
1 

2-D NUMERICAL WAVE FLUME WITH SOLID-GAS-LIQUID INTERACTION 
AND ITS APPLICATION 

Koji Kawasaki1, Yoshitaka Takasu2 and Han Dinh Ut3  

A 2-D numerical wave flume based on a multiphase flow model with solid-gas-liquid interaction is presented in this 
paper. The governing equations are divided into an advection step and a non-advection step by making use of a time 
splitting method. A CIP method is used to calculate the hyperbolic equations for velocity and pressure at the advection 
step, while equations at the non-advection step are solved with an extended SMAC method. Conservation equation of 
mass is directly solved by using a CIP-CSL2 method. A non-reflective wave generator employing a source/sink 
method for wave generation and an energy dissipation zone are utilized to realize the numerical wave flume. Besides, 
the constitutive laws of the non-Newtonian fluid are taken into account to make the model capable of simulating the 
behavior of Bingham fluid. The validity and utility of the numerical wave flume are demonstrated by applying it to 
wave breaking and post-breaking wave deformation on the slope, the dynamic motion of a floating body under wave 
action and the collapse of the Bingham fluid column with multiple rigid bodies.    

Keywords: 2-D numerical wave flume; CIP method; CIP-CSL2 method; extended SMAC method; non-reflective wave 
generator; Bingham fluid. 

INTRODUCTION  
Coastal zones are at risk of huge coastal disasters caused by tsunami, storm surge, extreme wave, 

wave overtopping and so on. A better understanding of these complicated mechanism processes with 
air-water-structure interaction is of extremely importance from the viewpoint of disaster prevention. 
Various theoretical, experimental and numerical studies have been conducted for investigating and 
clarifying physical phenomena in coastal areas. However, these physical phenomena are generally 
constituted by solid, gas and liquid phase fields, such as structures, sediments, winds, waves and 
currents. Therefore, it would be generally difficult to predict multiphase fields with high accuracy. For 
example, tsunami disasters cause not only direct damages due to tsunami itself but also indirect 
damages resulting from collisions between coastal defense facilities and drifting bodies including 
timbers, containers and cars. 

Recently, numerical simulation approaches have been widely used as one of the tools to resolve 
complicated coastal hydraulic phenomena with nonlinear interactions among solid, gas and liquid 
phases and prevent coastal disasters, with the advance of computer performance and the development 
of higher-order numerical schemes. For instance, Kawasaki (2005a) and Kawasaki (2005b) have 
developed two- and three-dimensional numerical models of multiphase flow by employing a CIP 
(Constrained Interpolation Profile) method and an extended SMAC (Simplified Marker And Cell) 
method in order to precisely analyze complex physical phenomena with solid-gas-liquid interaction 
and provide useful information in designing coastal structures. Kawasaki and Hakamata (2006) 
proposed a new two-dimensional numerical model of solid-gas-liquid phase flows by improving the 
computational algorithm to resolve mass conservation problem and introducing a LES (Large Eddy 
Simulation) based on the Smagorinsky model. Furthermore, Kawasaki and Mizutani (2007) confirmed 
the utility and validity of the model by comparing the numerical results with the experimental ones 
regarding wave pressures acting on rigid bodies under bore action, which was induced by the collapse 
of a water column. However, the model has been limited to the numerical analysis of dynamic behavior 
of only one rigid body. Kawasaki and Ogiso (2009) developed a three-dimensional solid-gas-liquid 
phase flow model so as to analyze the dynamic behavior of multiple rigid bodies. The previous models 
have achieved in some applications, but still have some problems relating to the conservation of mass. 
These models also have not had the functions of a numerical wave flume including wave generator and 
non-reflective boundary treatment. 

Reclamation lands in coastal zones under liquefaction conditions due to strong earthquake would 
be deformed in a similar behavior to a Bingham fluid, which is one of the non-Newtonian fluids. 
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Consequently, the constitutive laws of the non-Newtonian fluids should also be considered in the 
numerical model. 

