
1 

SLIDING STABILITY OF LANDWARD SLOPE CLAY COVER LAYERS OF SEA DIKES 
SUBJECT TO WAVE OVERTOPPING  

A. van Hoven1 B. Hardeman2 J.W. van der Meer3, and G.J. Steendam4 

Sea dikes with landward slopes covered by grass and clay cover layers, subject to wave overtopping, can become unstable 
and slide. Sliding stability of the cover layer is caused by a decrease in shear strength due to an increase in pore pressure in 
and underneath the clay cover layer. This holds for both clay dikes and sand dikes with a clay cover layer. A method is 
presented to determine the potential pore pressure build up due to a storm event with wave overtopping. The method 
combines of the shelf knowledge and is supported by laboratory measurements and field measurements during prototype 
scale wave overtopping tests and sliding test on Dutch sea dikes. The method contains three steps: 1) determine the 
infiltration time, depending on the storm duration and the sea state; 2) determine the infiltration capacity of the dike slope, 
either by choosing a safe value or field measurement and 3) determine the potential pore pressure build up, determined by 
step 1) and 2) and the dike structure and geometry. The potential pore pressure build up can be used in the standard 
stability analyses tools published in Dutch guidelines on dike design and dike safety assessment.  
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INTRODUCTION 
Two wave overtopping related failure mechanisms at dikes or levees are generally distinguished: 

erosion  of  the  grass  and  clay  cover  layer  and  sliding  of  the  cover  layer  as  a  whole.  This  paper  
describes the pore pressure build up, which has a large effect on the sliding mechanism. Sliding, 
parallel to the slope surface, occurs at a typical depth of 0.5 to 1.5 m beneath the slope surface and 
starts with a longitudinal fissure near the dike crest. During the 1953 storm surge disaster in the 
Netherlands, the overwhelming majority of dike failures and damages, 187 km in total, was caused by 
sliding of the landward clay cover layer. Analyses of the observed damage led to the Edelman Joustra 
stability formula for clay covers (Rijkswaterstaat 1961). Other stability formulae, specifically for sand 
dikes with clay covers and other stability analyses tools, were developed and described (TAW 1995). 
These stability analysis tools are currently in use for dike design and safety assessment in the 
Netherlands. 

Apart from the slope angle of the landward dike slope, the cover layer stability is dominated by 
the water pressure underneath the slope surface and the shear strength of the clay, with soil structure. 
Both parameters are very difficult to determine by traditional small scale laboratory testing. 
Uncertainties about these parameters lead to excessive designs and, unnecessary, poor safety 
assessment scores. 

The water pressure build up due to wave overtopping was measured in full scale tests with the 
Wave Overtopping Simulator (Van der Meer et al. 2006, 2008) on sea dikes at five locations in the 
Netherlands and on one river dike. Apart from the overtopping tests, two sliding tests were performed 
where a sea dike was subjected to overflow during 56 hours over a length of 30 m to induce sliding 
(which did not happen), see Fig. 1. 
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Figure 1. Overflow test on a sea dike over a length of 30 m during 56 hours to induce sliding. 

 
The field measurements and modeling of infiltration and sliding have led to a better 

understanding of the process and a method to predict the pore pressure build up due to overtopping 
and infiltration was deducted. The pore pressure build up due to overtopping can be used in the 
standard stability criteria of the cover layer. The standard stability analyses methods will not be 
covered by this paper. The aim of this paper is only to give a guideline to determine the potential pore 
pressure build up during a storm event with wave overtopping. 

 

CLAY COVER STABILITY 
In order to understand the influence and the characteristics of the pore pressure build up due to 

overtopping, a short explanation will be given about the cover layer characteristics and stability. 
The cover layer is the soil layer, often clay, covering the dike core. A common build up of sea 

dikes  in  The  Netherlands  exists  of  a  sand core,  covered  by  a  clay  layer  of  0.5  to  0.7  m thick.  Some 
dikes are completely made of clay, in which case the cover layer exists of the upper 1 to 2 m of clay 
which has developed soil structure. The soil structure develops in some years after construction of the 
dike, due to drying in the sun, wetting in the rain, expansion due to frost, digging of small fauna, 
worm holes and roots penetrating the soil and extracting moisture. Soil structure also develops in clay 
layers on a sand core, where the whole layer of 0.5 to 0.7 m will be structured. One of the effects of 
the soil structure development is the drastic increase in permeability due to fissures and worm holes. 
The increase in permeability due to the soil structure development will be much higher in vertical 
direction than in horizontal direction. 

