normal to the
pipe.

(2) The downward force is independent of the vertical deformation
of the pipe.

(3) The end conditions are the same at each end of the sagging
section, such that the sag is symmetrical with respect to the
point of maximum sag.

(L) The tension due to the axial elongation of the pipe is uniform
throughout the entire length of the sagging section of the pipe.

(5) Plane transverse sections of the pipe remain plane after
combined bending and extension of the pipe.

(6) The modulus of elasticity in tension is the same as that in
compression for the pipe material.

(7) The proportional elastic limit of the pipe material is not
exceeded.

(8) The axis of the pipe is initially straight.

(9) The slope of the sagging pipe is so small that the rate of
change of the slope per unit length of pipe represents the
curvature of the pipe.

(10) The pipe is of uniform cross section.

The assumption of negligible tension cannot be made for a sagging
pipe line, as is done in the case of a simple beam, because of the magni-
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tude of the deflection involved., If the maximum deflection in a fixed
end beam is of the order of magnitude or greater than the width of the
beam, then the restoring moment associated with the induced tension
becomes appreciable. * TIn order to keep the complexity of the problem
at a minimum, the assumption (L) is made. This appears reasonable
provided that the tension is large compared with the limited amount of
longitudinal restraint provided by the sediments in the weak zone.

Probably the most severe restrictions regarding the application of
the theory are (1), (2) and (3), and to a less extent (L), In applying
the theory to a real situation one must keep these assumptions in mind.
Examples illustrating the use of the theory are given at the end of
Part I, and certain modifications in the application of the theory are
discussed.

The Basic Equations of Combined Flexure and Elongation in a Pipe

A schematic diagram of the sagging section of pipe is shown in
Figure 1B, and the equilibrium of forces and moments is represented
graphically by Figure 1C. The origin of the coordinate system is
taken at the point of maximum sag; & represents the horizontal
distance measured positively to the right of this point, and & is
the vertical distance measured positively upward from this point.

This allows a convenient form for the equations governing the deflection,
in view of the fact that symmetrical sag is considered. The bending
moment at the origin is denoted by A7, , and the total axial tension
after deformation of the pipe is represented by A/ . An initial
tension may exist in the pipe line, due to thermal or pressure effects
within the pipe. This is denoted by A) , and is represented
graphically in Figure 1A, The shear at the center of sag is zero for
symmetrical sag. In view of assumptions (1) to (10), the equation
representing the balance of moments about point A in Figure 1C is

) M = Efgg-z=/‘7, W"‘“vb/V#)
4

where M represents the bending moment within the plpe at section A
of distance X from the origin., The quantity £ is the modulus of
elasticity in tension (or compression) of the pipe material, and 7~

#* Usually the assumption (7) would be transcended in a short beam
before the restriction involved here would govern; this however depends
upon the flexibility of the beam.
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is the area moment of inertia of the cross-section, The latter can be
expressed as follows:

(s) Z = A, r=,

where /45 is the cross-sectional area of the steel in the pipe, and
/~ is the radius of gyration of the cross-section of steel, taken
about the neutral axis,

The balance of vertical forces between & and A is given by

- A
(6) . V= e Ww¥x o+ /vggggf

where 1/ is the shear force at section A . Consequently the shear
at the end of the sagging section is

= -2
(7) y = —fwd, - V6,
where &, 1is the end slope at X'= 4/7_ (the negative of that at2’=—’!72,).
Because of the small values to which the gquantity & 1is restricted, it
represents therefore the angle (in radians) between the pipe and the
horizontal plane. It will be noted from this that the shear forces at each
end carry only part of the total net weight of the sazging pipe, unless the
ends are held rigid and the, angle & 1is zero. The total net weight w‘,4 s
of course, must ultimately be sustained by the vertical reaction of the
supporting material at each end of the saggzing section.

The %eneral Solution of the Equations for Symmetrical Sag

The solution of (L) for the vertical deflection of the pipe is

o g {0 e 5) ] s 5o

where A 1is a characteristic length defined by
! N
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The conditions 4= © and dﬁ/@‘ =0 at L=0 are employed in
arriving at equation (8).

The expressions for the slope, bending moment and shear at any
point in the sagging pipe can be derived from equation (8) as follows:

(10) o= f_‘& = #{%(Mo-wf)(s{nh 7‘/A3 +wx} )

aN
(11) M= (Mo o) (conk %) + W,
and
(12) V = —'; (Mo = wr X7 sinh %A .

It can be shown furthermore that in the limit (8) reduces to
(8a) "&,-’-' EI(M-?"WH\)

when N is extremely small, This equation, representing a special
case of the more general relation (8), is that which the simple theory of
flexure yields,

On the other hand, if N is very large then V is small and (8)
reduces to

™

wWrx
aN 2

(8v) y =

which is the approximate form of catenary sag associated with tension N .
These two limiting cases serve as checks on the more general theory.

Application of Hooke's Iaw for Evaluation of the Tension

Since the tension is one of the sought variables of the problem, an
additional equation involving N is necessary in order to make the
solution unique. This can be established by applying Hooke's lew to the
over-all extension of the sagging pipe section. If represents the
length of the pipe section between points (1') and (1) after vertical
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deformation has occurred, and 4{2 is the initial length between the
same points in the pipe prior to deformation, then the overall strain is
given by

L-A; N~ Ne

(13) _— = —

J"' - A s E g

where /VA-/VQ is the increase in tension due to the longitudinal strain
induced by the sag. The length of the deformed section can be found
from the approximate expression:

4%45 .
(1) l = L+ [ oCax,
()
which is quite valid as long as M/ << / .

Longitudinal Slippage at the Ends of the Pipe.

The quantity ,été 1s not necessarily the same as ,l?a R

because if longitudinal slippage of the pipe occurs at the ends, then the
original length of the section between points (1') and (1) will be
greater than ,é; and the resulting tension in the pipe will be lower than
that for the case of no slippage. The amount of slippage will depend upon
the longitudinal restraint offered by the stronger sediment adjacent to
the zone in which sag occurs. If the sediment exerting this restraining
force is perfectly rigid then no slippage will occur and . will equal

L, « If, on the other hand, the sediment at the ends of the pipe
offers very little restraint, then _£. will be nearly the same as
and the resulting value of (A-A, ) will be small,

The amount of slippage at each end of the sagging section is
(.é&-—l&)/Z. This slippage is proportional to the increase in tension at
the ends of the sagging sections The slippage is also proportional to
the effective length of pipe, adjacent to the sagging section, which
undergoes elongation, This effective length is determined the final
balance existing between the longitudinal restraint exerted by the
surrounding sediments, and the increase in tension ( /'—/Ye ) at the ends
of the sagging section. From these considerations it can be shown that
the following approximation i1s applicable

2
(15) L4 = GO
£ AE

where Jﬁ represents the maximum longitudinal restraining force per unit
length of pipe offered by the sediments adjacent to the Weak zone,
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If the pipe is buried in the sediments in the adjacent sections,
then ,/,_ can be expressed in terms of the ultimate shear strength,
Z,/ | of the relatively strong sediment as follows:
/

/

(16) ff_: ’/7'.'D'Z;/

where it is assumed that shear occurs at or near the surface of the pipe
of overall diameter 22 .

For a pipe lying on the bottom .Jf_ is equal to the coefficient

of friction between the pipe and bottom multiplied by the submerged
weight of pipe per unit length,

The Characteristic Dimensionless Parameters

In order to make the functional relationships existing between the
basic variables of the problem as simple as possible it is convenient to
introduce the dimensionless parameters given in the Table I,

Table I
Eq. Name Symbol Definition

(17) Bending moment factor m = M =

. w A

(18) End shear factor -+ = M
wrd,
2

- =

(19) Tension factor n = %%:9‘
w',24

20) Flexibility parameter = _—e
(20) v paren C[f EXItr

The definition (17) can be applied to the moments at the middle
and at the ends. The quantity

(21) M, = Moz
‘ w A,

# The quantity vt 1is the radius of gyration of the cross section as
defined previously and equals -‘/ TI/Ag o
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is the bending moment factor at the point of maximum sag, and

M,

) ey o

is the bending moment factor at the ends of the sagging section.

Likewise, as a special case of (19):

2.
2 N. £
(23) n, = —=2
EX
which is the intial tension factor.

By making use of equations (7) to (11), the following relations
can be established:

(2”») .,P = ’li' - %' "TQ_:G, )
(25) m, = -

|
t =5
|2} ,ol'nh n/q_, nz'
(26) m = —P L L
= P
: ntacd ", n*
and
| — cosh n/ty
(27) .i":‘_ = _a_b_'__ L4 2 " R
F ni— g n S)Wh n/;_
where m 1s the maximum vertical deflection or simply the sag,
Special

orms of these expressions are given below for the two commonly
visualized end conditions.

Case I: Rigid Ends with Zero Slope

This condition is illustrated schematically in Figure 1D and
represents the situation for which @,=0. In tnis case the equations
(2ly) to (27) take the form:

(2)48') VP = —lz )
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! 1

(253) m, = - -
2n iy o0
\ |
26 = -+ —
( 3.) YYI, an 'L‘a.wtt "/2_ n* )
and
—m&\.“/'x-
2 Nl [—‘- : ] .
(272) = ”aﬁb:i YN

The maximum bending moment factor (and hence the maximum bending moment)
occurs at the ends for this condition and is given by ™M,

Case II: Ends Free to Turn

In this case W, = 0 , which implies a maximum slope (or inflection)
at the ends of the sagging section., For this condition:

: Lo g = _ i‘;m_é_*ll_)
(Zhb) "F‘ 9, - ;b:-z.(—li m o * pl
| |

(250) m, = :{’"< b costa n/:.) )

(26v) VF) = —l{ touds "o >

and

270 mo _ S TL _'__';_C""‘___’i‘_ff’;] .
(270) j?-— = = [ g+t oA

In this case the maximum bending moment occurs at the center of sag.

