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VALIDATION OF A DOUBLE-LAYER BOUSSINESQ-TYPE MODEL 
FOR HIGHLY NONLINEAR AND DISPERSIVE WAVES 

Florent Chazel1, Michel Benoit2 and Alexandre Ern3 

A two-layer Boussinesq-type mathematical model has been recently introduced by the authors with the goal of 
modeling highly nonlinear and dispersive waves (Chazel et al. 2009). The analysis of this model has previously shown 
that it possesses excellent linear properties, up to kh = 10 at least, for dispersion, shoaling coefficient and vertical 
profile of orbital velocities. In the present work a numerical one-dimensional (1DH) version of model is developed 
based on a finite difference technique for meshing the spatial domain. It is then applied and verified against a set of 
three one-dimensional (1DH) test-cases for which either numerical or experimental reference results are available: i. 
nonlinear and dispersive regular waves of permanent form; ii. propagation of regular waves on a trapezoidal bar 
(laboratory experiments by Dingemans (1994)); iii. shoaling and propagation of irregular waves on a barred beach 
profile (laboratory experiments by Becq-Girard et al. (1999)). The test-cases considered in this study confirm the very 
good capabilities of the model to reproduce either exact solutions, high-precision numerical simulations and 
experimental measurements in a variety of non-breaking wave conditions and types of bottom profiles. Nonlinearity, 
dispersion and bathymetric effects are well accounted for by the model, which appears to possess a rather wide domain 
of validity while maintaining a reasonable level of complexity. 
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INTRODUCTION 
During the past two decades, Boussinesq-type models have emerged as an attractive and commonly 

used tool for coastal applications and engineering purposes. Historically, Boussinesq-type models are 
based on two fundamental assumptions, namely weak nonlinearity and weak dispersion (e.g. Peregrine, 
1967), making their dispersion properties poor in intermediate depths, and limiting the largest wave 
height that can be accurately modeled. As a result, substantial efforts have been devoted to extend the 
linear and nonlinear range of applicability of Boussinesq-type models. First, Nwogu (1993) and Wei et 
al. (1995) efficiently removed the weak nonlinearity assumption, allowing the model to simulate wave 
propagation in intermediate depths with strong nonlinear interactions. Some years later, Gobbi et al. 
(2000), Agnon et al. (1999) and Madsen et al. (2002) successfully removed the intermediate depth 
limitation with so-called high-order Boussinesq-type models, whose range of applicability reaches deep 
water areas, but with a significant increase in computational cost mainly due to the use of high order 
derivatives. 

With the aim of developing a model which is applicable to complex domains (such as coastal areas, 
islands or estuaries) and accurate up to deep water, but with lower complexity than the previous models 
(i.e. lower order of derivatives and lower number of equations), the author have recently derived a new 
Boussinesq-type model based on a double-layer approach (Chazel et al. 2009). Assuming the flow to be 
irrotational and the bottom slope to be mild, the problem is formulated in terms of the velocity potential, 
thereby lowering the number of unknowns. The model derivation combines two approaches, namely 1) 
the method proposed by Agnon et al. (1999) and enhanced by Madsen et al. (2002) which consists in 
constructing infinite-series Taylor solutions to the Laplace equation, truncating them at a finite order 
and using Padé approximants, and 2) the double-layer approach of Lynett & Liu (2004) allowing to 
lower the order of derivatives. The final model consists of only four equations both in one and two 
horizontal dimensions, and includes only second-order derivatives, which is a major improvement in 
comparison with so-called high-order Boussinesq models. 

In the remainder of this paper, we propose a brief outline of the mathematical model. Then we 
present a set of three validation test-cases in one horizontal dimension (1DH) with both analytic and 
laboratory data to assess the nonlinear behavior in intermediate and deep water. We first consider the 
propagation of nonlinear and dispersive regular waves of permanent form. The second test is the 
classical set of experiments by Dingemans (1994) for the propagation of regular waves over an 
underwater trapezoidal bar. The third test corresponds to the propagation of non-breaking irregular 
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waves over a barred profile by simulating flume experiments by Becq-Girard et al. (1999). This last test 
case allows to examine the behavior of the model to represent the evolution of the wave spectrum along 
the beach profile, with particular attention paid to the growth and decay of super-harmonic peaks as 
waves propagate towards the coastline.  