Based on the above-mentioned, the purpose of this study is to develop a two-dimensional (2-D) 
numerical wave flume with solid-gas-liquid interaction. A constitutive law for Bingham fluid is also 
introduced into the model so as to be able to analyze non-Newtonian fluid dynamics. A LES-based 
DTM (Dynamic Two-parameter Mixed) turbulence model, the third-order Adams-Bashforth scheme 
and a CIP-CSL2 (Constrained Interpolation Profile - Conservative Semi-Lagrangian 2) method for the 
conservation equation of mass are incorporated in order to enhance the computation accuracy. 
Furthermore, a non-reflective wave generator employing a source/sink method for wave generation 
(Brorsen and Larsen, 1987) and an energy dissipation zone (Cruz et al., 1993) are employed to realize 
a numerical wave flume. 

2-D NUMERICAL WAVE FLUME WITH SOLID-GAS-LIQUID INTERACTION 

Governing Equations 
The governing equations consist of the conservation equation of mass (Eq. (1)), the Navier-Stokes 

equations (Eq. (2)), the pressure equation for compressible fluid (Eq. (3)), the advection equation of 
density functions (Eq. (4)) and the equation of state for barotropic fluid (Eq. (5)). The equations allow 
us to precisely compute not only incompressible but also compressible multiphase flows. 
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where, xi is position vector (x, z), ui is velocity component in the direction of i,  is fluid density, p is 
pressure, gi is gravitational acceleration vector (0, g), fsi is surface tension term, ij is turbulence term, 
 is the coefficient of viscosity, Sij is strain rate tensor (ui/xj+uj/xi), Di is dissipation coefficient 
used in energy dissipation zones, Cls is local sound speed, t is time and I (I =1 ~ 3) are density 
functions for respective phases (1: solid phase; 2: liquid phase; 3: gas phase) that represent the rate 
of fractional volume for each phase in a cell and these functions need to satisfy the relationship: 
1+2+3=1 (0 ≤ I ≤ 1) in a cell. q = q(z, t) is wave generation source with its strength q* assigned only 
at source line (x=xs). 

Computational Algorithm 
Fig.1 indicates the computational flow chart of the 2-D numerical wave flume. Eqs. (2) and (3) are 

divided into an advection step and a non-advection step by making use of a time splitting method as 
shown in Eqs. (7) ~ (10). The resultant equations are discretized by employing irregular staggered 
mesh grids. A CIP method developed by Yabe and Aoki (1991) is used to calculate the hyperbolic 
equations for all variables at the advection step, while equations at the non-advection step are solved 
with an extended SMAC method, which can simulate both compressible and incompressible fluid. Eq. 
(1) is solved by a CIP-CSL2 method proposed by Nakamura et al. (2001), which is one of the 
conservative methods extended from a CIP method. The effect of surface tension on the gas-liquid 
interface is evaluated by using a CSF (Continuum Surface Force) model proposed by Brackbill et al. 
(1992), which interprets surface tension as a continuous mass force across the interface. A LES-based 
on a DTM  model developed by Salvetti et al. (1995) is applied for estimating turbulence quantities. 
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Figure 1. Flow chart of multiphase flow model 
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where, Fi represents external force term such as gravity, viscous, surface tension and dissipation zone 

terms. 
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Numerical procedure at advection step 
The equations at the advection step are calculated by using the CIP method with 3rd-order 

accuracy, which can solve the advection equation precisely, taking advantage of the hyperbolic 
equation f as represented in Eq. (11).  
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Fig.2 shows the concept of one-dimensional CIP method, in which the spatial distribution of value 

is interpolated in the range of the interval [xi-1, xi] with a cubic polynomial function formed as Eq. (12). 
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Figure 2. Concept of one-dimensional CIP method 

The unknown coefficient a1 ~ a4 in the interpolation function of Fi
n(x) are determined from the 

continuities of f and its spatial derivatives fx at the grid points xi-1 and xi. Then, value fi
* at the next time 

step is computed by Eq. (13). 
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Numerical procedure at non-advection step 
Eqs. (9) and (10) cannot be solved explicitly since the unknown variables at the next time step are 

included in both the left and the right sides of the equations. In the model, the extended SMAC method 
is used to compute both compressible and incompressible fluids. 

The predicted velocity ũi is computed explicitly by Eq. (14) with the help of variables after the 
advection step.  
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where, superscript * represents the time step after the advection step. 