Soil structure development also has an effect on the shear strength of the soil. The aggregates, 
small and loosely packed near the slope surface, large and densely packed deeper down, can have bulk 
shear strength characteristics, which are different than the characteristics of the base material. A 
proper method to determine the shear strength of clay with soil structure has not yet been developed. 
Standard tri-axial tests, typically performed on 60 mm diameter samples, are too small to incorporate 
the larger aggregates. Furthermore the standard tri-axial test procedure involves full saturation of the 
material, with the aid of CO2 flushing and a large back pressure to reduce remaining air bubbles. In 
the case of wave overtopping, the large structures will be saturated, however, the aggregates will to 
some extend still have suction stresses inside and remain firm. A study comparing large tri-axial tests 
with a saturation procedure similar to a wave overtopping situation, with standard tri-axial tests seems 
to suggest standard tests will not underestimate the shear strength of the clay with soil structure. The 
results are, however, not generally conclusive (Van Hoven, 2008). 

Instability of the clay cover layer on the landward slope can exist of sliding parallel to the slope or 
uplift perpendicular to the slope, depending on the dike construction. In case of a clay dike only 
sliding parallel to the slope can occur. In case of a sand dike with a clay cover, both sliding and uplift 
can occur (Fig. 2). In this case sliding can also be induced by an uplift pressure underneath the clay 
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cover layer, which reduces the effective stress on the cover layer and sand core boundary. Stability of 
the cover layer in perpendicular direction might still be sufficient, however, the reduced effective 
stress along the boundary reduces the stability in parallel direction as well, and can become critical.  

 

 
 

Figure 2. Sliding and uplift of the clay cover layer in case of a clay dike and a sand dike with clay cover 

 
For a clay dike (top in Fig. 2.) the stability becomes critical if the cover layer with soil structure 

becomes fully saturated and a ground water flow parallel to the slope surface develops. The vertical 
infiltrating of water will be hindered by the decrease in permeability when the infiltration front 
reaches the dike core and will start to flow parallel to the slope. The stream lines are parallel to the 
slope and lines of equal pressure head are perpendicular to the slope. The pressure p (N/m2) 
distribution underneath the slope surface becomes p(z)= w g*z*cos , where w (kg/m3) is the 
volumetric mass of water, g (m/s2) the gravitational acceleration, z (m) the depth, perpendicular, 
underneath the slope surface and  the slope angle. This pressure distribution will be called pparallel. A 
pore pressure larger than pparallel, indicates an outward gradient, which is unfavorable for stability. A 
pressure  lower  than  pparallel indicates either an inward gradient, or the cover layer is not completely 
saturated, both of which are favorable for stability  

For a sand dike with a clay cover layer (bottom in Fig. 2.) the vertical infiltration will not be 
hindered by the sand core, because the permeability of the sand is of the same order as the (vertical) 
permeability of the clay cover layer with soil structure. As long as the vertical infiltration is not 
hindered or blocked by less permeable layers, there will be no significant increase in pore pressure. 
The water will seep through the dike core adding water to the initial water table. The rising ground 
water level inside the dike core can cause instability of the cover layer, either by sliding or by uplift. 
The ground water level above the dike toe h (m) is the main parameter in the stability analyses of the 
cover layer. Note that the added water due to infiltration of overtopping water must be added by a 
possible water table elevation due to the high water level against the outer slope of the dike and that 
water will also infiltrate in permeable sections of the outer slope and dike crest. 

 

CURRENT GUIDELINES 
Current guidelines on the mechanism of sliding of the landward slope cover layer due to wave 

over topping is as follows: 

Clay dike – sliding parallel to slope 

Sand dike with clay cover –  
sliding parallel to slope 

Sand dike with clay cover –  
uplift 

h h 
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Step 1 - The mechanism will not occur if: 
there is no significant over topping discharge, which means less than 0.1 l/s per ‘m, regardless of 

the sea state causing the overtopping, or 
the slope is less steep than 1V:4H.  
Step 2 - If the conditions in step 1 are not met, the stability of the cover layer should be checked 

with the stability analyses tools in TAW 2001. For a clay dike a ground water table co-insiding with 
the slope surface should be assumed if the average overtopping discharge is larger than 0.1 l/s per ‘m. 
This is regardless of the sea state causing the overtopping. For a sand dike with a clay cover layer no 
guideline is given to determine the potential rise of the ground water table inside the dike core.  