 

BRIEF DESCRIPTION OF THE MATHEMATICAL MODEL 
We consider the evolution of an inviscid and incompressible fluid with a free surface under the only 

influence of gravity. The flow is assumed to be irrotational, and the capillary effects owing to the 
presence of surface tension are neglected. Moreover, we assume constant atmospheric pressure at the 
free surface of the fluid. The time-dependent fluid domain is bounded from below by a static sea 
bottom, defined by )()( XhXzz −== , and from above by a time-dependent free surface, denoted by 

),( Xtz η= . The level z = 0 corresponds to the still-water level. As shown in Fig. 1, the fluid is divided 

into two layers by an interface )()(ˆ XhXzz σ−== , where σ is an arbitrary parameter to be chosen in 

the range ]0 ; 1[. We point out that this division of the fluid domain into two layers is purely conceptual 
since both layers have the same density. As far as the bathymetry is concerned, we assume that the still-
water depth h verifies 1<<∇h , which corresponds to the classical mild-slope approximation.  

 

 
Figure 1. Representation of the fluid domain with a two-layer approach. 

 
Since the flow is assumed irrotational, the problem can be formulated in terms of the velocity 

potential φ(t, X, z) of the fluid, along with the free surface η(t, X), thus lowering the number of 
unknowns. The fluid motion is then governed by ten equations: one Laplace equation for each layer, 
one Bernoulli equation at the surface of each layer, three continuity conditions at the interface between 
the layers on the potential φ, the vertical velocity w and the pressure p, two boundary conditions 
expressing that the free surface and the bottom are bounding surfaces, and a condition on the pressure at 
the free surface. Following Zakharov (1968), this three-dimensional problem can be rewritten as a two-
dimensional problem by projecting the equations on the free surface and introducing a classical 
Dirichlet-Neumann Operator (DNO) G[η, h], such that: 

 [ ] 11
~

,~ φη= hw G  (1) 

where )),(,,(),(
~

11 XtzXtXt η=φ=φ  is the velocity potential at the free surface and 

)),(,,(),(~
11 XtzXtwXtw η==  is the vertical velocity at the surface. This equivalent problem then only 

consists in three equations on the potential at the surface, the vertical velocity at the surface, and the free 
surface elevation η(t, X), where the double-layer modeling is concentrated in the DNO G[η, h]. 

The main difficulty in finding an approximation to this Dirichlet-Neumann operator is that it 
involves solving the Laplace equations along with the boundary and continuity conditions on a time-
dependent domain. An interesting work-around to this issue consists in constructing an alternative 
Dirichlet-Neumann operator expressed at the still-water level called G0[h] = G[0, h], and then finding a 
closure between the unknowns at the free surface and the ones at the still-water level z = 0. These 
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closure relations are easily obtained via truncated Taylor expansions of the potential and the vertical 
velocity between the free surface and the still-water level z = 0, where the truncation orders can be 
motivated by a dimensional analysis. An intermediate model –consisting of four equations– is then 
obtained by including these two closure relations into the Zakharov formulation. The main advantage of 
this reformulation is that the translated Dirichlet-Neumann operator G0[h] is static, and can thus be 
computed once and for all at t = 0. 

The last step in the model derivation is to construct an approximation of the static Dirichlet-
Neumann operator G0[h]. To this end, we follow the generalized Boussinesq procedure introduced by 
Madsen et al. (2002, 2003) which consists in looking for a solution of the Laplace equation in each 
layer under the form of an infinite Taylor series in the vertical coordinate. These series are then 
truncated by retaining only the first two terms, this choice being again motivated by a careful 
dimensional analysis. In the last step, we introduce Padé approximants in order to lower the order of the 
derivatives in the truncated series. Finally, we obtain an expression of an approximate static Dirichlet-

Neumann operator [ ]happ
0G  which only involves second-order spatial derivatives. 

The final model reads as follows:  

   (2) 

where it is recalled that ),(
~

1 Xtφ  denotes the velocity potential at the free surface,  ),(~
1 Xtw  denotes the 

vertical velocity at the free surface. φ0 corresponds to the velocity potential at the still water  level z = 0. 

The complete expression of [ ]happ
0G  is omitted here for brevity (see Chazel et al. (2009)).  