The simultaneous equation for the pressure correction p = pn+1  p* in Eq. (15) is derived by 
eliminating 1 n

iu from Eq. (10) using Eqs. (9) and (14).  
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The pressure correction p in Eq. (15) is solved by an ILUCGS (Incomplete LU decomposition 

Conjugate Gradient Squared) method.  
Finally, all the variables at the next time step t = (n+1)t are updated by Eqs. (16) ~ (18). 
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The local sound speed Cls and the viscous coefficient  for each cell are evaluated from Eqs. (19) 

and (20). 
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where, the subscripts 1, 2 and 3 represent solid, liquid and gas phases, respectively. 

Surface tension 
A CSF model developed by Brackbill et al. (1992) is introduced into the Navier-Stokes equations 

to evaluate the effects of surface tension between gas and liquid phases. The CSF model assumes that 
the interface between gas and liquid phases, the thickness of which is in fact zero, has some transition 
ranges, as shown in Fig.3. The surface tension assumed as the body force is denoted as Eq. (21). 
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where,  is the coefficient of the surface tension, k is the curvature, [2]= 1 and < 2 >= 1/2.  
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Figure 3. Concept of CSF model 

Dynamic motion analysis of multiple rigid bodies 
The density function of solid phase for each rigid body 1l is introduced into the model in order to 

compute the motions of multiple rigid bodies, in which l represents the number of the bodies. It should 
be noted that the relationship between 1 which represents a density function of solid phase in a 
computational cell and 1l is required to satisfy Eq. (22). First, the motions of rigid bodies are 
simulated similarly to the numerical procedure proposed by Xiao et al. (1997). Assuming that rigid 
bodies are a high-viscous fluid, the entire computational domain including the region of rigid bodies is 
computed in the above-mentioned computational algorithm. However, the distortion of the rigid bodies 
occurs because they are treated as a fluid. To overcome this problem, the translational velocity Vl and 
angular velocity l at the mass center of the rigid bodies are computed by Eqs. (23) and (24). Then, the 
position of each body at the next time step is calculated by applying the computed velocities Ul, which 
is the sum of the translational and angular velocities, only to cells in the solid phase. This also indicates 
that the motions of rigid bodies are simulated without setting any boundary conditions between solid 
and other phases.  
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where, L is the total number of rigid bodies, Ml is total mass, sl is density, Il is the moment of inertia, 
Rl is a position vector from the center point of the body x0l to an arbitrary location x and du/dt is 
calculated using the pressure values within the bodies based on the Newton’s second law of motion. 

Modeling of Constitutive Law of Bingham Fluid 
As shown in Fig.4, Bingham fluid treated in the present study has similar characteristics to the 

Newtonian fluid when the shear stress  exceeds the yield shear stress y. However, it is said to be 
difficult from the viewpoint of numerical suitability to reproduce well the sudden change of fluid 
property. Therefore, a bi-viscosity model, which can compute stably by dividing the Bingham fluid 
into two properties in terms of shear strain rate S, was adopted in this study referring Moriguchi et al. 
(2005). Finally, the influence of the constitutive law of Bingham fluid was considered by substituting 
the artificial viscosity ’ expressed by Eq. (28) into viscosity coefficient  in the right hand side of the 
momentum equation (Eq. (2)). 
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where,   is the internal friction angle and c is the cohesion. The critical shear strain rate Sc is expressed 
by Eq. (29) in a similar way to Yamada et al. (1998). In Eq. (29),  is an optional constant number and 
was set to = 0.02 in this study. The shear strain rate |S| is calculated by Eq. (30). 
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Figure 4. Constitutive low of Bingham fluid 
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RESULTS AND DISCUSSION 

Verification of Numerical Wave Flume 
Fig. 5 shows a definition sketch of a 2-D numerical wave flume. The computational domain 

includes two energy dissipation zones on the left and the right sides of the domain. The origin of x 
coincides with the wave generation source. In the present simulation, the location of the wave 
generation source was set at the center of the computational domain. The wave period and wave height 
are 1.5s and 0.1m respectively. The time interval t was set equal to 0.001s so that the Courant 
condition is always satisfied. The detail of numerical conditions was summarized in Table 1.  

