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REDUCTION OF WAVE OVERTOPPING ON A SMOOTH DIKE 
BY MEANS OF A PARAPET 

Koen Van Doorslaer1 and Julien De Rouck1 

A return wall or parapet is a very efficient construction built to reduce wave overtopping over sea structures. One of 

its main advantages is that this relative small construction can be built in a dike without increasing the crest height yet 

creating a major reduction in wave overtopping. In this paper only non-breaking waves attacking smooth dikes are 

investigated. A normal smooth dike, a smooth dike with vertical wall and a smooth dike with parapet have been 

tested. The results lead to reduction factors for a vertical wall or a parapet that can be introduced in the van der Meer 

formulas for wave overtopping over smooth dikes. The optimal geometry of the parapet has been subject of the 

research as well. 
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INTRODUCTION 

The 67km long shoreline of Belgium is with 450.000 inhabitants a highly populated area. A similar 

trend exists worldwide: coastal zones belong to the areas with highest population densities. Apart from 

highly populated, coastal zones are also of major economical (harbors), ecological and touristic value. 

It is clear that coastal zones need to be protected against human impact (e.g. pollution), but also against 

nature (e.g. storms). Both soft (dunes, beaches) and hard (dikes, breakwaters, …) safety measures can 

be foreseen to protect the coastal area against wave impact and flooding of the hinterland. 

In Belgium, the typical geometry of the main part of the coastline is a combination of soft and hard 

measures: a sandy beach under a very mild slope (1/100 to 1/50) followed by a smooth dike and a 

horizontal promenade, see Figure 1. During storms with return period even below 10 years, the water 

level can reach the smooth dike at some locations, and create too much wave overtopping 

 

 
Figure 1. Typical beach profile in Belgium (left) causing danger during storms (right) 

According to the Belgian Integrated Coastal Safety Plan (ICSP), this coastline has to remain safe 

under a storm with a return period of 1000 years and mean overtopping discharges has to be kept below 

1l/s/m. If this storm would have occurred before any of the suggestions in the ICSP were executed, one 

third of the coastal zone would have been insufficiently protected. Dike instability, breaches and 

flooding would have occurred, creating an economical disaster and the loss of many lives.  

Emergency solutions were carried out, and long term solutions have been researched. All those 

solutions had to take the spatial restrictions along the Belgian coastline into account: beach 

nourishment over the full length of the unsafe zones is expensive, not permanent and not possible at 

every location (e.g. near harbors). Increasing the crest level or the crest width is also not possible: 

building a high storm wall for example is not wanted due to the visual implications. Alternative 

solutions without modifying the crest height were researched in the 2D wave flume of Ghent 

University, and are presented in this paper. 
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WAVE OVERTOPPING REDUCTION WITH THE SAME CREST HEIGHT

In the past, vertical (crown)walls have been built into the smooth dike

shown in Figure 2. This simple 

Figure 2. Vertical wall on a smooth dike

In order to reduce the overtopping even more, with only minor adjustments to the existing 

construction, a “nose” has been added to the v

parapet is built. The open space can be filled up, meanwhile creating a 

 

Figure 3. Smooth dike with parapet

Figure 4. Parapet reduces wave overtopping

With a parapet waves are not only projected upward, but 

seen on pictures taken during the 

been introduced to reduce wave overtopping at vertical seawalls 

tests have been executed by (Den Heijer 1998) with a fixed parapet

the previous papers, a non-variable reduction factor 

In the present paper, the influence of the geometrical variations of the height and angle of this nose 

is discussed, in order to find the optimal geometry of 

berm). Smoothly curved parapets have not been investigated, since the 

vertical (crown)wall at the Belgian coast 

similar. 

EXPERIMENTAL SET-UP 

Test facility and wave generation

All tests for this research were performed in the 2D wave flume of the Department of Civil 

Engineering at Ghent University. Dimensions of the flume are L = 30.0m, W = 1.0m and H = 1.2m. 