A detailed analysis of the linear properties of the model (namely phase and group velocities, 
vertical profiles of both velocity potential and vertical velocity, the linear shoaling gradient) has been 
performed in Chazel et al. (2009). With the optimal value σ = 0.314, the previous model exhibits 
excellent dispersive properties, up to deep water. 

NUMERICAL MODEL FOR SIMULATING ON-DIMENSIONAL (1DH) CASES 
A one-dimensional (1DH) numerical model has been developed based on the SCILAB® software 

(http://www.scilab.org/) to solve eq. (2). The spatial domain is discretized with a constant mesh size, 

and all derivative operators in eq. (2) and in the expression of [ ]happ
0G are approximated by centred 

finite difference formulas over a 5-point stencil. This yields fourth-order accuracy in space for both 1st-
order and 2nd-order derivatives. 

Time integration is performed with the standard fourth-order four-stage explicit Runge–Kutta 
scheme with constant time-step. This scheme is known to possess a wide stability region. However, 
owing to the nonlinear nature of the considered test-cases, this scheme can develop some high-
frequency instabilities for some cases. To avoid such instabilities, a 8th-order Savitzky–Golay smoothing 

filter is applied after each time step to η, 1
~φ  and 1

~w . It was checked that the use of this filter introduces 

a negligible loss of accuracy of the model. 
In order to simulate the behavior of a wave tank, relaxation zones are used at both ends of the 

domain. These zones can be used either to generate incident –regular or irregular– waves or to absorb 
outgoing waves. We refer to e.g. Bingham and Agnon (2005) for more details on this method. Finally, 
Neumann and periodic conditions are easily imposed by reflecting, respectively evenly and periodically, 
coefficients corresponding to points located outside the domain, thus making the discretization of the 
differential operators very regular. 
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VALIDATION TEST-CASES 
The numerical model is applied on three different cases for which either numerical or experimental 

reference data is available. These applications are described in the following three sub-sections. All 
computations have been performed with the deep-water (kh = 10) optimal value σ = 0.314. 

Stable and periodic nonlinear dispersive waves over a flat bottom 
The first test-case concerns the propagation over a flat bottom of nonlinear and dispersive periodic 

waves of permanent shape. For this situation reference solutions can be obtained by the so-called 
Stream Function Method (e.g. Dean 1965; Rienecker and Fenton 1981), which is a numerical method 
with very high accuracy for such periodic and stable waves. 

We choose here the following parameters for the waves: a wave length  L = 64 m and a wave height 
H = 6.4 m, with a water depth  h = 96 m. There is no Eulerian ambient current in the simulation. Based 
on these values the measure of wave nonlinearity (steepness) is ε = H/L = 10%, or alternatively  kH/2 = 
π/10 ≈ 0.31, which represents a quite strong nonlinear case. The measure of dispersion is  µ = kh = 3π 
or alternatively  h/L = 1.5, which is well above the limit traditionally considered for deep water (µ = π 
or h/L = 0.5). Those conditions are thus very demanding for Boussinesq-type models.The computational 
domain covers one wave-length and comprises 32 nodes (∆x = 2 m). Periodic boundary conditions are 
used on this case to model the propagation of the considered wave over a distance of several wave-
lengths. The time-step is chosen as T/50, where T = 6.094 s, is the wave period as computed by the 
Stream Function method. Initial conditions of the simulation are provided by a 20th-order Stream 
Function solution, provided by the code Stream_HT (Benoit et al. 2002). This solution is also used 
afterwards as reference to compare with the results of the numerical model after several periods of wave 
propagation. 

Results for the free surface elevation and free surface potential at times t = 10T and t = 25T are 
presented on Fig. 2 and 3 respectively.  
 
 

 
 
Figure 2. Snapshots of the free surface elevation (left panel) and free surface velocity potential (right panel) at 
time t = 10T. The solid line is the present model with σσσσ = 0.314 and the dotted line is the stream function 
reference solution. 

 

 
 
Figure 3. Same as Figure 2, but at time t = 25T. 
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Comparison of model’s results with the reference solution shows extremely good agreement up to 
time t ≈ 20T, after which small discrepancies become observable. Other runs on this case have been 
performed by increasing the number of nodes from 32 up to 128 in order to check the grid convergence. 
Based on this analysis, the difference observed on Fig. 3 can be attributed to the approximation in the 
numerical model, where 4th-order (and higher) nonlinear terms have been neglected in the final 
formulation of the model. However, it is observed that the agreement with the reference solution is still 
good at t = 25T. The shapes of the waves are the same, and their amplitudes are equal; only a small 
phase shift with the reference solution is observed. Comparing the computed and theoretical positions of 
the wave crests at t = 25T we can evaluate the nonlinear phase celerity error, which is here 0.08 % 
approximately, bringing confirmation of the excellent capability of the model to handle such dispersive 
(kh = 3π ≈ 10) and nonlinear (H/L = 10%) waves. 
 