The uncertainties in determining the potential water table rise can lead to excessive dike design or 
pore safety assessment scores. 

 

THREE STEP METHOD TO DETERMINE PORE PRESSURE BUILD UP 
The three step method given below, aims to determine the pore pressure build up due to wave 

overtopping, filling the gap left in the second step of the current guidelines. The method incorporates 
available knowledge about wave overtopping volume distributions, depending on the sea state causing 
the wave overtopping, infiltration time caused by overtopping volumes and knowledge about 
infiltration.  

The first step is to determine the infiltration time (s). Infiltration will only occur of there is a 
water layer on the slope surface. An overtopping volume during a storm will supply a water layer for 
some time, after which the slope dries, or a following overtopping volume will wet the surface once 
more. The added time a water layer is present during a storm is the infiltration time. 

The second step is to determine the infiltration capacity of the slope surface (m3/s per m2). The 
infiltration capacity determines the volume of water which can infiltrate per unit of time, if there is a 
water layer on the slope surface to supply the water.  

The third step is to determine the potential pore pressure build up. The infiltration time, 
determined in step 1, multiplied by the infiltration capacity determined in step 2, results in an 
infiltrating volume. For clay dikes the infiltration volume must be compared to the volume of large 
pores, caused by soil structure development, to determine if full saturation is possible. For sand dikes 
the infiltration volume, divided by the sand porosity, will give the potential ground water level rise. 

Each step will be clarified in depth in the following sections. 
 

STEP 1 - INFILTRATION TIME 
Infiltration will only take place if there is a water layer on the inner slope surface. The water layer 

thickness can be small. Even a few mm thickness, which is hardly visible in between the grass cover, 
is sufficient. The amount of time during a storm that there is a water layer present on the slope surface 
is the most important factor for infiltration.  

Each overtopping volume will, in average, result in a water layer during somewhat less than 30 s. 
This is called the (water) supply time. The supply time was measured visually at wave overtopping 
tests on Dutch dikes, with slopes ranging from 1V:2.3H to 1V:3H. At a dike sloped 1V:4.5H the water 
supply time was about 40 s per wave overtopping volume.  

The overtopping volume does not seem to be important for the supply time. Large volumes, up to 
5,500 l/m, gave roughly the same supply time as the smaller ones. Only the very small volumes of less 
than 50 to 100 l/m gave shorter supply times. This effect will not be considered further, giving some 
unknown margin of safety. 

An average wave overtopping discharge exists of a distribution of overtopping wave volumes. The 
same average overtopping discharge can be a result of a few very large overtopping volumes or a lot of 
smaller ones, depending on the sea state responsible for the overtopping discharge. A small wave 
height and period will result in a lot of small overtopping wave volumes, while a large wave height 
and period will result in a few large overtopping volumes. In case of a small wave height and period, 
the period in between overtopping volumes will be less than 30 s and thus a constant water supply for 
infiltration. In case of a large wave height and period the slope surface can dry in between 
overtopping volumes. This effect can be calculated using the formulae from TAW 2002 and is given 
in Fig. 3. 
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The graph in Fig. 3. is constructed by Monte-Carlo simulation. Every average wave period (s) a 
wave reaches the outer slope. Each of these waves has a certain probability of giving a wave 
overtopping event, which can be calculated using the formulae from TAW 2002. If the wave overtops, 
the slope will be wet for 30 s. If within 30 s there is another wave overtopping event, the slope will 
stay wet for another 30 s, otherwise, after 30 s the slope will become dry until a following overtopping 
event takes place. 

Fig. 3. gives the infiltration time as a percentage of the sea state time on the vertical axis. The 
graph is valid in case of a 1V:4H outside slope, roughness factor 1.0 and a wave steepness of 0.05 (-) 
considering the wave peak period and the wave length on deep water. The lines in the graph represent 
different average overtopping discharges. On the horizontal axis the significant wave height Hs (m) is 
given.  
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Figure 3.  Infiltration time as a percentage of sea state duration (%) for different average overtopping discharges 
(0.1-1-2-5-10 l/s per ‘m) and different Hs (m), valid for an outer slope 1:4, roughness factor 1 and a 
wave steepness 0.05 (-). 