Waves are generated using a piston type wave paddle, and the steering of this paddle 

wave absortion. The irregular waves were generated using mainly the Jonswap spectrum with peak 

enhancement factor γ = 3.3. Some tests were repeated with a standard Pierson

ERTOPPING REDUCTION WITH THE SAME CREST HEIGHT 

In the past, vertical (crown)walls have been built into the smooth dike along the Belgian coast

 measure already reduces wave overtopping. 

 
. Vertical wall on a smooth dike 

In order to reduce the overtopping even more, with only minor adjustments to the existing 

construction, a “nose” has been added to the vertical part of the (crown)wall. By doing this a so called 

The open space can be filled up, meanwhile creating a wider crest (right on 

 
. Smooth dike with parapet 

  
. Parapet reduces wave overtopping 

aves are not only projected upward, but also back to the open sea. Thi

seen on pictures taken during the scale model testing (Figure 4). The principle of a pa

to reduce wave overtopping at vertical seawalls (Goda 1985, Franco 1994), and a few 

by (Den Heijer 1998) with a fixed parapet at a sloping seawall with berm.

variable reduction factor γp = 0.7 has been proposed.  

paper, the influence of the geometrical variations of the height and angle of this nose 

discussed, in order to find the optimal geometry of the parapet located on the smooth dike

Smoothly curved parapets have not been investigated, since the modification of

Belgian coast into a parapet then gets lost. Overtopping reducing effects are 

Test facility and wave generation 

All tests for this research were performed in the 2D wave flume of the Department of Civil 

Engineering at Ghent University. Dimensions of the flume are L = 30.0m, W = 1.0m and H = 1.2m. 

ng a piston type wave paddle, and the steering of this paddle 

wave absortion. The irregular waves were generated using mainly the Jonswap spectrum with peak 

= 3.3. Some tests were repeated with a standard Pierson-Moskow

along the Belgian coast as 

In order to reduce the overtopping even more, with only minor adjustments to the existing 

By doing this a so called 

(right on Figure 3).  
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of a parapet has already 

5, Franco 1994), and a few 

at a sloping seawall with berm. In 

paper, the influence of the geometrical variations of the height and angle of this nose 

ocated on the smooth dike (without 

modification of the existing 

Overtopping reducing effects are 

All tests for this research were performed in the 2D wave flume of the Department of Civil 

Engineering at Ghent University. Dimensions of the flume are L = 30.0m, W = 1.0m and H = 1.2m. 

ng a piston type wave paddle, and the steering of this paddle features active 

wave absortion. The irregular waves were generated using mainly the Jonswap spectrum with peak 

Moskowitz spectrum, 
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but no differences were found regarding wave overtopping. Each tested time series contained 

approximately 1000 waves, in order to obtain reliable average overtopping discharges.  

Measurements 

Waves are measured using resistance type wave gauges, positioned as shown in Figure 5: 2 in front 

of the wave paddle (active wave absorption), 3 at deeper water, and 3 in front of the structure. By 

means of these groups, incident and reflected wave conditions can be separated from each other and the 

incoming wave height can be determined, using the method by (Mansard & Funke, 1980).  

 
Figure 5. Position of wave gauges in the 2D flume 

Wave overtopping is captured by a tray on top of the smooth dike, and lead to a basin that is 

constantly weighed on a balance. When the basin is full, water is pumped back to the wave flume in 

order to maintain the correct water level in the flume during the test. Total overtopping volume can be 

deducted from the balance’s weight registration in time. 

TEST PROGRAM 

In this research, the wave overtopping over a smooth dike with parapet is compared to both 

overtopping over a vertical wall on a smooth dike, and overtopping over a normal smooth dike. The 

smooth dike acts as a reference case. Even though the smooth dike has already been studied by 

numerous authors, and well-known design formulas are available in literature, we have chosen to repeat 

a number of these tests in our flume. In this way, measuring devices and techniques are the same for 

the expansions as for the reference case, and a good comparison can be made. This leads to a reduction 

factor, expressing the reduction in wave overtopping by means of a parapet or vertical wall compared 

to a classical dike with the same crest height. 