Regular waves over a submerged bar (Dingemans experiment, 1994) 
The model is then applied to the propagation of regular waves over a submerged trapezoidal bar by 

considering the wave flume experiments performed by Dingemans (1994), which often serve as 
reference cases for testing nonlinear wave models. In this situation, both nonlinear and dispersion 
effects are important. Nonlinear interactions lead to the development of higher harmonic components in 
the wave train, which are released over the mound of the bar and then propagate as free waves after the 
bar. Accurate dispersion modeling is thus needed to represent this decomposition of the incident wave 
train. The bottom profile in the wave flume is presented on Fig. 4, together with the locations of the 11 
waves probes where time-series of free surface elevations were recorded. We model here two of the 
test-cases performed by Dingemans (1994), namely case A (incident wave parameters : H = 2.0 cm and 
T = 2.02 s) and case C (H = 4.1 cm and T = 1.01 s). 

 

 
 
Figure 4. Bottom profile and position of wave gauges for the wave flume experiments of Dingemans (1994). 

Time-series of free surface elevation computed by the model are compared to experimental 
measurements at stations 8 to 11, which are all located after the bar. It is known that the signals at these 
probes are the most difficult to reproduce by numerical models, due to dispersive effects which are more 
pronounced for the super-harmonics released after the bar. 

Results of case A (H = 2.0 cm ; T = 2.02 s) are presented on Fig. 5. For this case the incident waves 
are rather long (kh = 0.67 offshore of the bar) and thus weakly dispersive, and have a low steepness 
(kH/2 = 0.017 or H/L=0.0053). The transformation of this incident regular and quasi-sinusoidal wave 
train into a series of free waves which propagate at their own celerity is clearly visible on Fig. 5, as the 
wave profiles are very different from one station to another. After the bar high-order harmonic 
components mainly evolve as free waves whereas they remained bounded to the main wave component 
during the shoaling of wave on the offshore slope of the bar. The various panels of Fig. 5 show that 
almost all the details of the wave profiles are reproduced by the simulations indicating that both the 
amplitudes and celerities of the released super-harmonics are properly modeled.  

Results of case C (H = 4.1 cm ; T = 1.01 s) are presented on Fig. 6. For this case the incident waves 
are shorter (kh = 1.69 offshore of the bar) and thus more dispersive, and also steeper (kH/2 = 0.087 or 
H/L=0.028). Although the comparison of model’s results with measurements is not as good as for case 
A, it is still of very high quality. The shapes of the waves at the four stations are very well reproduced 
by the model. Only the amplitudes of modeled waves may appear somewhat overestimated at stations 
10 and 11, but on can also note the measured waves are not fully repetitive on the figure. On this case 
the proportion of energy transferred from the main components to super-harmonic components is lower 
in comparison to the former case, leading to a more homogeneous and regular wave field after the bar.  
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Figure 5. Time-series of free surface elevation at the four gauges located after the bar (gauges 8 to 11) for case 
C of Dingemans (1994) (H = 2.0 cm ; T = 2.02 s). Black line: results of the present numerical model ; red dots: 
measurements in the wave flume. 

 
 

 
 
Figure 6. Time-series of free surface elevation at the four gauges located after the bar (gauges 8 to 11) for case 
C of Dingemans (1994) (H = 4.1 cm ; T = 1.01 s). Black line: results of the present numerical model ; red dots: 
measurements in the wave flume. 
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Random waves over a barred beach (Becq-Girard et al. (1999) experiment) 
As a final test we consider non-breaking irregular wave conditions over a barred bottom profile. 