 
For example, considering a sea state with a significant wave height of 1 m and an average 

overtopping discharge of 2 l/s per ‘m, will result in an infiltration time of 90% of the sea state time. If 
the average overtopping discharge is caused by a 3.5 m significant wave height, the infiltration time 
would be 20%. 

For different wave steepness and/or outer slope geometries, other graphs can be made. The graph 
presented in Fig. 3. is safe to use, e.g. results in a high estimate of infiltration time, for the most 
common cases of Dutch dikes.  

 

STEP 2 – INFILTRATION CAPACITY 
The infiltration capacity is the amount of water per unit of time that can infiltrate into the slope 

surface given the presence of a water supply on the slope surface. The higher the infiltration capacity 
the more water enters the dike, which can lead to stability problems. The infiltration capacity of clay 
with soil structure is generally in between 1x10-5 and 1x10-4 m3/s  per  m2 (TAW 1996). This 
infiltration capacity was measured by field tests on dozens of Dutch dikes.  

Within the framework of the wave overtopping tests in the period 2007-2010 (see 
acknowledgements), 21 field infiltration tests were performed on six different locations, one clay dike, 
four sand dikes with a clay cover layer and one sand dike. The test results agree with the earlier 
results from TAW 1996, regardless of the type of dike. The infiltration capacity of the sand dike was 
in the same order as the clay dike and the sand dikes with clay cover layer. 

The field infiltration tests consisted of pressing a 0.4 m diameter steel tube vertically into the 
slope surface, using a hydraulic crane, to a depth equal to the cover layer thickness. A known volume 
of water would be placed into the tube, after which, during a couple of hours, the decrease in water 
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level inside the tube would be measured. Dividing the water level decrease by the time it took, results 
directly in the infiltration capacity. The measurement can also be used to obtain the saturated 
permeability for more advanced infiltration calculations, not covered by this paper. The method to 
obtain the saturated permeability and a description of some of the 21 performed field infiltration tests 
is given in (Van Hoven and Barends 2010). 

An infiltration capacity of 1x10-4 m3/s per m2 is generally a safe first estimate. Field infiltration 
tests can be used to determine a more accurate and probably a lower value. For example, the average 
of the 21 field infiltration tests was 2.4x10-5 m3/s per m2, where the largest value was 0.6x10-4 m3/s 
per m2. The infiltration capacity for clay dikes, sand dikes with a clay cover layer and even the sand 
dike did were not significantly different from each other. The soil structure development in the clay 
causes an increase in permeability relative to the base material, which is in the range of the commonly 
found fine sands used for dike (core) construction in The Netherlands. 

 
Finally, the infiltration volume due to infiltration caused by wave overtopping is equal to the 

infiltration time (Step 1) multiplied by the infiltration capacity (Step 2). 
 
It is noted that standard laboratory permeability tests on small, standard sample sizes (ca. 60 

mm), are inadequate to determine the infiltration capacity of clay with soil structure. The results of 
standard laboratory falling head or constant head tests will lead to a large underestimation of the 
infiltration capacity, and therefore underestimating the potential pore pressure build up inside and 
underneath the cover layer. 

 

STEP 3 – POTENTIAL PORE PRESSURE BUILD UP 
The potential pore pressure build up due to infiltration of overtopping water depends, apart from 

the infiltration volume, on the dike structure and geometry. As long as the vertical infiltration of 
water continues and the infiltration front does not meet significantly less permeable layers, no 
pressure build up occurs which might lead to stability problems. However, as soon as the infiltration 
front reaches a barrier (less permeable layer) or the initial ground water table, the pore pressure can 
increase and cause instability if the shear strength is not sufficient, relative to the slope angle. To 
determine the potential pore pressure build up two cases must be distinguished: 

 
Clay dike 
Sand dike with clay cover layer. 
 
In case 1, a clay dike, the clay core acts as a barrier. When the infiltration front, which moves 

vertically trough the soil structure, reaches the clay core, pressure will build up, as the vertical 
infiltration stops and the ground water flow becomes parallel to the slope surface. The parallel ground 
water flow situation meets the pressure distribution assumption in the standard stability criterion by 
Edelman and Joustra as mentioned earlier.  