Conclusions of the research can only be drawn in the range of parameters which was tested. Using 

the design formulas outside these ranges may lead to wrong results. 

Smooth dike 

 

Height foreshore (above bottom of the flume) 0.25 m 

Crest height (above foreshore) 0.62 m 

Crest height (above bottom flume) 0.87 m 

Waterdepth at toe of the structure 0.35 - 0.49 m 

Waterdepth at the wave paddle 0.60 - 0.74 m 

Freeboard (RC) 0.27 - 0.13 m 

Wave height (Hm0) 0.095 - 0.174 m 

Wave peak period (Tp) 1.1 - 2.7 s 

Wave steepness (s0) based on Tm-1,0 0.015 - 0.06 - 

Dimensionless freeboard (RC/Hm0) 0.75 - 2.45 - 
Table 1. Geometrical and hydraulic boundary conditions of the tests on a smooth dike 1(V)/2(H) 

Dike with vertical wall or parapet 

The geometrical boundary conditions were identical as in the reference case ‘smooth dike’. The 

hydraulic parameters can differ, and are listed in Table 2. 

Waterdepth at toe of the structure 0.36 - 0.57 m 

Waterdepth at the wave paddle 0.61 - 0.82 m 

Freeboard (RC) 0.26 - 0.05 m 

Wave height (Hm0) 0.068 - 0.180 m 

Wave peak period (Tp) 1.045 - 2.44 s 

Wave steepness (s0) based on Tm-1,0 0.013 - 0.052 - 

Dimensionless freeboard (RC/Hm0) 0.6 - 2.65 - 
Table 2. Hydraulic boundary conditions for the tests with vertical wall and parapet 

The parameters used in this research can be up scaled to prototype values using Froude scaling 

law. 
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ANALYSES 

To calculate wave overtopping over dikes, the eurotop manual prescribes the so-called van der 

Meer approach (TAW 2002, Eurotop 2007). A distinction is made between breaking and non-breaking 

waves, which is based on the Irribaren number. In both cases the dimensionless overtopping rate is 

given as a function of a dimensionless freeboard: 

( )*exp* RbaQ ⋅−⋅=
 

                                     

 

 

 

For non-breaking waves:
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In these formulas, q stands for average overtopping discharge per m; g = acceleration due to 

gravity; Hm0 = incident spectral wave height; Rc = freeboard; ξ0 = Irribaren number = breaker 

parameter = tanα/s0
0.5

; tan α = structure’s slope; s0 = wave steepness = 2.π.Hm0/(g.Tm-1,0²); Tm-1,0 = 

spectral wave period; γ = reduction factor due to the slope roughness (γf), angle of incident wave (γβ), 

existence of a berm (γb) or vertical wall (γv). These reduction factors give a virtual raise of the 

freeboard, which results in a reduction of wave overtopping over the coastal structure. Since we only 

test perpendicular wave impact (γβ = 1) on smooth slopes (γf  = 1) without berm (γb = 1), the van der 

Meer (vdM) formulas for wave overtopping over smooth dikes become 
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Plotting such data gives a straight line in a log-linear plot. There is no reduction for the presence of 

vertical walls in case of non-breaking waves, according to the vdM-formula. This will be discussed 

further on in this paper. 

The lower a reduction factor γ is, the better reduction is achieved since the overtopping discharge 

reduces. 

RESULTS FOR NON-BREAKING WAVES 

Reference case: smooth dike 

51 tests with non-breaking waves (ξ0> ~2) on a smooth dike with slope 1(V)/2(H) have been 

executed as reference data set. When all these tests are plotted in the log-linear diagram, a similar but 

slightly higher trend compared with formula (5) by van der Meer is obtained.  