Becq-Girard et al. (1999) performed a series of experiments in a wave flume at EDF R&D LNHE in 
Chatou (France). The flume is 45 m long and 0.60 m wide. It is equipped with a piston-type wave-
maker which can generate either monochromatic waves or irregular sea states corresponding to a 
specified variance spectrum (e.g. of JONSWAP-type). The bottom profile (cf. Fig. 7) represents a 
submerged bar over which nonlinear effects affect the dynamics of wave propagation in a significant 
manner. The bottom profile was made of smooth metal sheets and an absorbing sponge layer was set up 
in the upper part of the beach so that bottom friction dissipation and reflection from the beach can be 
regarded as negligible in the experiments.  

 

 
 
Figure 7. Lay-out of the set-up for the irregular flume experiments by Becq-Girard et al. (1999). 

 
For the test-case considered here (test 26) the water depth offshore of the bathymetric profile is 0.65 

m. It decreases down to 0.15 m in the shallowest part of the bar. This case corresponds to non-breaking 
conditions. At the beginning of the bottom slope (probe 2 at x = 0) the measured spectral significant 
wave height  is Hmo = 0.034 m and the peak frequency is fp = 0.4185 Hz (peak period Tp = 2.39 s). The 
simulated wave spectrum is of JONSWAP-type with a peak enhancement factor γ = 3.3. The measured 
spectrum at probe 2 is plotted on Fig. 8.  

 

 

 
 
Figure 8. Variance spectrum measured at probe 2 for test 26 of Becq-Girard et al. (1999). Note that linear 
(logarithmic) scale is used for spectral density (vertical axis) on the upper (lower) plot. 
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A series of 16 resistive-type wave probes were deployed along the bathymetric profile (cf. Fig. 7). 
Free surface elevation time series were recorded over a duration of  40 minutes (corresponding of about 
1000 waves of period Tp) with a sampling time-step of 0.070 s (corresponding to about 34 points per 
wave of period Tp). 

A computational mesh of length 25 m (covering the range [-5 m; 20 m] on Fig. 7) is constructed 
with a mesh size of ∆x = 0.1 m (250 nodes). This corresponds to about 65 points per peak wave length 
over the offshore part of the domain. The time step is ∆t = 0.0657 s, which is Tp/35. The numerical 
simulation covers approximately the same duration as the experimental records, namely 2 390 s 
(≈ 40 min) = 1000 Tp = 35 000 ∆t. The time-series of free surface elevation at probe 2 is issued as 
boundary condition to drive the numerical simulation, so that the measured and simulated spectra at 
probe 2 are the same (see Fig. 8). 

 

 

 

 

 
 
Figure 9. Evolution of frequency variance spectrum along the bathymetric profile (at probes 3, 5, 7, 9, 11, 13 15 
and 16) for test 26 of Becq-Girard et al. (1999). Measured spectra are in red with + symbols; model spectra are 
in black with x symbols. Logarithmic scale is used for spectral density (vertical axis). 
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From the simulated time-series variance spectra E(f) are computed by a spectral analysis software 
based of the so-called periodogram method, and compared with measured spectra computed using the 
same technique. The variance spectra at probes 3, 5, 7, 9, 11, 13, 15 and 16 are plotted on Fig. 9. On 
this figure the frequencies are normalized by the peak frequency (so as to let appear in clear way the 
super-harmonics components at frequencies 2fp, 3fp, etc.). Note also that a logarithmic scale is used for 
the spectral density (vertical axis). This sequence of spectra clearly shows the transfer of energy from 
the main peak to higher harmonics as the water depth decreases, first towards the 2fp harmonic (probes 3 
and 5), then towards the 3fp harmonic (probe 7) and eventually towards the 4fp harmonic (probes 9 and 
11). The development of these super-harmonics peaks is very well reproduced by the model with the 
correct amplitudes for each of these peaks. As the water increases after the shoal (probes 13 and 15), we 
observe that the amplitudes of the 4fp and then 3fp harmonics are significantly reduced in very good 
agreement with the measured spectra. Eventually at station 16 where the water depth is decreasing again 
shoaling and nonlinear effects manifest again and the 3fp harmonic starts again gaining energy, a trend 
also fully given by the model. 
 