The Relation between the Tension Factor and Flexibility

It should be noted from the relations above that the bending
moment factors M, and ¥, and also the shear factor 4o are fully

3 Note that lo/k represents the slenderness ratio parameter, which is
the critical variable in the stability theory of columns.
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determined by the tension factor Y'la" + This factor must be determined
from the flexibility parameter , the end conditions, and the initial
tension. Equations (10), (13), %.h), (15) together with {25a) or (25b)
yield the additional relations required:

(28) %— = JL("))
where -
(29) ky = 1= /T
"3 , 2 2}
(30) k:_:-\/l-l-A%/“(n—-ﬂ,z))
and ,/
A — EA$ 4 ..l..*_r_ ._E__:[_ 4
The function ;F{n) depends upon the end condition.* For case I ( ©,= 0 ):
-n -y
4 [ = n+3(1-€e ) :
(32) j—(n):}l(n)z—{z;n{Yl—"ln+z4+3n[|_ — ]},
while for case II ( M, = o ):
o

2 - & pimkhn\]
(33) J‘Ln)=f',(")='ﬁzn4{n_z4+ %(n'”"‘“" ).} )

The quantity A is a dimensionless parameter which may be
referred to as the slippage coefficient. The slippage is large when
the restraining force f,_, is small compared with (o~ « If the
ends of the pipe are held so that no slippage occurs, then k =/

If both g and 27, are zero then ,€/ = éz =/ and (28) reduces
to

(28a) % = ;F'(") for 6,= o0

or

(28b) Cl,

Jc;_(n) J‘”P m, =

i

* . See Table VIII in the Appendix for tabulated values of F(n)
computed for different values of " ranging from .0l to 1,000.
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The function .f//ﬁ) [i.e., 4~ for M, =0 , O=0 , 9/-70] is shown
graphically in Figure 3 by the dashed curve., The function A ¢»7) is shown
graphically by the full curve labeled 7, =0 in the same graph. By

means of this graph it is readily possible to determine 7% corresponding
to a given value of for the case of no initial tension and no slippage.
Curves of 77% versus g corresponding to four different finite values of
77," are also shovn in Figure 3 for the end condition »#7=0.

The expressions for £(»7) in equations (32) and (33) reduce to
simple forms for the limiting conditions of very small and very large
values of 77 :

Lm Jm __ AT . , L &0 /87 . '
(a0) bim A0 U 2 gy hm AT A 2 4g;
and
(36) Lim &) _ L SO0 .

n->co n> r1-co —;‘3_ = V244' = 4,90 .
Thus for the case of no end slippage and no initial tension
2/3
(2497

for large values of C{T . Equation (37) is a good approximation if:

b
CB_>IO ) Sor ©,=0;
or

4
>0 =
%« J , Jor wmz=o0.
Physically this means that for sufficiently large values of s the

pipe acts essentially as a flexible cable. Equation (37) can be put in
the form

Vs

- | EAs >
(37a) N = ~a (w/m

which is the expression for the tension in a flexible cable of length
Zo , provided that the sag is very small relative to jg .
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If slippage or initial tension is appreciable, or if ? is not
sufficiently large, then the general expressions for A7)’ must be
used and the factors 4, and /@,_ must be taken into consideration,
A more complete graph could be constructed so that -27% could be
readily determined from , Mo and I . Lacking such a complete
graph, the evaluation of Y »7%* can be carried out by successive
approximation without too much difficulty (see examples illustrating
this procedure at the end of part I).

Tt will be noted from Figure 3 that the scales for #7  and
are logarithmic, allowing for a wide range of values in both parameters,
The general curves approach the limiting asymptotic relations for very
large or very small values of o The limiting asymptotes appear as
straight lines on the graph, thus making it a simple matter to extra-
polate the curves for values lying outside the range of the graph.

Determination of the Bending Moment Factor

For the end condition of case I 777, is of prime concern, while
for case II *##, is the important factor for determination of the
maximum bending moment in the pipe. As indicated above, these factors
are functions of »% only and are represented graphically in Figure l.
The factor ##, corresponding to &, =0 is represented by the dashed
curve, while 27, for the case of w#7 =¢ is represented by the
full curve,

The limiting expressions for these functions can be obtained from
equations (26a) and (25b); see Table II below:

Table II
Limiting values of 77, and 7,
Case I ( &, =0)
Value of M, Condition
4 2
-T2 n <3
- L n> > 1000
an

Case II (7, = © )

Value of ‘M, Condition
) 2
- n Y
8 <
| N
-’:]—-’_ Y1 > 500
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The limiting expressions for M, and M, in the case of small tension
are consequently:

(38) M, = -5 wld, , For 8=0,
and

| > -
(39) M, = rl wds > For M, = e,

which are the same expressions obtained from the theory of simple
bending. For very large tension, on the other hand, the bending
moments are a very small fraction of u.r‘.l, « In case II, the tension
becomes the prime factor in the determination of the stress in the pipe,
when mM? is large.

Figure 5 shows the bending moment factors as a function of the
flexibility for the case of no end sllppafre. The dashed curve represents
‘M, versus for ©,=0 and NS =0, The full curves represent
W, Versus for the different values of »7.> 1ndicated, for the

condition M =0 o

Practical Forms of the Equations for Slope and Relative Sag

The equations (27a), (2hb) and (27b) can be simplified by use of
(28). The formula for the slope in case II becomes

(ho) L e = k'k’- k’-‘-n)

-

where' R, and R, are the same as defined in (29) and (30) and Ka is
a coefficient which depends upon Y1 . It can be shown that for the
entire range of vV :

(Smo.ﬂﬂ) V\H-s- < ks <. .A[(: (large n) .

The average value of ka is about 2.2L, and the following approximation
will yield values of e| which are never more than 10 per cent in error:

(40a) o, = 2.24 k,k, ,Q (m,:o).
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The formula for the relative sag can be simplified in a similar
manner:

() 47 =k kaky

The coefficient K4 is determined by Y , however for the entire
range of N

jos,
(large 1 ) 3/8 < ‘(4 < ‘\/ 256 (small M ).

The average value of '(4 is about 0,626 for either of the end
conditions examined here, This means that the following approximation
will yield values of %m which are accurate to within about 2 per
cent:

m,—.—.o

©,=
(l1a) t&mé 0.626 kR, ko Fn, i or—o}o

It will be noted that
a2 a
k’n = v\/Yl - Mo ,

so that both ©, and Y, are proportional to the square root of the
increase in tension in the pipe due to sag. Furthermore, if there is
no end slippage the coefficient | is unity.

For small values of qV the equations (27a) and (27b) reduce to
the forms:

Cwdd
2o o s L e em e
and 4
(L2b) %m’-’ —5—582 -—E‘-%:—-" > Sor m, = O ,

provided that there is no initial tension. These equations are also
obtained from the theory of simple bending.

Limit of Application of the Simple Theory of Bending

The simple theory of bending of a beam under the action of a
uniform load per unit length is seen to be a limiting case of the theory
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of combined flexure and elongation given here., The question of
whether or not the generalized theory is required for a solution
to the problem depends upon the value of the dimensionless
flexibility parameter and the initial tension factor,

It is evident from Figure 5 that when an initial tension
corresponding to a value of €NM,™ greater than unity exists, then
the simple theory of hending is not valid, Furthermore, Figure 5
indicates that, for n, =06, there is also a practical limit of
flexibility beyond which the simple theory of bending becomes
invalid, For a 10 per cent tolerance of error in the simple theory,
the upper limit of flexibility ( @. ) in the application of the
simple theory is:

(L3a) %«c = 700) for ©,=o0 (rigid ends),

or

(L3b) = &o, for m=o0 (ends free to
%C ¢ turn ).

From equations (L2a) and (42b) and the critical limits of
given above, it is evident that the upper limits of the relative
deflection for which the simple theory is valid are:

(bha) (%m)

i-

a” l,%)for 8, =0,

r

<
and

(Llib) (i?gi)

-

O,bgfor m, = O,

That is, if the simple theory is to apply, then the maximum deflection
must be less than the order of magnitude of the radius of gyration of
the cross section.

It is possible, for given pipe specifications, to interpret the
above criteria, for the allowable use of simple bending theory, in
terms of the length ( ,Q,)O for different values of net loading wi .
Table III gives this information for two different pipe sizes, and
for values of net load from 1 1lb, per ft. to an extreme value of
1000 lbs. per ft. The load is governed by the weight of pipe
(including ballast, if any), the weight of fluid in the pipe, and the
characteristics of the sediment as discussed above, and is not
necessarily governed by the pipe specifications alone. The stress

8, induced by simple bending under the conditions stated is also
included in Table III +to indicate that, in most of the situations
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represented, this is not the governing factor so far as the validity
of the simple theory is concerned. In other words, taking the 20,5
inch pipe with w” = 10 lbs. per ft. as an example, it is apparent
that there is considerable latitude for increase in _,Z, beyond

the eritical value of 210 feet given for case IL, so far as the stress
is concerned, However, the generalized theory must be used in order
to determine the sag characteristics for £, beyond this value. It
can be shown, in fact, that for sufficient length this pipe would
fail essentially in elongation rather than in bending, under condi-
tions of free sag with the load of 10 1lbs. per ft.

Table IIT

Critical values of pipe length #, corresponding to different
net loads per unit length, beyond which simple bending theory
is invalid; and bending stress corresponding to these conditions

(a) 10 inch 0.D. steel pipe: (1/2 inch wallsg

T = 169 in.0 A =1L.9 in. F = 3.36 in,
Case It 6,=0 Case II: wn,= o
w” éé")c sb (Z‘b)c sé
1b,/ft. fte psi ft. psi
1 265 2,080 19 985
10 149 6,580 8l 3,130
100 8l 20,900 L7 9,800
1000 L7 (60,400 ¥ 26 30,000
(b) 2045 inch 0.D, steel pipe: (3/L inch walls)
I= 2270 in.u R5=h6.5 in02 = 6. 98 ino
Case It @, = o Case II: M, = o
e go)c 56 gb)c Sé
1b,/ft. ft psi ft. psi
1 66, 2,000 372 938
10 372 6,250 210 2,980
100 210 20,000 118 9,L10
1000 118 (63,100)* 66 29,500

# Based upon the asggmption that there is no initial tension;
E taken as 30 x 10° psi,

%* Values in parenthesis represent stresses beyond the endurance
limit for ordinary steels.
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REDUCTION OF MAINTENANCE BY PROPER ORIENTATION OF SHIP CHANNI
THROUGH TIDAL INLETS

Induced Stresses

The bending moment induces a non-uniform normal stress across the
section of the pipe. The maximum value of this stress, S, , occurs
in the material farthest from the neutral surface of bending, and 1s
given by

(15) s, = “"‘i R. Ly ) u;ﬂo R,

where ;'Ro is the outside radius of the steel pipe. The bending stress 1is
zero at the neutral surface of bending and varies from - S, at the
concave side to +S3y at the convex side of bending. The tension induced
by axial elongation of the pipe gives rise to a uniform stress, St R
glven by

N nLEI

A, ALY

Thermal stress assoclated with restraint of axial elongation or contraction
of the pipe is included in this term, since in determining N thermal
effects must be taken into account in the term A, .

(6) Sy =

The vertical shearing force gives rise to & non-uniform shear stress
at each section of the pipe. The mean value of this shear stress 1is

Yoo gt
AS As

(¥7) S, =

The transverse shear stress varies from zero in the steel farthest from the
neutral surface to a maximum at the neutral surface. For a pipe of standard
wall thickness relative to the diameter, the maximum shear stress is
approximately = SS .