Fig. 6 shows a comparison between the calculated water surface elevation and the theoretical one 
with the third-order Stokes theory at some given positions. The numerical results are in good 
agreement with the theoretical ones. It is also found from Fig. 7 that the waves made by the wave 
generation source propagate rightward and leftward in the computational domain and are dissipated 
effectively in the energy dissipation zones. The validity and utility of the numerical wave flume with 
the non-reflecting wave generator were, therefore, confirmed qualitatively and quantitatively from Figs. 
6 and 7.  

 
 

Table 1. Numerical conditions (Test 1) 
Computational domain 798  60 mesh Water viscosity coefficient 1.0 10-3 [Pa･s] 
Mesh size x =0.02 [m] ~ 0.15 [m] 

z =0.02 [m] ~ 0.08 [m] 
Air viscosity coefficient 1.8 10-5 [Pa･s] 
Surface tension coefficient 7.2 10-2 [N/m] 

Time step interval 0.001s Gravitational acceleration 9.80665 [m/s2] 
Water density 1000.0 [kg/m3] Atmospheric pressure 1013 [hPa] 
Air density 1.20 [kg/m3]   

 

 
 

Figure 5. Definition sketch of numerical wave flume 
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Figure 6. Time variation of water surface elevation 
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Wave Breaking Process on a Constant Slope 
In order to verify the validity of the proposed model in treating the interaction of gas and liquid 

phases, the model is applied to wave breaking phenomenon on a slope, which has been known as a 
challenging task for numerical simulations because the process includes nonlinear effects and complex 
interaction between air and water. In the computational domain, the wave generation source was 
located at x=0.0m, and a slope with a constant gradient of 1/15 was set up from x=10.0m to x=20.0m. 
An energy dissipation zone was set from x= 10.0m to x=0.0m to prevent the reflection from the left 
side of the numerical wave flume. The wave period and wave height are 2.0s and 0.15m, respectively. 
Detailed numerical conditions are shown in Table 2. 

Fig. 8 shows the numerical results of wave breaking process on the slope. The wave generated by 
the wave source is found to propagate onshore. Then, the wave starts to run up the slope and its 
amplitude increases significantly due to the effect of wave shoaling. The wave crest subsequently 
continues to steepen and eventually leads to wave breaking. In Fig. 9, the wave breaking process with 
overturning and impinging jet is also depicted. As shown in these figures, the model was found capable 
of reproducing wave breaking process and the validity of the model was confirmed in simulating the 
interaction of gas and liquid phases. 
 

Table 2. Numerical conditions (Test 2) 

Computational domain 540 80 [mesh] Water viscosity coefficient 1.0 10-3 [Pa･s] 
Mesh size x =0.30 [m] ~ 0.01 [m] 

z =0.02 [m] ~ 0.005 [m] 
Air viscosity coefficient 1.8 10-5 [Pa･s] 
Surface tension coefficient 7.2 10-2 [N/m] 

Time step interval 0.0001 [s] Gravitational acceleration 9.80665 [m/s2] 
Water density 1000.0 [kg/m3] Atmospheric pressure 1013 [hPa] 
Air density 1.20 [kg/m3]   
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Figure 8. Wave breaking on a constant slope 
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Figure 9. The velocity field in x-z plan around the breaking zone 
 

Dynamic Behavior of a Rigid Floating Body under Wave Action 
Dynamic analysis of a movable body under wave action would be considered as one of the most 

difficult problems in numerical simulations because advanced techniques are required to treat moving 
boundaries as well as nonlinear interaction among three phases of gas, liquid and solid. Here the 
proposed model is applied to the dynamic behavior of a rigid floating body under wave action on a 
slope to confirm its validity in solving the above-mentioned challenges. 

Fig. 10 shows the initial condition for the simulation test. The wave generation source was located 
at x=0.0m, and an energy dissipation zone was set up from x=6.0m to x=0.0m. A constant gradient of 
1/15 was set for a slope. Wave period and wave height are 1.5s and 0.1m, respectively. A rigid body 
was set afloat over the slope as indicated in Fig. 10. The numerical conditions are shown in Table 3. 