The minimum requirement to reach this situation is if the infiltration volume, as determined in 
step 2, is enough to fill the larger pores, or macro pores, of the soil structure. A safe estimate for 
typical Dutch clay dikes is 125 liter per m2. The value can also be determined by laboratory testing on 
large samples. The testing procedure is not covered by this paper. If the infiltration value is equal to or 
larger than the volume of the macro pores, it should be assumed a ground water flow parallel to the 
slope has developed and the standard Edelman and Joustra criterion must be applied to determine if 
the stability of the cover layer is sufficient. 

The soil structure development depends on many factors, such as: the physical and chemical 
characteristics of the base material (clay), the water content when the dike was built, precipitation and 
evaporation, frost and effects of flora and (small) fauna – mice, insects and worms - living in the 
upper soil layers. However, research within the framework of TAW 1996, has led to a fairly generally 
applicable soil structure build up for Dutch dikes, given in Table 1. Exceptions are dikes where the 
clay cover layer was built with a much too high water content. In this case wide fissures, appearing 
shortly after dike construction, will not close anymore as the soil structure develops.  
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Table 1. General soil structure build up of clay cover layer. 

Depth (m) Aggregates description Macro pores 
0-0,05 Very small, very loose, kept together by roots >30% 
0,05 -0,2 0,1 – 3 cm, Loosely packed 20-30% 
0,2-0,4 3-6 cm, loose fit 5-20% 
0,4-0,8 5-15 cm elongated, tight fit. 2-5% 
>0,8 Vertical fissures <2% 

 
Given the amount of macro pores from Table 1, the low estimate of the macro pores results in a 

required 60 liters per m2, while the high estimates will lead to 120 liters per m2. An unfavorable 
situation when considering the cover layer stability would arise if the soil structure development 
would penetrate deeper. Doubling the layer thickness and using the lower estimates of the macro pores 
results in the earlier mentioned volume of 125 liter per m2 to saturate the cover layer up to 1.6 m. 

If the infiltration volume is less than the volume of macro pores, the macro pores will not fully 
saturate, which is favorable for the cover layer stability. Before the infiltration front has reached the 
dike core, the storm event will have stopped, diminishing the probability of dike failure by the 
mechanism of cover layer sliding. 

 
In case 2. a sand dike with a clay cover layer, the core is as permeable as the vertical permeability 

of the clay cover layer, with soil structure, and is no barrier to the infiltration front. In this case, the 
infiltration front will reach the initial ground water level, rising it as water is added. In this case it is 
important to realize that the infiltrating water will follow preferred paths of low resistance through the 
dike. Tests within the framework of TAW 1996 have shown that the largest portion of infiltration will 
follow only a few large fissures and wormholes. The infiltration front will not, as a wide front, reach 
the initial water table, but some preferred paths will start to feed water to the initial water table and 
thus rising it. Air inclusions inside the sand core will influence the path the water flows and also 
influence the infiltration rate. Ignoring the effect of air inclusions is a safe one. 

The potential rise of the initial ground water level is equal to the infiltration volume, determined 
in step 2, divided by the effective sand porosity (free volume of voids/ volume of sand). The porosity 
of sand is generally around 0.4 when no special care has been taken to compact the sand. In the field, 
the sand inside a dike above the ground water table will be moist. The water content from sand 
samples taken from dikes range from 4-12%, which means up to about 25% of the pores in the sand 
are already filled by water and 75% remains to be filled to reach full saturation. The effective porosity 
is therefore about 0.3 (-). 

Again it is noted that the ground water level rise due to infiltration by wave overtopping must be 
added to any rise due to a high water level on the outer slope or other causes.  

The total ground water level rising, due to infiltration and by other causes, can be used in the 
stability analyses tools for sand dikes with clay cover layers as described in TAW 2001. 

 

VALIDATION TESTS 
Pressure measurements, in and underneath the (clay) cover layer, have been taken during wave 

overtopping tests at 6 dikes in the Netherlands, one clay dike, four sand dikes with clay cover layers 
and one sand dike. Because the wave overtopping tests, primarily performed to induce erosion failure 
of the grass sod, were only 4 m wide, the pressure build up inside the dike core was too much 
influenced by 3D effects. Only measurements up to 1 m underneath the slope surface gave usable 
validation data.  

The wave overtopping test consisted of an increasing average discharge 0.1 – 1 – 10 – 20 – 30 – 
50  –  75  l/s  per  ‘m given a  sea  state  with  Hs=2 m. At some locations some average discharges were 
skipped. Each of the sea states was simulated during 6 hours. 