The fluid pressure within the pipe will give rise to still another
stress due to the clrcumferential elongation of the pipe. This stress 1s
called the hoop stress, S, , and 1s a uniform normal stress which is
perpendicular to the normal stresses induced by axial elongation and
bending. If A-p represents the difference in pressure between the inside
and outside of the pipe, then

8 B
(48) S, = N Ap |
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where D, and D, are the outside and inside dismeters of the pipe,
respectively.

The formula, for the most severe combined stress at a gilven s section
of the pipe depends upon the value of the criterion parameter 4 3, /S, .
Table IV gives the appropriate expression for the governing stress (either

Syg.m OF S, » ) for three different conditions imposed upon the criterion
pardmeter,

TABLE IV

The Governing Combined Stress
and the Criterion for its Choice

Condition Governing Combined Stress
-
43
0 < s S =
] 4§1 ettt
s ) 2
(B) 5, > 3, > s, St)m =;{(St+3h) +v\/(s,c-sh)+1‘
45
- — A
) s, < = S S = 5 NS HICS]
b
. = S¢Sk
where Sl = (Sb-\-St) —Sh 5 S, = -—-—S—b—-—

It will be noted from Table IV that condition (C) implies that the maximum
shear stress 3Sg,, governs., This presumes that the yield limit of
stress in shear is Just half that in tension for the pipe steel.

Under conditions (A) the pipe would fail in tension at & point
farthest from the neutral surface, provided that 3, ,, were great enough,
Under condition (B) the pipe would fail in tension at the neutral surface,
along a plane which forms an angle of less than 90° with the neutral surface.
Under condition (C) failure, if it occurred, would manifest itself by shear
at the neutral surface, along a plane which forms an angle of less than 90°
with the neutral surface.
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The position along the pipe line at which the maximum stress occurs
depends upon the end conditions, The stress S, is a maximum at the
ends of the sagging section for the case of zero end slope; while in the
case of ends free to turn, the maximum value of S, would occur at the
center of sag. The stress Sg , on the other hand, is a maximum at
the ends in both cases, but its magnitude depends upon the end condition.
The stresses St and Sy, are presumed to be independent of
position along the pipe.

For practical purposes, the condition (A) can be presumed for
nearly all cases of pipe sag, and the governing stress therefore is

(L9) St,m = Sb+ S;

where S}, is the value occurring at the position of maximum flexure.
The validity of this assumption, however, can be checked by computing
4 (55)"/55. This must be less than the value of (Sp+S3) - S, ,
otherwise sb"'st is not the maximum combined stress.

The Dimensionless Stress Parameters

It is convenient to introduce the following dimensionless stress
parameters:

(50) <rb = (%‘f‘}a' —S‘E'k )
and
(51) oG = @:)" %— :

From equations (L5) and (46) it can be shown that the stress parameters
are related to the characteristic parameters Y"m |, 1, and %
as follows :

R
(52) O'L = == mq, ;
and
(53) = n .
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The maximum combined stress for condition (A) is therefore

o0 88, =) EEea) = ()R (Temgerd),

The quantity ( Uy + Ot ) can be shown graphically as a function of Ck
for given values of > , .4 , and R, /}.

For all practical purposes, the value of Ro/ ¥ for most pipes may
be taken as A/Z- . This is theoretically correct for a circular pipe with
thin walls. However, if greater accuracy is desired, the following
relation can be used:

2.
(55) - Ko

F o s RIRY

where ’R_J’ is the inside radius,.

,. Figure 6 has been constructed using ’R,/,, =4z , for the case of
Ny =0 and A= 0. The value of the combined stress factor (Tp+ T )
given as a function qr corresponds to the combined stress at the point
of maximum bending in the sagging pipe. Curves for the two investigated
end conditions, ©,= o and ¥vi,= o, are shown, In the case of ends
free to turn, the stress factor approaches that for simple bending (01 = o )
for very small values of . For very large values of , on the other
hand, the combined stress factor approaches that corresgponding to the
stress in a flexible cable,

In the case of 6, = ©, the curve approaches that for simple bending,
for low values of . However, at high values of the values of
(0, +03 ) are considerably greater than the corresponding values for
the case of M| = o ,

In the general problem for which Y\: #o0 and A #o0 , it is necessary
to make use of the relations (52) and (53) in order to compute the
combined stress factor. The value of %7 to be used in relation (52)
is the maximum factor for the particular end condition.

Table IV gives the limiting expressions for /3 3 I , and
(az + dg ) for the case of no initial tension and no end slippage.
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Table V

Limiting expressions for the bending and the tensile stress factors
for the case of N*=0 and b= o0

End Condition| Stress factors Stress factors and Values of
combined stress factor |for which
for a pipe with thin limiting
valls R, = S’ relation

/e 2 applies
b T Iy e |Tp+Tg
Case I (R avj_. —s
- — Ko A8q | LbSx/o /NE < /ovo
6, =0 = .
4. 3 5 7 2 2 6
%}f’fz;é 7 /,20/% >l 347%13 /W;é % >/0
r (24)73
Case II 2 — .
(m;=o0) 34_@9 g 74 /77 | A2/ 177g | g.< 0
r 44 320 X g’“
%4l o3 4 2 24 7
@4913.,% v 4,05§ 3 .347? .347; ? >/0
r %

Resume of Theory of Free Sag

The independent dimensionless variables in the problem of pipe sag

are the flexibility parameter 66, , the initial temsion factor 77,* s
and the end slippage coefficient .4 . Given these, the factor 27 * can
be ascertalned, and consequentlys”, , 247, , W , 8, 4ef, Im/p , OF

Us , and gg+dcan be evaluated for a given end condition, The basic
quantities sought can then be found from the dimemsionless parameters by
applying the definitions of these parameters given by relations (17) to
(23) together with (50) and (51). The basic physical quantities which
must be known in order to determine the actual temsion, bending moments,
etc,, are sumarized in Table VI,

<
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Table VI
Category Physical Quantity Units in the ft.-1lb,-sec.
system

No lbs.
loading factors wr lbs. per %,

i lbs. per Tt.
span of weak zone { 4, ft.

E lbs. per sq. ft.
pipe specification I £t 4

factors Ag £t.2

The problem is thus formally solved, but only for the two specific
end conditions chosen, and subject to the restrictions implied in the
basic assumptions (principally numbers 1, 2, 9 and 10).

The theory of pipe sag presented above is not necessarily restricted
to the case of sag into weak sediments, but may apply to a wide class of
situations encountered in the installation of the pipe line. The situa-
tions encountered in nature may be classgified as either simple or complex
from the standpoint of the application of theory. The problem falls in
the simple category if the conditions are such that the assumptions in the
theory are fulfilled for all practical purposes. If this is not the case,
then the problem is complex., However, it may be possible, by proper
separation of the problem into various parts, to apply the theory in
modified form. Such a technigue must be used in analyzing the situation
of restricted sag, where a portion of the sagging section of pipe is
supported by firm sediments aflter a certain amount of sinking occurs.

Restricted Sag

The theory of free sag is subject to the condition
Yo < h,

where h is the vertical distance from the ends of the sagging pipe
gection to the bottom of the week sediment zone. Under certain conditions
the sag may be great enough that the central portion of the sageing
section rests upon the firmer sediments at the base of the weak zone (see
Figure 2A). 1In this case the portion of pipe subject to free sag is not
,é; but is a smaller length ,AL’ . The equivalent free sag problem for
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/
the length j., is represented graphically in Figure 2B. It is considered
that the slope of this section is small enough that the unit load, ¢« ,

is nearly normal to the pipe as previously assumed. The vertical scale in
the schematic diagrams of Figure 2 is greatly exaggerated.

/
For the case of zero moment at the ends of section /a , the
equivalent end slope, referred to the rotated coordinates in Figure 2B, is

(55) 6 = 7@/_ .

/
The section ,Z, ig subject to an effective initial tension factor
(=7, given by

, ) )
(57) Gn)” = "7"2/2:/ * Z(_F/ g

2
where 77, is the initial tension factor of the straight pipe.

By making use of equations (28), (29), and (40a); together with (56)
and (57), for the special case of %7,”z0 and no end slippage, the follow-
ing important relations are obtained:

2 "'4
- L FEn) _91'7_2 - /]

and o

2 . 67 /
59 Le = 5, - F
o) A7
where

: N

6 = el
(60) (n ‘s —

The function fa(7?') is that given by equation (33), where 7 1is
replaced by »7/ , The graph of this function, as already noted, is
represented by the full curve labled #,* =o in Figure 3; in this graph ’
enter with (»77)* on the vertical scale and read A(»7/) on the horizontal
scale,
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- 2-

The quantities (”7’) and [,, are the key factors to determine,
because once these are determined, the tension and bending moment can
easily be evaluated, Equation (58) is not explicit in 27/ and therefore
nmust be solved for 77/ by successive approximation and/or graphically.
The maximum possible range of ,[o’/j‘ is 0 to 1/2, and therefore
must lie in the range:

(61) °'“°(%)%< (n)” < 0.0 G‘F)L >

according to equation (59). This serves as a guide in the selection of
values for a solution to equation (58). The upper limit ©.76 (h/r)*
corresponds to .,Z,/ = _{,/2. This represents the condition for tangency
of the pipe at the bottom, with zero moment at the point of contact. In
the case where the pipe is tangent to the bottom but receives no support,
(7')*is equal to O.64(A/+)Faccording to equation (4la); under this
condition a bending moment does exist at the point of contact.

The maximum bending moment factor for the condition of no end moment
is 77,/ . This can be determined from equation (256) by replacing *7 by
27’ or can be obtained from the solid curve given in Figure L by entering
with (7% on the horizontal scale and reading 7, on the vertical scale.
The bending moment can then be computed from the relation

(62a) M: = m, w@o'>;.

For the case of rigid ends of the section j, , the problem becomes
complex, for in this event the section .Z,' is no longer symmetrical with
reference to the rotated coordinates of Figure 2B, One end is rigid and
subject to a maximum bending moment while the other end is free of moment.
However, as a first approximation the equations (24) and (26) can be used
to determine the maximum bending moment factor. The angle &, for this
case will be — A /4 ; therefore

g
(53) m, £ - P o4 o
where n' 't'm,&,":
4

¢ = 3(x)
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{
The values of M' and Ao , obtained from equations (58) and (59) can
be used in (63) and (64) as a first approximation, Finally the end moment
can be found from

' ’ 1\*
(62b) M' = m w @)
and the tension can be found from equation (60).

DEFORMATION OF A PIPE LINE IN AN ELASTICALLY DEFORMED MATERIAL

In general the relatively strong material which supports the pipe at
the ends of the sagging section will be deformed itself. This may be a
quasi-elastic deformation if the material is sufficiently strong, or it may
be predominantly a plastic deformation. The condition of rigid ends is a
hypothetical situation representing the limiting case of elastic deformation
of a material of infinite strength and infinite elastic modulus. On the
other hand, the condition of zero moment at the ends of the section _¢Z,
is a special case of plastic deformation of the supporting meterial, where
the net upward unit load on the pipe is the same in magnitude as the down-
ward unit load in the weak sediment zone.