( )*335.2exp2.0* RQ ⋅−⋅=
 

 

Reduction factors for vertical wall and parapet will be referred to this reference case, not to the 

traditional vdM formulas. The b-coefficient (eq (1)) of the reference case is 2.335. 

For breaking waves: 
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Figure 6. Dimensionless overtopping discharges as a function of the dimensionless freeboard for non-
breaking waves over smooth dike: reference data set 

Smooth dike with vertical wall 

 
Figure 7. Geometry of a vertical wall built in the dike 

Several vertical walls, with different height (hwall = 2-4-5-6-8cm), have been built into the dike 

with slope ½, with the same crest height as shown on Figure 7. 88 tests have been performed and 

plotted in Figure 8 grouped by the height of the wall.  

 
Figure 8. Dimensionless overtopping versus dimensionless freeboard: reference data set (red), vertical wall 
(green 2cm, pink 4cm, black 5cm, blue 6cm, orange 8cm) 
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The 88 tests on a smooth dike with vertical wall are plotted together with the reference situation 

(red data) smooth dike on Figure 8. In order not to overload the graph, the vdM-line has been left out, 

but the 90% confidence band is drawn as visual help.  

It can clearly be seen that a vertical wall has its influence on the wave overtopping: the data points 

for the tests with vertical wall (green, pink, black, blue and orange in Figure 8) lie below the data from 

the reference situation without vertical wall (red data in Figure 8). These findings contradict with the 

eurotop guidelines, who say there is no γv necessary for non-breaking waves (eq. (3)).  

Another remarkable fact is the influence of the wall height on the reduction. The green data points, 

vertical wall of 2cm height, lie below the red reference data. The pink (vertical wall 4cm), black (5cm), 

blue (6cm) and orange (8cm) are lying even a bit lower in the graph. The higher the wall, the lower the 

wave overtopping, which is also in contrast with the γv-formula for breaking waves which is 

independent of the wall height (TAW 2002, Eurotop 2007).  

We have left the traditional analysis path of dividing 2.335 (the b-coefficients of the reference case 

formula (6)) by the b-coefficients of the data grouped by the dimensionless wall height (hwall/RC or 

hwall/Hm0) to obtain reduction factors γ. Here, we have calculated a γv needed to shift every singular data 

point to the reference line Q* = 0.2exp(-2.335R*). The best correlation can be found when plotting 

these values versus the dimensionless wall height (hwall/RC), as shown in Figure 9. 

 
Figure 9. Reduction factor γγγγv of every point versus dimensionless wall height. 

An exponential descending trend can be seen in the data points of Figure 9, with equation 
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Without wall (hwall = 0), this expression leads to γv = 1: no reduction compared to the smooth dike. The 

range of hwall/RC is limited to 1, since other physical behavior will occur when the still water line 

(SWL) reaches the wall (hwall/RC > 1). 

A data plot like Figure 8 can now be repeated, with the inclusion of the obtained reduction factor 

(eq. (7)) on the abscissa.  

The single calculated γv’s were only defined to find a trend between γv and the dimensionless 

hwall/RC. Further on, we will always use the obtained trend (7). The result can be seen in Figure 10.  
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Figure 10. The obtained data with inclusion of γγγγv in the dimensionless freeboard are lying closer to the red 
reference line. 

Wave overtopping on smooth dikes with a vertical wall is well predicted by the formula 









⋅⋅−⋅=

⋅ vm

C

m
H

R

Hg

q

γ

1
335.2exp2.0

0

3

0  
 

SMOOTH DIKE WITH PARAPET 

 
Figure 11. Geometry of a parapet built in the dike. 

Only small modifications have been made to the vertical wall to optimize the reduction of wave 

overtopping. A nose has been added to the wall, but the crest height of the original dike again remains 

the same. In this paper, the influence of the angle β and the height ratio λ = hn/ht has been studied 

(Figure 11) . In total 92 test with different geometrical combinations were executed in the wave flume: 

the total parapet height (ht) was 2, 5 or 8cm, the angle β was 15°, 30°, 45° or 60° and λ had a value in 

between 1/8 and 1.