Apart from the wave overtopping tests, two sliding tests were performed over a 30 m wide dike 
section. The two dike sections, both a sand dike with a clay cover layer, were subjected to overflow 
during 56 hours at such a discharge that the full slope was constantly wet.  
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VALIDATION OF A CLAY DIKE 
The research was aimed specifically at sea dikes, where overtopping is much more important than 

at river dikes. Because most sea dikes are made of sand with a clay cover layer, only one full clay dike 
was  tested,  near  Delfzijl  in  the  North  of  The  Netherlands.  The  wave overtopping load  existed  of  an  
increasing average overtopping discharge, given a Hs=2 m sea state. Each average discharge, 0.1 – 1- 
10  –  20  –  30  –  50  l/s  per  ‘m,  was  maintained  for  6  hours,  which  is  a  high  estimate  for  a  design  
overtopping event duration. Pressure measurements were taken at two locations along the slope 
surface and at two depths relative to the slope surface (0.8 m and 1.2 m). During the wave 
overtopping tests the pressure would rise. For each overtopping test the maximum pressure pmax was 
determined and calculated as a percentage of pparallel. The results are given in Fig. 4.  
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Figure 4.  pmax/pparallel (%) measured at two depths relative to the slope surface (m) on two locations during 
prototype scale wave overtopping tests at Delfzijl 

 
As can be seen from Fig. 4., the assumed parallel flow condition is not yet reached for the 0.1 l/s 

per ‘m test, but is reached for the 1 l/s per ‘m test.  
The infiltration time, given the simulated Hs=2 m sea state, can be read from Fig. 3 and is 4% for 

0.1 l/s per ‘m and 30% for 1 l/s per ‘m of the simulated sea state duration of 6 hours, resulting in 
0:14:24 and 1:48:00 hours respectively (Step 1). With an infiltration capacity of 1x10-4 m3/s per m2 
the infiltration volume becomes 86 l/ m2 and 648 l/m2 respectively (Step 2). During the 0.1 l/s per ‘m 
test the infiltration volume remains below the critical value of 125 l/m2, while during the 1 l/s per ‘m 
test the critical value is exceeded. This is in line with the measurements shown in Fig. 4. 

 

VALIDATION OF A SAND DIKE WITH CLAY COVER LAYER 
Because of the reasons given above (see section VALIDATION TESTS), the best usable 

validation data from the wave overtopping tests on sand dikes with a clay cover layer comes from 
measurements inside and just underneath the cover layer. These pore pressures should stay below the 
value of pparallel, for any average overtopping discharge. The test results are plotted in the same way as 
stated in the section VALIDATION OF A CLAY DIKE and are given the graphs in Fig. 5. Note that 
the negative values of pmax/pparallel indicates suction stress, and thus saturation less than 100%. 



 COASTAL ENGINEERING 2010 
 

9 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

-200% -150% -100% -50% 0% 50% 100% 150%

P_max/P_parallel (%)
D

ep
th

 (m
)

boonweg0 0,1 l/s per m Boonweg0 1 l/s per m Kattendijke 0,1 l/s per m

Kattendijke 1 l/s per m St. Phillipsland  1 l/s per m Afsluitdijk 1 l/s per m

  
0.1 and 1 l/s per ‘m tests 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

-100% -50% 0% 50% 100% 150%

P_max/P_parallel (%)

D
ie

pt
e 

(m
 to

v 
m

v)

Boonweg0 10 l/s per m Kattendijke 10 l/s per m

St. Phillipsland 10 l/s per m Afsluitdijk 10 l/s per m

 
10 l/s per m tests 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

-200% -150% -100% -50% 0% 50% 100% 150% 200%

P_max/P_parallel (%)

D
ie

pt
e 

(m
 to

v 
m

v)

Boonweg0 30 l/s per m Kattendijke 30 l/s per m

St. Phillipsland 30 l/s per m Afsluitdijk 30 l/s per m

 
30 l/s per ‘m tests 

 

Figure 5.  pmax/pparallel (%) measured at different depths relative to the slope surface (m) on sand dikes with a clay 
cover layer. 
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The graphs in Fig. 5. show that the pressure measurements are below the critical value of pparallel 
for  the  0.1  and  1  l/s  per  m  wave  overtopping  tests.  However,  at  the  10  l/s  per  ‘m  test,  one  of  the  
pressure transducers at location ‘St. Phillipsland’ reaches the critical value. At 30 l/s per ‘m also the 
locations ‘Boonweg’ and ‘Kattendijke’ reach the critical value and go beyond the critical value. For 
higher average overtopping discharges, the pressures generated by the tests are less than at 30 l/s per 
‘m, probably due to effects of clogging of the macro pores.  