The situation of elastic deformation of a relatively strong supporting
material is considered here. By examining the mutual distortion of pipe
and supporting material under the action of a known total load on the pipe,
it is possible to arrive at a "modified rigid end" condition, which makes
the determination of stresses associated with pipe sag more realistic,

The Basic Equations

The equation for balance of vertical forces on a small section of
pipe is given by

4 2,
(65) ET 44 - N34 - ¢
dx4 dx* 7

whe;e § is the net force per unit length acting in the direction of

. As before Y’ is taken vertically upwards. Equation (65) is sub-
Ject to the assumptions (%) to (10) inclusive given in the preceding
section, but the restrictions imposed by (1), (2), and (3) are dropped.
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The agsumption which is made in place of (1) and (2) is that

f/p
%)

>0 ,

(66) f= - Egy , o Eg=

vhere E e 18 the effective elastic modulus of the sediment, and g,' is
measured upward from the equilibrium position of the pipe.

The other principal assumption is that the supporting material, which
is subject to elastic deformation, is of semi-infinite extent in the
positive A/ direction, The origin is shifted horizontally to the end of
the sagging pipe section, so that Z'=o1s the dividing line between the
weak sediment and the relatively stronger, supporting material adjacent to
it. Furthermore , it is presumed that / approaches zero for very large
values of X’ » l.e. it reaches the equilibrium position at great distance
from the end at which the sag load is applied,

Under these conditions, the solution of (65) is given by one of the
following equations:

4

-BX .
(67a) z('= L e £ A, Y(c-%) for W< |
A YC 2
(610) ﬂ,’ = il e_xx (c~2%) , For =1
c
(670) § = e [ P e T
where € e L
(68) ¥ N
- zu\}EI Ee
Ve
(69) o = ( Ze ™,
...1{ ] el
(70a,b,c) (5-_: ol "!'j-{_f > V o ' ) y = o 2 )
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(71a,) n,o= gty | n,=pE-Y.

The constan’c ‘}\ represents the vertical displacement of the pipe at the
end X' = o , and C represents the position of ‘= 6. The gquantity

is a dimensionless quantity which will be referred to as the tension
parameter. The quantities oc , /& , & , V', 77, , and 7, have the
dimensions of wave number (reciprocal leng’ch)

In the case of 7/</ the distortion of the pipe is in the form of a
damped sine wave, of wave length 27,74/, For 72>/ the distortic is

critically damped. A schematic diagram of the distortion of the pipe is
shown below:

Sov Pporh‘ng Materal
\
* Elastic

De SFormation

Wea K
Sediment N iezs e
(Plastic) o<y |

The distribution of reaction, S , 1s indicated by the vertical arrows.

¢
The distortion %m indicated in the above diagram occurs at the
distance A from the position of zero distortion. For the case of

F</

i

(72) Zan VA _ =T
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In terms of the wave length ,/g , the value of A 1lies in the range:

o< 4 </e/y

the upper limit corresponding to ?/" © (no tension). The position of
zero slope (corresponding to = ym ), zero moment, and zero shear
occur at distances of A , 24, andFA from the position of =,
respectively. A speclal case of (67a) for the condition A= 4 has
been investigated previously by Timoshenko (1930)*. In this case,

/5:)/:: “/_1/;.

For all values of the tension parameter '3/ i.e., for either damped
sine distortion or critically damped distortion, the distortion becomes
negligible in a distance of about 2777al from the end. This distance will
be small if the elastic modulus of the supporting material is large. For
all practical purposes, if the supporting material is at least as long as
274 , then the relations (6Ta,b,c) are valid.

Maximum Total Reaction and Moment, for Elastic Deformation

The total net reaction of the supporting material is denoted by ~ .
This is defined by the relation

o0
(73) F = jj—ab)!.'.

In general, the value of F d;z\}wends upon the arbitrary end conditions

g,’ and ¢ as well as upon , and the characteristics of the pipe and
its supporting material. The extreme value of reaction, F;/, , Which can
occur under the condition of elastic deformation of the supporting material
is given by the approximate relation:

(M) E, £ (0% + 132 ATEH) E | fu <o,

where \5;‘-_ is the critical limit of beyond which the deformation of
the supporting material becomes plastic. The conditions for maximum re-
action are that

peco (e Ae)

* This is an extension of the original investigation of a beam on an
elastic foundation which was carried out by Winkler (1867).
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a ol = 19 =

/
The bending moment in the pipe likewise depends upon % , and <€ in
general, The extreme value which can be obtained, /‘7,,/,,4 , under elastic
conditions, is given by the following approximate relation:

(75) let = - (3.8b +4.10’X) {-Li,_ ) Sor ¥ <lo.

The condition for this extreme value is that

'7" = "fT',”‘)

and
lla—,m, = |‘a’¢ | 4

It should be noted that the extreme values of F and M do not
occur under the same conditions of ¢

End Conditions and Total Reaction Relationships

In general the following useful relations hold for all values of

7 :
(76) M, = o—‘z;[(wn’)Ee_%: + 2@!’-‘] s
(77) - e Ly’
6,— Ee, F (3‘6) J
and
(78) F=No-V, = Lwl.

For the special case of zero tension (7/ = o) :

(768) M =

{ ’
= ;,.(E&tél +*"‘[;:OLF> R
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(772) e, = "%;F '-"‘(Z"“a":)
and
(783) F'-:: — V' = —;? LJUQO .

Furthermore, if LJ“: 0, then

(798) M = & F
oL
and
_ F__ =
(79b) el - = D('LEI = Ee_ F- .

The end moment corresponding to the maximum total reaction of the support-
ing material (for non-plastic deformation) can be found from (79a) by
substituting for F the value . from equation (7h4).

The Modified Rigid End Condition for Free Sag

By eliminating the dimensionless shear factor -4? between equations
(24) and (26) and employing the definition of 777, from equation (22), the
general relationship between A/, and &, at the ends of that portion of
the pipe in the weak sediment zone is obtained. Another relationship be-
tween M, and 6 which must be satisfied if the pipe is supported by an
elasgtically deformed material is given by equation (76) and (77), where
/ is eliminated between the latter equations. Consequently, if these
relations are to be satisfied simultaneously, then it follows that:

*
tuwl, & - F

(80) Ml = b)
zap + F¥
(81) 6 = M+ b ,
a
and
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(82) 4 = M -28F |
F:*
where

NAo

8 =
(83) a N tauds n/g 4
(&) b= — wﬁ:@’h)e__ =-M,)
and < | o
(85) F¥- L—H-—E-a)’gg

oL

The meximum bending moment in the pipe occurs within the supporting
material at the distance / = Cn+34 from the position at which M,

occurs. The value of the maximum moment M ax Tor the case of 7« / is
given by
Shu V< -8(¢,+34)
(85) M = M &2 e ~
waax Ay )
Sen [:)/(c,,,-f,zA)]

where (C, 1is given by

/ M, 2
(86) ch v, = (224 - 2j)

and A is given by equation (72).

The equations (80) to (8A) represent the generalized relationships
for a "nominally rigid end condition". That is, the supporting material
can be considered nominally rigid if the deformations experienced in it
are below the crifical limit, Ze , and consequently are small compared to
the maximum sag of the pipe, which occurs in the plastically deformed weak
sediment zone. The maximum bending moment which can occur in the pipe for
a given sag, depends essentially upon the modulus £, ¢ of the supporting
material, For extremely large values of £ ¢ (approaching that of concrete
or steel), the deflection 4, and the slope &, become negligible and
the maximun moment is essentially (A,)g =0 . That is, the condition of
infinite elastic modulus of the supporting materisl represents the truly
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rigid end condition, and is actually never attained in nature.

In order to carry out any computations for the "nominally rigid end
condition", it is necessary to determine the tension factor »* or
itself. The value of ¥7? for the extreme end conditions &, =o and
77, = © can be determined. In general the value of 77 * for the
"nominally rigid end condition" will lie somewhere between the values
based upon the above end conditions, since the angle &, will lie between
zero and the value of &, corresponding to 2#, =0 . As a Tirst approxi-
mation, the mean value of 7 determined for the two extreme end conditions
can be used. It will be noted from Figure 3 that this approximation can-
not be more than 15% in error if %~ is greater than 10,000, For smaller
values of , the slope &, can be determined from the first approxi-
mation of »7%; a second approximation for 7 * can then be obtained by
interpolating between the values corresponding to &, =0 and #7/ =0 ,
by comparing the above value of &, with that corresponding to the condi-
tion #7, =o. In most cases of practical interest, &£ will be sufficient-
ly large, such that a second approximation of 27% is unnecessary.

The Critical Limit of Deformation

If the deformation of the supporting material is increased to the
point where significant plastic yielding of the material occurs, then the
reaction becomes nearly independent of deformation, This means that the
load, 5 , becomes essentially uniform over that portion of the pipe for
which the deformation has exceeded the critical limit, As a result, the
bending moment in the pipe 1s redistributed and the maximum value is re-
duced.,

It was assumed in the development of the "nominally rigid end condi-
tion" that the supporting material is elastic in the sense that # 1is
proportional in magnitude to the deformation, up to the critical limit,
éyé . In a material such as stiff clay, the load-deformation relation-
ship* is not linear, and consequently the value of céﬂg ig difficult to de-
fine.