 

 

 

Figure 10. Evolution of integrated spectral wave parameters along the bathymetric profile for test 26 of Becq-
Girard et al. (1999). Upper plot: significant wave height Hmo; middle plot: mean period Tm01; lower plot: mean 
period Tm02. Parameters computed from measured spectra are in red with + symbols; parameters computed 
from model spectra are in black with x symbols. 
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From the variance spectra a number of characteristic wave parameters can be computed. We plot on 
Fig. 10 the evolution along the bathymetric profile the spectral significant wave height 00 4 mHm = , 

and the mean periods 1001 / mmTm =  and 2002 / mmTm =  computed from the spectral moments mn, 

defined by: 

 ∫=
max

min

)(
f

f

n
n dffEfm   (3) 

For these three parameters the general trends of evolution are well simulated by the model but with 
a small overestimation both for wave height and mean periods. In particular the decrease of the mean 
periods as the water depth decreases (i.e. between x = 3 m and 9 m) as a consequence of the transfer of 
energy towards super-harmonics is properly modeled, and so is the slight increase of these mean periods 
after the shoal where the water depth is greater. 
 

 

 
 
Figure 11. Evolution of nonlinear wave parameters along the bathymetric profile for test 26 of Becq-Girard et 
al. (1999). Upper plot: skewness (horizontal asymmetry) λλλλ3; lower plot: vertical asymmetry A. Parameters 
computed from measured bi-spectra are in red with + symbols; parameters computed from model bi-spectra 
are in black with x symbols. 

 
Finally, in order to characterize the nonlinear effects, we compute and plot on Fig. 11 two 

parameters, namely the skewness λ3 and the vertical asymmetry A, respectively defined by: 
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where Bm,n = B(fm, fn) is the bispectrum, defined as the Fourier transform of the third-order correlation 
function of the surface elevation. The bispectrum can be used to identify coupled modes in the wave 
train (see e.g. Kim and Powers 1979; Kim et al. 1980; Elgar and Guza 1985; Becq-Girard et al. 1999). 

The skewness λ3 is a measure of the horizontal asymmetry of the waves. As the wave shoals on the 
bottom profile (i.e. for x = 0 to 9 m) we can clearly see an increase of this parameter, from almost 0 to 
about 1.5 for the measurements and 1.3 for the model. Then the skewness decreases between x = 9.5 
and 12.5 m when the water depth increases after the shoal, and eventually it increases at probe 16 as 
water depth is decreasing again. These trends are well reproduced by the model although the model’s 
values are in general a bit lower than the measured ones. 

The vertical asymmetry A of the wave signal can be obtained by integrating the imaginary part of 
the bispectrum (Masudo and Kuo 1981). The lower panel of Fig. 11 shows that the evolution of the 
vertical asymmetry  is modeled with great accuracy. First it decreases from A = 0 to –0.6 for x ranging 
from 0 to about 7 m, then it increases up to about 0.5-0.6 for x ranging from 7 m to about 11 m, then it 
decreases again as the waves shoal on the last slope of the profile. 

 

SUMMARY OF THE STUDY AND OUTLOOK 
The new model recently proposed by Chazel et al. (2009) exhibits a number of advantages. Firstly, 

a property shared by other Boussinesq-type models, we recall that it is a 2DH model, making it clearly 
less heavy to use than a full 3D hydrodynamical model. Secondly, due to the use of a potential 
formulation the model involves only 4 equations to solve, both for 1DH and 2DH cases. Thirdly, only 
first and second order space derivatives appear in model equations, which greatly simplifies the 
numerical implementation compared to other high-order Boussinesq-type models that involve up to fifth 
order derivatives. Fourthly, we have proposed the use of a static Dirichlet-to-Neumann operator (DNO), 
which has to be computed once for all at the beginning of the simulation, saving thus a large amount of 
CPU time. 

Analysis of model’s properties has revealed that it possesses excellent linear characteristics, up to 
kh = 10 at least, for dispersion, shoaling coefficient and vertical profile of velocity. The three 1DH test-
cases considered in this study have shown very good capabilities of the model to reproduce exact 
numerical solutions and experimental measurements in a variety of non-breaking wave conditions and 
types of bottom profiles. Nonlinearity, dispersion and bathymetric effects are well reproduced by the 
model, which appears to possess a rather wide domain of validity while having a reasonable level of 
complexity.  

Ongoing and future work will address a number of improvements of this model, namely its 
extension to deal with 2DH cases (with the aim of using unstructured meshes for the coastal domain of 
interest), the modeling of dissipative processes (namely bottom friction dissipation and depth-induced 
breaking), the appropriate numerical representation of various types of coastal/harbor structures in the 
model, and the modeling of run-up and run-down of wave on slopes. 
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