The higher than pparallel pressures were not predicted by the presented 3 – step method. The high 
pressures indicates a local outward gradient in pressure head, which is unfavorable for the stability of 
the clay cover layer at that location. It should, however, be noted that the higher pressure is only 
measured at one location on the slope surface, while at the other location on the slope surface during 
the same tests the pressure remains well below the critical value. The soil structure build up is such 
that relatively large variations in permeability exist and influence the measurements, which are point 
measurements. The measurements do not show that the bulk of the pore pressure inside the clay cover 
layer exceeds the critical value, which would be required to cause stability problems. 

 
Apart from the wave overtopping tests, two sliding tests were performed (see section 

VALIDATION TESTS). Both tests were performed on sea dikes along the Waddenzee in the North of 
The Netherlands, the first location ‘Boonweg’ and the second ‘Afsluitdijk’. Both dikes can be 
categorized as sand dikes with a clay cover layer, although the ‘Afsluitdijk’, has a 1,5 m thick cover 
layer build up of a 1 m thick layer of loam topped by a 0,5 m thick clay layer. According to the safety 
assessment of this dike, carried out in 2005, the clay layer was susceptible to sliding over the loam 
layer in case of overtopping. Sliding of the clay layer over the loam layer would mean a clay dike type 
failure mechanism. The results of the ‘Afsluitdijk’ sliding test are in line with the 3-step method, 
however, the results will not be dealt with in detail in this paper. 

During the tests the pressure head inside the dike sand core was monitored at four points. Also 
the pore pressure in the clay cover layer and just beneath, in the sand core was monitored. The results 
of the measurements and the evaluation of the tests were reported within the framework of SBW (see 
ACKNOLEDGEMENT). In this paper only the main results will be given. 

The first test was performed at ‘Boonweg’. The infiltration time was equal to the test duration of 
56 hours, because the dike was loaded by overflow instead of wave overtopping (Step 1). The 
infiltration capacity was determined by 6 field infiltration tests and was found to be 2,4x10-5 m3/s per 
m2 (Step 2). The infiltration volume is 56 (hr)*3600 (s/hr)* 2,4x10-5 (m3/s per m2) = 4,8 m3 per m2. 
The effective permeability was determined by laboratory testing and was found to be 0,32 (-). The 
potential rise of the ground water level would be 4,8 m/0,32 = 15 m (Step 3). According to the 
presented 3-step method the rate of increase of the ground water level would be 0,27 m per hour. The 
dike would become completely saturated at the end of the test, and stability problems were predicted 
even after 12 hours into the test (It is noted the prediction for the test was made with the Van 
Genuchten model for unsaturated ground water flow incorporated in PlaxFlow, combined with the 
FEM stability tool Plaxis). Because the sliding failure mechanism was the object of the test, the test 
duration was chosen much longer than would be required according to the prediction. 

The measured pressure head inside the sand core is given in Fig. 6. Three signals are given, taken 
from the middle of the 30 m wide dike section which subject to overflow. The pressure transducers are 
placed inside the sand core, at a depth beneath the ground water level under daily circumstances. The 
first (red) is located half way down the slope, the third (blue) is located at the dike toe and the second 
(green) is placed in between. 
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Figure 6. Measurements of pressure head (m to NAP) during sliding test at location ‘Boonweg’ 

 
The measurements show a fast increase in the pressure head, almost equal to 0,27 m/hour, as 

predicted above. After about 3 hours the rate drops drastically. The pressure transducer at the toe of 
the dike at that moment reached its limit, namely the dike toe level. The pressure transducers at ¼ and 
½ the slope still increase, however, at a very low rate. The predicted ground water level, both by the 3-
step method and the advanced Van Genuchten (in PlaxFlow) model, was never reached and sliding 
did not occur. The probable cause was a much larger than expected 3D effect due to a larger 
horizontal than vertical permeability of the sand core. A volume of water analyses revealed a 
substantial loss of water from the test site. 

The measurements do however show, that the 3-step method provides an estimate on the safe 
side. The measured maximum rate of increase of the ground water level did not exceed the predicted 
one and even predicted the ground water level rise quite well at the start of the test. 
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