A schematic diagram of the typical load-deformation curve for clay is
illustrated below:

* As Tound in the laboratory as well as the settlemént load relation-
ship observed in the fileld.
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Secan /.5‘/«9/e = Ee)
Zritial nngeﬂ/'

o /4. e
vast— l%l

elastic Plastie

As a first approximation, the critical load, fc , can be taken as one-
half the maximum reaction of the material, and the critical deformation,
¢ , 1s that deformation corresponding to JE on the load deformation
curve. Consequently, the quantity £o = [A£ /i ,_]represents a secant
modulus of the material; its value is roughly about one-half the value of
the initial tangent modulus, 'The rate of increase of J with f for
deformations greater than ic becomes so small that for all practical
purposes, the material is plastically deformed beyond this limit,

The application of equations (66) to (86) for a supporting material
such as clay is admittedly an approximation., Nevertheless, the resulting
bending moment is a much more reasonable estimate than that which would
be obtained by considering the supporting material as rigid. Furthermore,
it can be shown that if the estimate of £, is in error by as much as 50
per cent, the resulting error in the estimated value of A7, and Muax is
less than 12 per cent for values of E of the order of 10,000 lbs, /ft

The value of Mg,(f , on the other hand, is not as accurate., The
value of M,/ is proportional to

& Iy
= £
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The quantity inside the radical represents twice the apparent modulus of
resilience of the supporting material. (Actually a material such as clay
suffers a permanent deformation even for < &, , so that the true
resilience is less than this.) An error of 50 per cent in the apparent
modulus of resilience will lead to an error of about 25 per cent in

Mutt -

APPLICATION: SAG OF A LIQUID FILIED TEN-INCH PIPE

An Exemple of Free Sag

Suppose that the proposed route of a ten-inch pipe line traverses a
band of extremely soft sediment, which is about 500 feet wide and about
12 feet deep at the anticipated crossing, and is several miles in length
transverse to the pipe. The weak sediment is sandwiched between two
extensive reef bodies, consisting of uncemented oyster shells in a clay
matrix,

Tests carried out in the, field disclose that the weak sediment has a
bearing capacity of only TO lbs., per ft. for a coated section of the pipe*,
The base pipe is 10 inches 0.D. with 1/2 inch steel walls, 5/8 inch coat-
ing of Somastic, and 1 inch coating of concrete for protection. Its
welght per unit length is estimated to be 95 lbs. per ft. when loaded with
liquid petroleum. This takes into account the uplift due to the moisture
content of the sediment, which is 43.7 1bs. per cu, ft. The reef material
has a bearing capacity significantly greater than the submerged weight of
the loaded pipe. Conseguently differential sag of a 500 foot section of
the pipe would occur under these conditions and may lead to severe ’
stresses in the pipe.

To avoid this situation, two alternatives present themselves: (1) re-
route the pipe line so as to by-pass the weak sediment zone, or (2) en-
trench the pipe to a depth of about 12 feet within the reef zones so as to
reduce or eliminate the anticipated vertical distortion of the pipe.
Either of these alternatives might be costly, and therefore it is worth-
while to determine quantitatively if the pipe could be allowed to sag with-
out danger of overstressing.

* This bearing capacity corresponds to a meximum shearing resistance
of the sediment of roughly 30 1bs. per ft.2.
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The specifications of the pipe are summarized below:

I.D. Steel = 9 in,
0.D. Steel = 10 in.
Overall D
(protected) = 13 in.
As =14.9 in.2
I = 169 in.*
F = 3.3 in.
EI = 35.2 x 1061b.t.2
ET+ = 9.85 x 1001b.7t.3 )
Ke/F = 1.49

It will be assumed at first that there is no tension in the pipe prior to
sag, and furthermore that there is no longitudinal slippage of the pipe
in the supporting reef material. Thus the loading and length factors can
be summarized as follows:

W =95 - T0 = 25 1bs./ft.
L, =500 ft.

F. =0(0 =0

N, =0 ( n.=0)

Therefore, using equation (20), the flexibility parameter can be computed:
9 - 25 (500)* = 159,000.

9.85 x 106

The total net load of the sagging section of pipe is 12,500 lbs. The reef
material therefore must carry 6,250 lbs. at each end of the sagging section
in addition to the load exerted by the pipe line passihg over the reef.

If the reef material is extremely stiff then possibly this load could be
carried without significant distortion of the reef material. If so the
rigid end condition, &, = 0, might apply. However, if the reef material
has a bearing capacity of only 120 lbs, per ft., then the material would
be plastically deformed. The upward net load on the pipe would be about
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25 lbs, per ft. in the reef materisl, and the moment would be released
altogether at the ends of the 500 foot section. The moment distribution
and deflection of the supported pipe would be similar but opposite in sign
to that occurring in the unsupported pipe section. This condition rep-
resents the end condition for which '7M, = 0.

Calculations made on the basis of the two extreme end conditions place
upper and lower limits on the maximum stress that could be expected for
the situation being considered. Such calculations are presented below:

Method of Determination Casge I: G' = 0 Case II: M = O
Fig. 3 2 2.
using cb_ = 159,000 n =90= 0 N =1,000 = O
= 30.4 n =317
Equa. 19 N = 130,000 1lbs, = 141,000 1bs,
Equa. 4la
(R, =R, =1) Y = 533 TE. Y =5.53 ft.
Equa, L40a 6, = .0398 rad = 2,3°
Fig. L YY)‘ = -.0155
Me= />
For > > seo m,_ = .00108 m_ = ,000995
Equa, 22 M, = -95,500 1b.-ft.
Equa, 21 M, =6,750 1b,~ft, M, =6,220 1b.-ft,
Bqua. 52 o) = 3,620 a = 236
( "‘)max ’ ( h)max
(using 1, ) (using m, )
(O,+ c;): 4,540 (op+93) = 1240
Equa. (54)
using (T} +07) (8,+ S,) = 42,650 psi | (St D)= 11,670 psi
max max max
occurs at ends occurs at center

If the elastic limit of the material in tension is in the neighborhood of
30,000 psi, then the value of maximum stress for the condition &, = 0O
indicates that the assumption of elasticity has been transcended, and the
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value of stress is quantitatively in error but qualitatively is in-
dicative of an unsafe situation. Actually, the maximum stress will lie
somevwhere between the limits 11,670 psi and 42,650 psi, depending upon
the strength characteristics of the supporting reef material.

To test whether or not S +34 is the maximum combined stress, the
value of shear stress must be computed. For the case rigid ends, Ss 1is
a maximum, since the entire net vertical load of the pipe is carried by
shear and none in tension at the ends, This end shear is 6,250 lbs, so
that Ss = 420 psi (from equation 47). The value of 3, is 34,000 psi
(from the value of O} given above), consequently < (X)) "/ S, is only
about 20 psi. From condition (A) of Table IV, this means that the combined
stress S, + St does govern in this case as presumed, since it is very
unlikely that the hoop stress is greater than 42,630 psi (this would re-
quire an internal pressure of about L,ThO psi in excess of the environ-
mental pressure outside the pipe).

The value of sag for the case of plastic yielding of the supporting
material will be greatest. For the end condition 777, = O the center of
sag will be 2 gm below the equilibrium position of the pipe or about
11 feet for the situation above. This is less than the depth of the
weak sediment zone in this case and therefore the situation is truly one
of free sag.

Effect of Initial Tension for the Rigid End Condition

A reduction in temperature of a very long pipe line below that at
which the pipe was initially installed can induce an axial tensile stress
in the pipe if the longitudinal restraint provided by sediments and
protecting coating inhibit the contraction of the pipe.¥ For a 50°F change
in temperature, the maximum thermal stress which can be induced in the
steel is about 9,750 psi. In the 10 inch pipe examined above, this is
equivalent to an axial tensile force of o = 145,000 1bs.

What affect would an initial tension of this magnitude have on the
sagging section of pipe with rigid end conditions?

For the case of no end slippage as before ( © =0, K, =1), the
value 7™ must be evaluated from the equations (28) and’ (29):

2..

' [J‘(n)]

From equation (23), using the value of N, 8bove:

2

“N~ =1,000 .

* For the case of initial compression see Summary and Conclusions
and also the Appendix. 369
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For the case of M, =0, YfL = 1,500 from Figure 3; however for the case
of ©, =0, the value is probably somewhat less than this, Using

N> = 1,500 as a first approximation, the value of F(11) can be found
from the dashed curve in Figure 3 by reading the value on the ¢y scale
corresponding to the value 77* above. This yields .%5¢#7) = 320,000,
Using this estimate of ./ (»7) , together with the value of Z- already
computed, & second approximation of 7% can be found as follows:

7% = 100 = 1330 ,

{1 ~[159,000 }
520,000

A third approximation following the same procedure, but using the mean
value of the first and second approximations of »7* to find %7/,
ylelds:

2
77 = 1hk00,

which is sufficiently accurate. Thus from equation (19) the final tension
N 1is 197,000 1bs. This is an increase of only 52,000 lbs. above the
initial value, and the sag corresponding to this, from equation (4la), is
only 3.5 ft.

The value of maximum stress is found to be 41,100 psi, which is only
slightly less than that found for the case of zero initial tension. The
reason for the small difference in stress is that the increase in pure
tensile stress is offset by the reduction in bending moment for the higher
value of tension parameter.

Effect of End Slippage

In the previous computations it was assumed that the slippage was zero
(A= 0, or Py = 1). sStrictly speaking, this requires an indefinitely
large value of longitudinal restraint /- ; however, in the problem being
considered, if 4 is about 50 w~ or 1250 1bs, per ft., then /4, would
differ from unity by only 10 per cent, For the 10 inch nominal pipe ,
entrenched in the supporting material, this would require a value of »
(equation 16) of approximately 400 lbs. per sq. ft., which is not unreasonably
large.

Suppose now that ,5; were only 25 lbs. per ft. (Jﬁ,ﬁAr =1). This
situation could obtain for a 10 inch pipe resting upon the supporting
material (but not entrenched), provided that the coefficient of friction
between the pipe and the underlying material were about 3/10.

The slippage coefficient is given by equation (Ll):
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6 1/h
- 2530 x10°x 14%.9 -
4 25 25 x 0.28 89.h .

For the case of no initial tension and zero end slope, equations (28),
(29) and (30) reduce to

f‘Ln) =

where is taken as 159,000 as before. The value of n* will be lower
than in the case of no slippage; however, using 7 * = 920 as found
previously, the approximate value of () is 47,000 as computed from the
last equation above. This corresponds to a value of 7 * of 380 (Figure 3),
which is the first approximation of »7% ., Using this value, a second
approximation, N* = 510, can be found by the same procedure. The true
value of »7 %, which represents a root of the equation,

159, 000
“\Jl + .o n*®

Y

FOoy =  £,(n) J\/l .01z n= - 169 000 = o,

must lie between the first and second approximation.
It is found that

Fer) = -51,400, for M = 380

and

2

Fin) = 22,300, for 1N = 510

Hence the root as found by linear interpolation is

> 51,400
n =7'3":—7-5'0-(510-580)=470 .

If this is carried one step further a value of 480 is found to satisfy
F(n) = 0 more closely. This is of sufficient accuracy.

Using n” = 480 (or »1 = 21.9) the value of k,_ is found to be
2.52, and the meximum sag (equation 4la) is

%m = 0.626 x 2,52 x 21,9 x 0.28 = 9.7 ft.

From Figure 4, a value of M, of -,021 for the case of ©, =0, is
obtained. The tension and bending moments evaluated from the value of
N> and v, above are 67,600 1bs, and -131,000 1b,-ft, respectively.
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Finally the stresses can be computed (equations 45 and 46):
E;b 46,800 psi,
St 4,500 psi,
Sp+ S, = 51,300 psi.
The value of maximum total stress is about 20 per cent greater than in the
case of no end slippage. In many cases the end slippage will have

considerably less affect - the case examined here probably represents an
extreme condition of slippage.

and

If both initial tension and end slippage exist, the problem of
determining ™ can be solved by successive approximation in a similar
manner.