 

 

Not all data points will be plotted here, since this would create an overload of data points in the 

graph. An example of the analysis will be shown for the parapet ht = 5cm.  
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Figure 12. Dimensionless overtopping versus dimensionless freeboard: reference data (red), vertical wall of 
5cm high (black) and parapet of 5cm high (green) 

 

We see a major reduction due to the nose of the parapet, since all green data points on Figure 12 lie 

below the red (smooth dike) and black (vertical wall) data points. A reduction factor γpar should be 

introduced in the exponential part of formula (8). This reduction factor describes the behavior of the 

parapet’s nose related to the vertical wall without nose. Higher, a reduction factor for a vertical wall 

has already been introduced (eq. (7)). Multiplication of both reduction factors (wall, parapet), will give 

the full reduction of a parapet compared to a smooth dike. γpar on its own will only give the influence of 

adding a nose to the wall, so creating a parapet.  

 
Figure 13. Definition of γγγγpar and γγγγv 

 

Seeing the scatter amongst the green data, γpar will most probably be a function of more than one 

geometrical parameter. Influences of both the angle of the parapet’s nose (β) and the dimensionless 

height of the parapet’s nose (λ) will be investigated. The contribution of each parameter to the 

reduction of overtopping can not be separated. Isolating just one parameter will still contain the 

influences of the other parameter.  

To find γpar, the vertical wall without nose will be the reference case.  
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Influence of nose angle ββββ 

First, all data are grouped by their angle β, to investigate the influence of the parapet’s nose. 

 
Figure 14. Parapet of 5cm high, grouped by their angle ββββ    

If reduction factors γβ are now calculated in the traditional way, by dividing the value b = 2.523 

(y=0.2exp(-2.523x), equation of the black reference line of the vertical wall 5cm) by the b-values of the 

different parapet trendlines. All calculated γβ-values for this example are plotted in Figure 15 (blue 

diamonds). An analogue analysis has been made for all parapets of 8cm high (Figure 15, red crosses),  

 

 
Figure 15. Reduction factor γγγγββββ due to the angle ββββ, for all parapets of 5cm and 8cm high. 

The green curve is the best fitting curve for these data: a quadratic descending function up to β = 

50°. From that point on, no profit can be achieved by increasing the parapet nose angle. The curve 

passes through γβ = 1 for β = 0°, i.e. no nose so no reduction of overtopping compared to a vertical 

wall. The function description of the green trendline in Figure 15 is 
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At last, an analogue analysis has been made for all parapets of htot = 2cm. The height of the nose hn 

was 1cm or 2cm, leading to λ = 0.5 or 1. Visual observation during the experiments and data analysis 

have shown that this low parapet physically behaves different compared to higher parapets. The 

upward projection of the incoming wave gets lost and waves overtop more easily. The above equation 

(10) is only valid for htot/RC > 0.25, while parapets of 2cm high will be treated further in this paper.  
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Influence of dimensionless nose height λλλλ 

If we have a closer look at Figure 14, the scatter amongst the data points of 1 angle (for example β 

= 60°, yellow dots) is still too big. This means there is another geometrical parameter, apart from angle 

β, influencing the physical behavior. As explained before, we can now group all data points of Figure 

12 by the second geometrical variable of the parapet: the height ratio λ, which is a dimensionless 

representation of the height of the parapet’s nose. This leads to Figure 16. The higher the λ-value, the 

lower the overtopping rate, the higher the reduction. 

 
Figure 16. Parapet of 5cm high, grouped by the dimensionless height of the nose: λλλλ    

 

The traditional way of analyzing leads to reduction factors γλ, again referred to the vertical wall. 

If the calculated γλ values of all data points of parapets of 5cm are now plotted together with γλ 

obtained from parapets of 8cm, Figure 17 is obtained.  