 

Figure 10. Initial condition for numerical simulation of dynamic behavior of a rigid floating body 

 
 

Table 3. Numerical conditions (Test 3) 

Computational domain 900  50 [mesh] Solid density 800 [kg/m3] 
Mesh size x =0.02 [m] ~ 0.01 [m] 

z =0.05 [m] ~ 0.01 [m] 
Water viscosity coefficient 1.0 10-3 [Pa･s] 
Air viscosity coefficient 1.8 10-5 [Pa･s] 

Time step interval 0.0001 [s] Surface tension coefficient 7.2 10-2 [N/m] 
Water density 1000.0 [kg/m3] Gravitational acceleration 9.80665 [m/s2] 
Air density 1.20 [kg/m3] Atmospheric pressure 1013 [hPa] 
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Figure 11. Dynamic behavior of a rigid floating body on the slope under wave action 

 
 Fig. 11 gives the numerical results of the dynamic behavior of the rigid floating body under wave 

action. After the generated wave hit the floating body, the body was turned and moved onshore by the 
wave forces. The configuration and volume of the body are also found to be preserved at any time. The 
numerical results, therefore, revealed the validity of the model in simulating the interaction of gas, 
liquid and solid phases. 

Collapse Simulation of Bingham Fluid Column 
Hereafter the model is applied to the collapse phenomenon of a Bingham fluid column and the 

interaction of a Bingham fluid column and two rigid bodies in order to confirm its validity. 
First, two numerical simulations of the collapse phenomena of a Bingham and Newtonian fluid 

columns were conducted to verify the validity of the constitutive law of non-Newtonian fluid proposed 
in the model. Both the computational domains were taken as 0.75m and 0.4m in the directions of x and 
z respectively. A configuration of both the fluid columns was a rectangle of 0.1m wide and 0.2m high. 
The wall boundary condition for velocity was the slip condition. The velocity was initially set at zero 
in the entire computational domains. Other numerical conditions are shown in Table 4. 

Fig. 12 shows the time variation of the gas-liquid interface and velocity field after the collapses of 
the columns. The counterclockwise circulation flows take place in both the computational domains by 
the collapses of the fluid columns due to gravity force. The magnitude of the velocities around the gas-
liquid interface in the simulation of the collapse of Bingham fluid column, however, is much less as 
compared to the case of Newtonian fluid column. Consequently, after 0.4s from the start of 
computation, the Newtonian liquid collides with the right wall whereas the Bingham liquid only 
reaches the location around x=0.2m. Numerical results, therefore, demonstrated a strong influence of 
the constitutive law of fluid on the fluid dynamics and confirmed the validity of the model for 
simulating the non-Newtonian fluid as well as the Newtonian fluid.  

 
Table 4. Numerical conditions (Test 4) 

Computational domain 150 80 [mesh] Water viscosity coefficient 1.0 10-3 [Pa･s] 
Mesh size x =0.005 [m] 

z =0.005 [m] 
Air viscosity coefficient 1.8 10-5 [Pa･s] 
Surface tension coefficient 7.2 10-2 [N/m] 

Time step interval 0.0001 [s] Gravitational acceleration 9.80665 [m/s2] 
Bingham fluid density 1000.0 [kg/m3] Atmospheric pressure 1013 [hPa] 
Air density 1.20 [kg/m3] Cohesion c 100.0 [Pa･s] 
Solid density 1000.0 [kg/m3] Angle of internal friction  0.0 [degree] 
   0.02 
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(a) Non-Newtonian fluid (Bingham fluid) (b) Newtonian fluid 

Figure 12. Dynamic behavior of non-Newtonian fluid and Newtonian fluid 
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Figure 13. Interaction of Bingham fluid with two rigid bodies 

 
 

Here the model is employed to simulate the interaction of Bingham fluid with two rigid bodies. In 
the computational domain, one rigid body and the other were set near the top and bottom of the column, 
respectively. Fig. 13 shows the time variation of the dynamic behavior of the two rigid bodies and the 
velocity field simultaneously. After the column collapsed, the counterclockwise circulation flow is 
found to take place. As the results, both the two rigid bodies were rotated counterclockwise. The two 
rigid bodies located at the top and bottom of the fluid column are confirmed to move downward and 
rightward respectively with the flow caused by the collapse of the fluid column. Thus, the validity of 
the model was verified for simulating the interaction of the non-Newtonian fluid and multiple rigid 
bodies. 