Modified Rigid Ends

It was stated that the maximum stress in the 10 inch pipe will lie
between the limits 11,670 psi and 42,650 psi (for the case of O =0,
7102' = 0) depending upon the strength characteristics of the supporting
material. Two different conditions of elastic deformation of the support-
ing material are examined here in order to give a more realistic idea of
the stress.

For the case of 0 =0, M4 =0, the value of N was found to be
130,000 lbs, for the rigid end condition and 141,000 lbs, for released end
moment. The mean value 135,000 lbs., will be presumed for the case of
elastic deformation of the supporting sediment investigated below.

Suppose that the supporting material has an effective modulus (E g )
of 12,000 lbs. per ft.e; this is representative of the somewhat stiffer

soft clays of the Atchafalaya region. If the value of S for this
material is not exceeded then equations of elastic deformation will apply.

The following characteristic parameters are evaluated from equations
(68) through (70b):

¥ =o0.10,
1 2.
= .13 £t.71, o = 0185 f£t.72,
= .101 ft.-1,
and

o

B

YV = .0913 £t.°1,
L,

aTd
== — =69 ft,
» ?
372



SOME OCEANOGRAPHIC AND ENGINEERING CONSIDERATIONS IN MARINE PIP
LINE CONSTRUCTION

Thus the pipe deflection in the elastically deformed supporting material
is in the form of a non-critically damped sine wave (since 2< 1) with a
wave length of 69 £t. If the supporting reef materisl is at least 69 ft.
wide then the elastic theory as given here is applicable,

From equations (74) and (75) it 1s found that
E)lt' = 16'5 ‘j-o )

Mur =232 7(': -

It 1s seen immediately from these relations that a supporting material with
an £ of only 100 lbs., per ft. could not possibly support the load or
moment indicated by the condition of rigid ends. It will be found that the
value of £ must be about 20 times greater than this if the supporting
material is to be free of plastic deformation.

and

The next step is to compute < , & , and /C—*using relations (83),
(84), and (85):

Q =2.18 x 105,
b =95,500,
F* = 719,000 1bs.

Inserting these values in equations (80), (81), and (82) yields:

A

-49,100 1b. ft.,

&, = .0207 radians ,
and
= 0.15 ft.

*®

The deflection g,’ = 0.15 ft. represents the extreme value of elastic
distortion of the supporting material in this case, so that the lower limit

of £ s
J =12,000 x .15 = 1800 1bs./ft.

This would require a shear strength ( 7, ) of at least 830 1lbs./ft.= (if
/?é is taken as 2.0, equation 2).

From equation (86), the condition of maximum moment requires that
L€, = -1.95 radians 5,
and from equation (T2):

4 = 0.735 radians.
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Thus the position of maximum moment from the end of the weak zone is

A o Cm 34 _ 584,

1

Using equation (85) the maximum moment can now be computed:

M pax = =54,000 1b. ft.

Finally the maximum total stress can be computed

54'5 # St = 28,250 psi.

A similer analysis for the case of £, = 2,000 lbs./ft.2 leads to a
somewhat smaller total stress. The results of these computations are
summarized in Table VII. In this case the pipe deflection in the supported
zone is still a non-critically demped sine wave, but the wave length is
about 120 ft., indicating that the distortion of the supporting material
is spread out over a greater length along the pipe, leading to a re-
distribution and reduction of the maximum bending moment., The strength
Fe required in this case is at least ThO lbs./ft. or greater, in order
that the supporting material is truly in an elastic state of deformation.

All of the computations for the example of free sag in & 10 inch pipe
line of 500 foot sag length are summarized in Table VII for convenience of
comparison. As mentioned previously, the condition /77, = 0, or complete
release of the moment at the ends of the weak zone, represents the special
condition of plastic deformation of the supporting material, for which

v*%, = W =25 lbs./ft. The problem of partially elastic and partially
plastic deformation of the supporting material has not been investigated,

An Example of Restricted Sag

In the previous example the amount of total sag was found, for each of
the end conditions investigated, to be less than the depth of the weak
sediment zone (as measured from the equilibrium position of the pipe, which
occurs at moderate horizontal distance from the weak sediment zone). The
example therefore was truly one of free sag. Suppose now that the width
of the weak zone is ten times that of the above example, i.e, —é; =
5,000 feet or about 1 mile. A ten inch nominal pipe will again be considered
but in this case it will be presumed that the net downward unit force on
the pipe, «w”, is only 10 1lbs. per ft. Thus if the pipe were to sag freely
in the weak zone of sediment, then the supporting material at the ends would
have to carry a load of 25,000 lbs, at each end of the sagging section,
vhich is only about four times that considered in the previous example,
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TABLE VII

SUMMARY OF COMPUTATIONS OF FREE SAG FOR A TEN INCH STEEL PIPE:

Net downward load in weak sediment 25 lb/ft (w;
Width of weak sediment zone 500 ft (2
Pipe data: EI = 35.2 x 100 1b f£t2 ¢
Ag = 14,9 1n?
D = 13.0 in (protected)

Initial Tension 2 = 0 8,2 = 1000 1,2 =0
End Slippage &S =0 (fr> 50 w) g =0 ffw=1
State of AdJacent | Plastic De- Elastic .
Sediment formation Deformation Rigid Rigid Rigid
End Cond. M =0 --- --- {6, =016 =0 P =0
E, (1bs/ft2) Onen 2,000 | 12,000 co o o
N, (1vs) 0 0 0 0 |145,000 | O
N (1bs) 141,000 135,000 | 135,000 | 1%0,000| 197,000 | 67,600
M (1v £t) 6,220 6,500 6,500 6,750 4,500 | 13,100
M (1b £t) 0 -34,400 | -49,100 | -95,500| -78,700 -131,000
Mo (1D TE)* +6,220 -40,700 | -54,000 | -95,500 | -78,700 -131,000
5, (psi) 9,450 9,050 | 9,050 | 8,650 13,200 | 4,500
(s‘b)mx {psi) 2,220 14,450 | 19,200 | 34,000| 27,900 | 45,800
yl' (£t) 5.5 0.37 0.15 0 0 0
Yo (£t) 5.5 5.4 5.4 5.3 3.5 9.7
01 (rad) .0398 .0275 .0207| O 0 0
£, (1b/ft) 25 > o0 | 21800 0o o 00
!l (£1)wex 250 28.0 12.9 0 0 0
jm (£t)* +250 7.3 2.8Y o0 o o
¥y + ¥y (£t) 11.0 5.8 5.6 5.3 3.5 9.7
(s, +8), (pst) 11,670 23,500 | 28,250 he,éso'T 41,1 51, 300%%
#* Maximum moment occurs’'at distance % Bauilibrium level of pipe
AL from end of weak zone (or reached at distance .Z,
Lo/ 2. +.L, from center of sug) from end of weak zone
*% Stress which would exist if the elastic limit  *¥%* Lipiting case of /£/ =
of the material were greast enough Jw !
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However the flexibility parsmgter, 4~ , (using the same values of E, I,
and r as before) is A.34 x 10° or 4,000 times greater than before. For
such an extreme flexibility, the pipe acts as a flexible cable and the

asymptotic equation (36) can be used to compute the tension parameter.

In fact for <4 =0, 77,* =0:

/
P = %)é=.5—0.5—.
Z J

and according to equation (4la) the maximum free sag, %,,,, would be about
89 feet! The tensile stress due to elongation alone) according to
equation (37a) and/or (46),would be 24,200 psi, and if the end conditions
are considered rigid then a maximum total stress of over 100 ,000 psi could
be developed (see Table V).

It is inconceivable that an extremely weak sediment zone of a depth
comparable to the computed free sag above could exist. Consequently the
pipe will actually sag until it rests upon the firmer sediments at the
base of the weak zone, and the full elongation of the pipe, expected in
the case of free sag, will not be realized.

Suppose that the average depth of the weak zone ﬁa (Figure 24) is
10 feet. If the adjacent supporting material is of sufficient strength,
then the difference A,—A will be small, and hence /# can be approximated
by ho . Consequently, under this condition the relative depth 4/~ will
be 35.7 and according to equation (A1) the tension parameter for the
length of pipe .£,” (Figure 2B) will lie in the range:

N
255 < (#77) < 893,

provided that no initial tension existed preceding the sag of the pipe in-
to the weak zone.

For the condition 4 = 6.34 x 108 (2o = 10 1bs./ft. and &, =
5,000 f£t.), equation (58) reduces to

'2- 4 '
(58a) -g—;g)_— - l] - I.S‘leo—s _‘{:&r%\l

2
Using the range of b’l ') stated above as a guide, the appropriate root of
this equation can be ascertained by successive approximation, or by
graphical procedure. Since in this case the unrealized free sag is much
greater than the depth of the weak sediment zone, it is expected that the
ratio Lo, /4, will be quite small. Consequently, the value of @77 * will
probably lie closer to the lower limit 255 than to the upper limit., Using
this as a starting point, the value of A (#7/) as determined from Figure
3 is 20,500 (full curve labled /7,> = 0; % (‘) read from the Z scale).
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By evaluating the approximate value of the ratio k{i(912¢4"’ (using #7 =
15), a first approximation of (#7/)* can then be determined explicitly from
(58a). This ylelas f7/*= 350.

A second approximation evaluated in the same way but using ébﬁ/"= 350
to obtain A /»))/»’ yields $72)* = 360. The convergence to the final
value is quite rapid in this case (a third approximation yields the same
result to within one per cent accuracy).

Using 60 = %60, the length ratio L/, according to equation
(59) s .082, or £ = 410 feet. The tension accordingly is 75,500 lbs,
(equation 603, which corresponds to a tenslle stress, S, , of about
5,100 psi. The above tension actually applies to the case where the moments
at both ends of the section .47 are zero. However it will be noted that
for the value of 4° corresponding to @7J* = %0, the values of ¢?)* for
the two extreme end conditions differ by only 20 per cent (Figure 3).
Consequently it is presumed that the tension found above is approximately
valid for different end conditions which might be considered.

If it is supposed now that the supporting material adjacent to the
region of sag is quasi-rigid so that the pipe is essentially horizontal,
then the moment factor at this end is given approximately by equation (63).
Using ¢7)” = %60 and 4. as found from equation (64) ( £.°/&L = .082),
the calculated moment factor is about -.047, and the corresponding bending
moment is about -79,000 lb,.-ft. (equation 62b). This corresponds to a
maxioum bending stress of 28,000 psi and consequently the maximum combined
stress in the pipe is approximately

(sb + st) = 33,000 psi.