 
Figure 17. Reduction factor γγγγλλλλ due to the height ratio λλλλ, for all parapets of 5cm and 8cm high. 

Parapets of 5cm are represented in blue diamonds, while red crosses show parapets of 8cm. As 

mentioned before, parapets of 2cm high react different on the incoming wave, and will be treated later 

in this paper.  

A linear slightly descending trend between λ = 0.125 and 0.6 is the best description for the 

calculated values of γλ (orange trend line in Figure 17). If λ = 0, meaning there is no nose, there is no 

reduction compared to the vertical wall, leading to γλ = 1. 
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For htot/RC > 0.25, the function description of γλ now becomes 
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For smaller parapets with htot/RC ≤ 0.25 the incoming wave is projected less upward, and hence less 

seaward. The crest will be overtopped more. Design formulas for htot/RC ≤ 0.25 are for completeness 

added in a flowchart in the last paragraph of the paper. 

γγγγpar as a function of γγγγββββ and γγγγλλλλ 

Due to the scatter of the data grouped by the geometrical parameters β (Figure 14) and λ (Figure 

16), it becomes clear that individual parameters are not sufficient to describe the process of overtopping 

reduction by means of a parapet. On the other hand, both geometrical variables are dependent of each 

other. This means the influence of β is involved in γλ and the influence of λ is involved in γβ. The 

multiplication of both will therefore overestimate the reduction 

For each individual data point γpar has been calculated similar as for γv: what component should be 

added to the exponential part of formula (8) to shift the data point to the reference line of the smooth 

dike. These values (for hwall/RC > 0.25) can now be compared with the product 
λβ γγ ⋅  in Figure 18.  

 
Figure 18. Relation between γγγγpar and γγγγββββ*γγγγλλλλ 

As predicted, multiplying γβ and γλ is an overestimation of the true reduction:
 λβ γγ ⋅  is much 

lower than γpar. Figure 18 also shows the existence of a linear trend through the data points, leading to 

the function description of γpar as a function of γβ and γλ. γpar has an upper limit, γpar = 1. 
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If both deducted formulas of the dimensionless reduction factors γv (7) and γpar (12) are now 

introduced in the exponential part of the traditional vdM overtopping formula for non-breaking waves, 

this formula becomes 
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and can be used to calculate the overtopping discharge over a smooth dike with vertical wall or parapet. 

y = 0.541x + 0.0317
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Figure 19. Better prediction from the obtained data (parapet 5cm and vertical wall 5cm) with inclusion of γγγγv 

and γγγγpar in the dimensionless freeboard. 

 

When comparing Figure 19 with Figure 12, the scatter of the data points around the target line y = 

0.2exp(-2.335x) has been reduced significantly by introducing γv and γpar on the abscissa of this plot. 

The adapted vdM formula for non-breaking waves is now able to predict wave overtopping over 

smooth dikes with vertical wall or parapets if hwall/RC > 0.25.  

 

In case of a low dimensionless wall height (hwall/RC ≤ 0.25), the reduction factor γpar has been 

analyzed and is slightly higher (causing less reduction) than for the higher parapets. Formulas for γpar in 

case of hwall/RC ≤ 0.25 are presented in the flowchart. 
 

FLOWCHART TO INCORPORATE REDUCTION FOR VERTICAL WALL AND PARAPET 

This research has lead to the use of formula (14) when calculating overtopping rates over smooth 

dikes with vertical wall or parapets.  
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The use of γv and γpar depends on the (dimensionless) height of the vertical wall or parapet hwall/RC and 

is summarized in the flowchart below 
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Figure 20. All data in a standard dimensionless semi logarithmic diagram 

 

All data of this research are plotted in a standard log-linear diagram (dimensionless overtopping 

rate q/(g.Hm0³)
1/2

 on the Y-axis and dimensionless freeboard RC/Hm0 on the X-axis) in Figure 20. The 

reduction of vertical walls (black) and parapets (green) versus the normal smooth dike is manifest. The 

purple line y = 0.2exp(-2.335*x), the standard equation to calculate overtopping for non-breaking 

waves, does not give a good description for the black and green data points.  
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Figure 21. All data plotted in the dimensionless semi logarithmic diagram, where γγγγv and γγγγpar are included on 
the abscissa. 