CONCLUSION 
A 2-D numerical wave flume with solid-gas-liquid interaction as well as the constitutive laws of 

Newtonian and non-Newtonian fluids was newly developed in this study. The validity and utility of the 
model was qualitatively and quantitatively verified throughout some applications to wave breaking and 
post-breaking wave deformation on the slope, the dynamic motion of a floating body under wave 
action and the collapse of the Bingham fluid column with multiple rigid bodies.  

ACKNOWLEDGMENTS 
This research is supported in part by Grant-in-Aid for Young Scientist (A) (Project No.21686046, 

Head Investigator: K. Kawasaki) of the Ministry of Education, Culture, Sports, Science and 
Technology, Japan. 



 COASTAL ENGINEERING 2010 
 

15

REFERENCES 
Brackbill, J.U., D.B. Kothe, and C. Zemach. 1992. A continuum method for modeling surface tension, 

Journal of Computational Physics, 100, 335-354. 
Brorsen, M., and J. Larsen. 1987. Source generation of nonlinear gravity waves with the boundary 

integral equation method, Coastal Engineering, 11, 93-113. 
Cruz, E., H. Yokoki, M. Isobe, and A. Watanabe. 1993. An absorbing boundary condition for 

nonlinear waves, Proceedings of Coastal Engineering, JSCE, 40, 46-50 (in Japanese).  
Kawasaki, K. 2005a. Numerical Model of 2-D Multiphase Flow with Solid-Liquid-Gas Interaction, 

International Journal of Offshore and Polar Engineering, 15(3), 198-203. 
Kawasaki, K. 2005b. Numerical simulation of solid-gas-liquid phase flow in a three-dimensional field, 

Proceedings of 3rd International Conference on Asian and Pacific Coasts, 1868-1879. 
Kawasaki, K., and M. Hakamata. 2006. Numerical analysis of time-changing wave force acting on 

drifting rigid structure with solid-gas-liquid phase flow model, Proceedings of the 30th 
International Conference on Coastal Engineering, 4507-4519. 

Kawasaki, K., and N. Mizutani. 2007. Numerical simulation of bore-induced dynamic behavior of rigid 
body using 2-D multiphase flow numerical model, Proceedings of International Conference on 
Coastal Structures 2007, 1477-1488. 

Kawasaki, K., and K. Ogiso. 2009. Development of 3-D multiphase flow numerical model 
“DOLPHIN-3D” and its application to wave-rigid body interaction problems, Proceedings of the 
31st International Conference on Coastal Engineering 2008, 3199-3211. 

Moriguchi S., A.Yashima, K. Sawada, R. Uzuoka, and M. Ito. 2005. Numerical simulation of flow 
failure of geomaterials based on fluid dynamics, Solids and foundations, 45(2), 155-165. 

Nakamura, T., R. Tanaka, T. Yabe, and K. Takizawa. 2001. Exactly conservative semilagrangian 
scheme for multi-dimensional hyperbolic equations with directional splitting technique, Journal of 
Computational Physics, 174, 171-207. 

Salvetti, M.V., and S. Banerjee. 1995. A priori tests of a new dynamic subgrid-scale model for finite-
difference large-eddy simulations, Physics of Fluids, 7(11), 2831-2847. 

Xiao, F., T. Yabe, T. Ito, and M. Tajima. 1997. An algorithm for simulating solid objects suspended in 
stratified flow, Computer Physics Communications, 102, 147-160. 

Yabe, T., and T. Aoki. 1991. A universal solver for hyperbolic equations by cubic-polynominal 
interpolation I. One-dimensional solver, Computer Physics Communications, 66, 219-232. 

Yabe, T., and R. Tanaka, T. Nakamura, and F. Xiao. 2001. An Exactly Conservative Semi-Lagrangian 
Scheme (CIP–CSL) in One Dimension, Monthly Weather Review, 129, 332-344. 

Yamada, Y., T. Oshiro, and Y. Masuda. 1998. Application of MAC method to flow analysis of fresh 
concrete, Annual Journal of Concrete Engineering, 20(1), 131-136 (in Japanese). 