It will be noted that this applies for the case of 77, =0, .0 =0 and
9/ = 0,

The effect of end slippage and/or elastic deformation of the support-
ing material could be carried out in a manner gimilar to that already
presented in the problem of free sag. However, due to the complexity of
the restricted sag problem and the nature of the approximations already
made in this application, it would appear that such refinements are not
Justifiable, unless the asymmetry of the section €,  is likewise taken
into account. This would require re-examination of the basic equation (k)
and its solution (8); for in this case a finite shear }/ would exist at
the center of the sagging pipe section,

On examining the question further, a better approximation might be
had by considering the section .AZ’ as one-half of a symmetrical, freely
sagging section formed by deleting the section of pipe which is fully
supported at the base of the weak sediment zone. The difficulty in applying
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the free sag theory in this case is that there exists & finite shear

and zero moment at the point of tangency, while the free sag theory presumes
no shear at the center of sag and yilelds a finite bending moment at that
point.

SAG OF A TWENTY-INCH PIPE

The specifications of a 20.5 inch 0.D. steel pipe (thickness 3/h inch)
are givey in Table III. The value of the product £Z4 for this pipe is
275 x 100 1b., ft.2, If this pipe has & 5/8 inch coating of protective
Somastic and & 1 inch coating of reinforced concrete, the total weight in
air (gas filled) would be about 269 lbs, per ft. The over-all diameter
of the protected pipe would be 23.75 inches.

It will be presumed that this pipe sags into a weak material identical
to that discussed in the case of the ten inch nominal pipe. This implies
that if the bearing capacity of the sediment is proportional to the diameter
of the pipe, ae equation (2) indicates, then

*pb = R - :.QL_;_.(% x 70 = 128 lbs./ft.

Furthermore the bouyancy due to moisture content of the sediment (for an
entrenched pipe) would be 134 lbs./ft. ( B = 43.7 1lbs./cu. ft. as before).
Thus the net vertical force wr~ per unit length would be only 7 lbs. per ft.
for a gas filled pipe. This is of the same order of magnitude as the

errors involved in the estimate of Fo. and/or B . Consequently one should
investigate the influence of the possible error in w on the resulting
stress, in order to see if the computation leads to an unqualified decision
regarding the vertical stability of the pipe.

If the pipe is to trensport liquid having & specific gravity approach-
ing that of water, then the value of wr would be about 130 1lbs, per ft,
For a given span length of sag, it 1s evident that there will be considerable
difference in the maximum pipe stresses induced by these two limiting
conditions of loading. Computations based on these two cases, for a span
length of 500 feet (for comparison with the example of free say of & ten
inch pipe), are summerized below,

Free Sag of a (as Filled Pipe

In this case W~ = 7 1lbs./ft. and L, =500 ft., which yields a value
of 4- equal to 1590. The corresponding value of »7* from Figure 3 is 19.2
for the conditions: 4 =0, "N,"=0, and &, =0, The maximum sag,
Lém , under these conditions is only 1.6 feet, Furthermore from Figure L,
m, = -.065, end the computed stresses are:
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Sb = 6,200 psi,

Sy = 800 psi,
and
S, +S, = 7,000 psi.

The maximum combined stress of 7,000 psi would occur if the supporting
material at the ends were rigid; otherwise the maximum stress would be less
than this. However any slippage at the ends would tend to increase the
stress (as found in the case of the ten inch pipe).

If the probable error in W~ is taken as + 7 1bs,/ft., it is evident
that the value of expected stress ranges between the limits of zero and some
upper limit, Figure 6 can be used to facilitate the computation of this
upper limit. By doubling the value of W , and hence 6&» the dimensionless
combined stress parameter (for &, = 0) is increased from about 170 to 290.
The combined stress itself will bve 1ncreased in the same proportion,
consequently the upper limit is about 12,000 psi. This indicates that an
error of even + 100 per cent in the estimated W’ , in this case, would not
invalidate a qualitative decision with regard to the safety of this pipe line.
Such clear cut results, however, appear to be the exception rather than the
rule, and the decision regarding safety usually must be qualified by a state-
ment regarding the degree of risk involved, unless positive steps are taken to
avoid, partially or completely, the conditions of sag which are anticipated.

Free Sag of a Liquid Filled Pipe

In this case W = 130 1bs./ft. and 1,, = 500 Tt., ylelding a value
of %/ of 29 800. The value of n?* is found to be 270 for the conditions
A =0, =0, and ©, =0, Corresponding to this, the maximum sag
is 5.98 feet which is very nearly the same as for the water filled ten inch
pipe.

The resulting stresses induced by sag are:
Sy = 47,700 psi,

S; = 11,000 psi,
and
S,+ 3= 58,700 psi.

An error of + 7 lbs./ft. in w- , in this case, represents a relative error
of only + 5. % per cent; and the corresponding error in the combined stress
is only about 2/3 of this or 3.6 per cent, Under these conditions the

maximum combined stress above is presumably accurate to within + 2,100 psi.
This would not influence the qualitative interpretation of this_result, nor
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would the effect of an error in wr of as much as + 20 lbs,/ft.

The magnitudes of stresses involved in these two examples bear out,
quantitatively, the extremely different situations which might be realized
for a gas filled pipe on one hand and a liquid filled pipe on the other.

SUMMARY AND CONCLUSIONS

In the planning and installation of a marine pipe line, the question
of vertical stability can be important enough to warrant serious consideration
especially if the pipe is to be laid upon or entrenched within a marine
sediment of the type existing on the Gulf shelf, The important points
pertaining to this question are set forth below.

1. A knowledge of the structure and strength of the sediments along
the path of a proposed pipe line is essential if definite conclusions are
to be reached regarding the question of verticel stability of the pipe.
Regions in which the sediment bearing capacity is not sufficient to support
the submerged weight of a pipe line can be disclosed only by appropriate
investigation in the field.

2. The difference in strength characteristics between extremely weak
zones and adjacent supporting material, together with the horizontal and
vertical dimensions of the zone of weak sediment along the path of the pipe
line, are the prime environmental factors in the determination of differential
sinking of a pipe and consequently in the determination of the maximum
stresses associated with such sag.

3. In general the determination of the stresses induced by sag depends
upon the following basic parameters:

wr determined by pipe weight and by the
weak sediment characteristics
L. h, dimensions of the weak zone
ET A, r pipe specifications (actually
2 s ) o= ‘VI/ Rs )

N 5_ } E initial and end conditions
yJe,be  (rigidity factors of supporting
material are .~ and £e

For the case of free, symmetrical sag, the following functional relations hold
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2- Nﬁ:_F( A N, end rigidity)
= = C&) 2 ey & Y7

n =
m =z M - F(n)
w il
/QO = 2,24 Cb/ n
9| -’_—- 2 }-(—,;)' J
m = o626 % n,
and - F(n)
A\ (7R, >
S,+Sg = E (Jz) [L'F)m%+"__]’
where 4
w o

Flexibility parameter;

L1}

%/ E'I.t—:
A

7
= &r ( EI?-) , End slippage parameter;
F\eorr

p 2N
No «Qo R Initial tension parameter.

&ET

2
-3

n

If the end slippage is zero then

6, = 2a.,2.4 ‘»\]M‘-’)

EAs °

and
. (N _N05
= L2 e R
R ey
If in addition N, = 0, then

o = 4

This implicit equation for 11 in terms of Ck» is represented graphically in
Figure 3, and in tabulated form in Table VIII, for two different end
conditions. The relationship yn = F (n) is shown graphically in Figure L.

. The dependence of maximum combined stress on flexibility is shown
conveniently by the non-dimensional plots of Figure 6. The dimensionless
stress factor,
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is presented graphically for the two limiting end conditions ©, = 0 and
M, = 0 and for the case of no initial tension and no end slippage. The
stress parameter increases in direct proportion to for very small values
of , corresponding to the theory of simple flexure ( Sy =0 or N =0).
For)_ ery large values of %’ the stress factor becomes proportional to

3, corresponding to & flexible cable, The proportionality coefficient
in either limiting case depends upon the end condition. It is important to
note that the condition of no end moment leads to the greater stress for low
values of ;3 but the situation is reversed for large values of ‘i—’ ( > 280)
since the condition of rigid ends in this case leads to greater stress. In
summary, for small flexibility:

fm]=

m(=

for G

[t}
o

2
(%Lfst\: vmuwd, l;.e)

?.
L
8

i]
o

, for m‘

while for large values of

i
o]

]3 k =1.548, for 6,
*\k =037, for m, =0 |

5. In general the sagging pipe section will carry its load by the
vertical component of tension as well as by cross-sectional shear, For small
flexibility, however, the tension is negligible and the load is carried
entirely in shear. As the flexibility is increased the tension becomes
more and more important and in the limiting case of extremely large
flexibility ( > 106), the pipe carries its entire load by tension, except
in the case of rigid end conditions, where the shear is still important but
only immediately adjacent to the ends of the sagging section.

6. The situation of free sag is subject to the condition that gm<h .
If this is not the case then the pipe can receive additional support at the
vase of the weak zone. The problem of such restricted sag can be solved,
in the first approximation, by considering the unsupported portion of the
pipe at the ends of the sagging section as a situation of symmetrical free
sag. The length of this equivalent free sag section is unknown in this case,
but can be determined if h is known.

7. Two clear cut end conditions have been examined in some detail:
(I) No end slope, representing the condition for which
the supporting material is nominally rigid and
free of any significant deformation, implying that
l i&/w- l is very large (>1000),

and
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‘Ee/E[ is of the order of unity

(II) No end moment, representing the condition for which
the supporting material is plastically deformed
at the ends by the amount h,—~h = Y ? which
requires that

[:fur| =12,

E& =0 ,

and

The intermediate case of quasi-rigid conditions, representing that of finite
elastic distortion of the supporting material, has also been examined.
Values of £ and &£, intermediate between the values above can be taken
into account in a correction factor to be applied to the bending moment for
a rigid end condition (equation 80). The effect of distortion of the
supporting material at the ends of the sagging section of pipe 1s always

to reduce the maximum bending moment induced in the material, In the
examples worked out for the 10 inch nominal pipe, the limiting case of plastic
distortion which was examined gave a value of maximum stress which 1s about
25 per cent of that which would be realized for rigid ends. The effect

of elastic distortion of the supporting material is less pronounced.

8. The effect of end slippage is to exaggerate the severity of the
meximum combined stress. The tension in this case is reduced but this, in
turn, 1s assoclated with a greater proportionate increase in bending moment.

9. The effect of initial tension is to decrease the severity of the
maximum combined stress, since the bending moment is decreased in greater
proportion than the increase in tension.

10. The effect of initial compression has not been examined in the
examples, but would lead to an increase in the severity of the maximum
combined stress. Although the equations for free sag given here are restricte
to the case of positive NN (real values of #7 ), the same restriction is
not imposed upon N, . That is, negative values of N, (or initial
compression) can be taken into account provided that this compression is not
too great (see Appendix). Such compression could be induced by a sudden
temperature increase in the pipe line, if the latter is inhibited from
expanding in the longitudinal direction. In the event of sag, this
longitudinal compression is released and in turn a tension will be developed,
provided that the loading is great enough.