When the same data points are now plotted in a log-linear diagram where γv and γpar are introduced 

in the abscissa of the graph, the major scatter is reduced significantly. This means all data points for 

non-breaking waves are much better predicted by the adapted formula 
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There still exists some minor scatter around this target line in Figure 21, since a general formula 

for γv and γpar has been used instead of the exact calculated γv and γpar for each individual data point. 

The good description of the general formulas for γv and γpar has been made clear in Figure 22 (γv) and 

Figure 23 (γpar). 

 

 
Figure 22. Good correlation between the individual 

calculated γγγγv for each data point and the prediction 

of γγγγv by formula (7) 

 
Figure 23. Good correlation between the individual 

calculated γγγγpar for each data point and the prediction of γγγγpar 
according to the flowchart 

According to Figure 22, a good correlation exists between the formula derived for γv (eq. (7)) and 

the individual calculated γv’s necessary for 1 data point to shift to the standard equation for a smooth 

dike (y = 0.2exp(-2.335*x)). This justifies the use of the formula for γv. But since there exists some 

scatter in this graph (Figure 22), not all black data points of Figure 20Figure 21 will be moved straight 

onto the target line by using the γv formula: some minor scatter amongst the black points in Figure 21 

still exists. An analogue conclusion is to be made for γpar in Figure 23 and the green data in Figure 21. 
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PRACTICAL GUIDELINES AND CONCLUSIONS 

This research has shown that building a parapet with the same crest height as the original smooth 

dike can lead to major reduction in wave overtopping. Building this parapet is a rather small 

modification of new or existing dike structures. For ease of construction and to limit wave impacts on 

the parapets nose, we advise to design the parapet with a nose angle β ≤ 45°. For the height of the nose, 

a λ value of 1/3 is proposed. For that geometry, the minimal value of γpar is nearly reached.  

 

The design storm considered in the Belgian Integrated Coastal Safety Plan has a SWL of TAW + 

7m. Typical dikes in Belgium have a crest height around TAW + 9m. This leads to a freeboard RC of 

2m. When a parapet of htot = 1.2m is built in this dike without reducing the crest height, the ratio 

hwall/RC becomes 0.6. The upper part of the flowchart can be applied. With β = 45° and λ = 1/3, the 

reduction factors become: 

γv = 0.71 

γβ = 0.58 

γλ = 0.69 

γpar = 0.71 

γv * γpar = 0.51 

Table 3 gives an example of the average overtopping discharge related to an incoming wave height. 

Both qsmooth dike, qvertical wall as qparapet are calculated using the above mentioned reduction factors. After 

each column with the overtopping discharges, the reduction factor related to the reference case smooth 

dike is shown. Reductions up to 21 times the overtopping discharge can be achieved! 

 

Hm0 [m] 1.5 2 2.5 [m] 

Overtopping 

discharge 

q 

[l/m/s] 

reduction 

factor 

q 

[l/m/s] 

reduction 

factor 

q 

[l/m/s] 

reduction 

factor  

q (smooth dike) 51.16 - 171.53 - 382.40 - [l/s/m] 

q (vertical wall) 14.37 3.6 66.20 2.6 178.53 2.17 [l/s/m] 

q (parapet) 2.48 20.7 17.71 9.7 62.18 6.2 [l/s/m] 
Table 3. Overtopping discharges and related reduction factors compared to the smooth dike. 

FUTURE RESEARCH 

Wave forces on the parapet and individual wave overtopping volumes will be studied in the future. 
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