A ten inch nominal pipe under the same conditions of sag as presumed for
the data of column 6 of Table VII except that n,™ is -1000 (corresponding
to 145,000 lbs. initial compression) would yield a maximum combined stress
of 46,200 psi. The maximum sag in this case would be 7.2 feet, which is
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about twice that found for the case of 145,000 lbs. initial tension. How-
ever the combined stress is only about 10 per cent greater,

1l. The examples of sag worked out for the liquid filled 10 inch
and 20 inch nominal pipes serve to demonstrate that considerable stresses
can be induced by sag of the pipe into a zone of extremely soft sediment
(such as found in the Atchafalaya Bay region) if such & zone is contained
between material which is considerably stiffer.
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APPENDIX I

Figure 3 is not in a form that is adequate for actual use. In order
to make it convenient for the plotting of the functions £ ¢») and
f,_ (») on a detailed, large scale logarithmic grid, the computed values
of these functions for the selected values of /7 used in the construction
of Figure 3 are given in Table VIII. These values, obtained from equations
(32) and (33) have been evaliated by computing machine for the lower
range of /7 and by slide rule for the values of /7 greater than k. The
values are considered accurate to within + 0.5 per cent.

In construction of the logarithmic plots of the functions f (#) and
F (») it is convenient to comstruct the straight line asymptotes given
by equations (35a,b) and (36) as a guide.

Isolines for both positive and negative values of '7»2' can be plotted
on the » % versus f‘ diagram by making use of equation (28) for the

case of J = O:
% = A1 - Nne/n>  fOn)

The isolines for the case of negative )7:- will lie to the right of the
curve for /> = 0, i.e. the curve ?,. = A») , and will be asymptotic
to the latter curve for large values o . For small values of /7% the
isoline for negative 47,? will approach & constant value of ? , having
the value:

2
246 (1], for 6, =0,
or
590 INS] , for M, =o.
Thus for a given value of % it is seen that there is an upper limit of

initial compression beyond which the present theory fails to give a solution,
because N?* itself becomes negative,

It Yl:’ is Just at the critical value for a given ﬁ» then the
tension parameter is zero, and the stress in the pipe is purely flexural and
is given by the simple bending theory. This stress is always greater than
that ap;glying to the case of zero initial compression, as can be seen from
Figure 6.
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TABLE VIII

COMPUTED VALUES OF THE FUNCTIONS fy(n) AND f,(n)
FOR SELECTED VALUES OF n

£1(n) £, (n)
n n2 1 2
(91 = 0) (m]_ = 0)
.01 .0Co1 2.146 .49
Al .01 2h .6 k.8
W3 .09 73.9 4.5
1.0 1.00 252 53.8
1.3 1.69 335 .2
2 i 540 157
3 9 903 275
b 15 1,374 511
5 25 1,990 858
6 36 2,780 1,380
7 49 3,790 2,060
8 64 5,040 2,905
10 100 8,410 5,410
15 225 23,200 17,320
20 400 50,200 40,200
30 900 155,000 133,800
50 2,500 672,000 615,000
100 10,000 5,120,000 4,900,000
1,000 1,000,000 4,900,000,000 4,900,000,000
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In the case where the initial tension is greater than the critical
limit, then N 1is negative and the equations for pipe distortion are
modified. The distortion of the pipe given by equation (8) takes on the form

% = -?:‘—’-‘_{(Mo—l-uf/\*,‘)(l—cm%/)\*) +-'iw-x"}

N*¥ = - N and >\*="\’%

In the special case where W™ = 0, it can be shown that a critical compression,
s 27\ *

exists. If the initial compression is less than this then the pipe is

absolutely stable with regard to transverse deflection. If the initial

compression is greater than N <_* then the pipe will deflect transversely,

but in so doing, the initial compression is partially relieved and a definite

equilibrium with an associated maximum bending moment is developed. This

situation would represent & condition of quasi-buckling since there is

but one form which can be assumed by the pipe for a given value of N7

The tran;verse deflection is not severe unless A/ ¥ is considerably greater
than N, " .
[

where
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APPENDIX 1T

LIST OF SYMBOLS

A characteristic quantity in the modified rigid

end egquation

Cross-sectional area of the steel pipe

Magnitude of maximum bending moment for the case

of rigid ends

Bouyant force acting on pipe per unit displaced

volume in the sediment .

Value of X' at which g' = 0 for elastic
deformation of supporting material

Over-all diameter of the protected pipe
Inside diameter of the steel pipe
Outside diameter of the steel pipe
Elastic modulus of the steel pipe

Effective modulus of the supporting material
at the ends of the sagging section

The net upward force per unit length at
position X’ exerted on the pipe by the
supporting material

Limit of # beyond which the deformation of
the supporting material becomes plastic

The longitudinal restraint per unit length of
pipe exerted by the supporting material

A function of #7 and the end condition

A function of /7 only, for the condition
&, =0

A function of /7 only, for the condition

m,=0

Total net vertical reaction exerted by the
supporting material
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Dimensions

1b. ft.

sq. ft.
Ib, ft.
lbs./cu.ft.

ft.
ft.
ft.
ft.

lbs./sq.ft.

lbs./sq.ft.

lbs./ft.
lbs./ft.

lbs./ft.

dimensionless
dimensionless
dimensionless

lbs,
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Symbol

Fuort
F- *

a

J~
°

;> > N

> XN
w p

A
N

g“ J&’ &‘“ &§

N

~

N

LINE CONSTRUCTION

Extreme value of /~ which can be sustained
by an elastically distorted sediment

A characteristic quantity used in the modified
rigid end equation

Acceleration of gravity, 32.2

Vertical distance between the base of the
weak zone and the vertical position of the
pipe at ¥ = £,/2 (Figure 2)

Depth of the weak zone below equilibrium
position of the pipe (Figure 2)

Cross-sectional moment of inertis of the pipe,
taken about the neutral surface

Coefficient of proportionality between -Pb
and T, D

Coefficient dependent upon nf’ / n*
Coefficient dependent upon A 5 1‘ ) n- n."

Coefficient having the approximate value
2.24

Coefficient having the approximate value
0.626

Length of pipe between points (|’ ) and (1| )
after sag occurs (Figure 1)

Wave length of the non-critically damped
elastic deformation curve

Length of pipe between points ( (') and ( ()
before sag occurs (Figure 1)

Distance from end of weak zone at which
maximum moment is attained

Length of weak sediment zone measured along the
pipe line

Effective length of free sag in the restricted
sag problem
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Dimensions
1lbs.
lbs.

ft./sec.?

ft.

£t 4

dimensionless
dimensionless

dimensionless
dimensionless
dimensionless
ft.

ft,

ft,
ft.

ft.
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Upper limit of «él for a given <« and given
pipe specifications, beyond which the simple
bending theory is not valid
Bending moment factor at position X
Bending moment factor at 2 = ©
Bending moment factor at 2 = ,/, /2

7/
Bending moment factor for length ,(ﬁ
Bending moment at position X
Bending moment at position 2= o

Bending moment at position X' = Lo/ 2.

Maximum bending moment developed in the pipe
for given end conditions

Extreme bending moment which can be developed
in a pipe in an elastically deformed sediment

Tension factor

Initial tension factor

Characteristic wave number, elastic theory
Characteristic wave number, elastic theory
Tension factor for the length

Initial tension factor for the length
Axial tensile force in the pipe

Initial axial tension prior to sag

End shear factor

Ultimate load bearing capacity of the sediment
per unit length of pipe

Maximum vertical restraint exerted on pipe by
the plastically deformed weak sediment
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Dimensions

fl.
dimensionless
dimensionless
dimensionless
dimensionless
1b. £t.

1v. ft.

1v. ft.
1v. ft.

1b, ft.
dimensionless
dimensionless
fe.-1

re.-1
dimensionless
dimensionless
1bs.

Ibs,

dimensionless
lbs./ft.

1bs./ft.
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Symbol Dimensions
3, Flexibility parameter dimensionless
Critical value of @— beyond which the simple
g" theory of bending i1s not valid dimensionless
Q Moisture content of sediment expressed as
per cent of dry weight dimensionless
r Radius of gyration of cross-section of steel
pipe taken about the neutral surface ft.
PJ_ Inside radius of steel pipe ft.
7?° Outside radius of steel pipe ft.
) Ind slippage coefficient dimensionless
Sb Flexural stress in the steel pipe farthest
from the neutral surface of bending lbs./sq.ft.
Sh Hoop stress in the pipe due to internal
pressure 1bs./sq.Tt.
3, Shear stress assoclated with |/ 1bs./sq.ft.
St Tensile stress associated with AN 1bs./sq.ft.
S Maximum combined shear stress lbs,/sq.Tt.
s,m
St " Maximum combined normal stress lbs./sq.ft.
; ,
V Cross-sectional shear force at ¥ 1bs.
V, Cross-sectional shear at 2 = /.,/z_ 1bs,
w- Net dowmward force per unit length exerted on
pipe in the weak sediment zone lbs. /ft.
uf/, Unit weight of pipe in air (including weight
of contained fluid) lbs, /ft.
x Horizontal distance measured from the center
of sag along the pipe line ft,
X ! Horizontal distance measured from the end of
the weak zone Into the supporting material L.

391



(€]
o'
(o]
et}

X

3
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Vertical distance measured upwards from the
position of maximum sag

Vertical distance measured upwards from the
equilibrium level of the pipe

Critical value of vertical deflection beyond
which the supporting material becomes
plastically deformed

Maximum sag of the pipe in the weak zone, for
the length _Z,

Value of ?' at which & =0

Vertical defg)rmation of the pipe at the
position 2" =0, or = 4, /2

A characteristic wave number, elastic wave
theory

A characteristic wave number, elastic wave
theory

A tension parameter in the elastic theory

Horizontal distance between the position for
which %’ =0 and & = 0 in the elastic wave

Slope of the pipe gt position ¥
Slope of the pipe at x = /. 2

Effective slope of the pipe at ends of the
length /2,7

A characteristic length in the free sag theory

A characteristic wave number, elastic wave
theory

A characteristic wave number, elastic wave
theory

3.1416...
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Dimensions
ft.

ft,

ft.

ft,-1

fe.71

dimensionless

£t.
dimensionless

dimensionless

dimensionless

ft.
£t.-1

fe."1

dimensionless
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LINE CONSTRUCTION

Wet density of the sediment

Flexural stress factor

Tensile stress factor

Ultimate shear strength of the weak sediment

Ultimate shear strength of the supporting
material
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Dimensions
slugs/cu.ft.
dimensionless
dimensionless

lbs./sq.ft.

lbs./sq.ft.





