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DEVELOPMENT OF AN INVERSE ESTIMATION METHOD OF SEA SURFACE DRAG 
COEFFICIENT UNDER STRONG WIND CONDITIONS 

Masaki Yokota1, Noriaki Hashimoto1, Koji Kawaguchi2, and Hiroyasu Kawai2 

For the purpose of clarifying the mechanism of energy transfer from winds to waves under strong wind condition, the 
ADWAM, a wave prediction model incorporating the data assimilation method, was modified to deduce the sea 
surface drag coefficients as its control variables. Then, validity of the model was verified through the identical twin 
experiment in deep sea conditions. Also, the behavior of the deduced parameter was examined through several 
experiments. As a result, it was confirmed that the drag coefficient deduced by the model is accurate enough when the 
number of the given observation data is sufficient compared with the number of the unknown parameters. It was also 
confirmed that the accuracy of the deduced coefficient can be improved by adding an a priori condition even if the 
number of the observation data is insufficient. 
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INTRODUCTION  
Recently, the third generation wave models, particularly WAM, SWAN and Wave Watch III, are 

widely used in many countries. These models can certainly describe wave status more accurately than 
the previous models, and have been applied to various practical applications such as clarification of 
causes of disasters due to waves and interpolation of missing wave observation data, etc. However, 
when we apply these models to actual data especially in severe storm conditions, we still need to tune 
some parameters in the models by trial and error manner to adjust the overestimated or underestimated 
wave height comparing with the observed one. 

In the wave prediction models, the sea surface drag coefficient )( 2
10

2
* UUCD = , the important 

factor of the energy transfer process from winds to waves, is generally approximated to a linear 
function of wind speed proposed by Wu (1980)  or Mitsuyasu & Honda (1982)  as shown in Fig 1 by 
Eqs. (1) and (2) respectively. 
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Figure 1. Drag coefficients proposed by Wu (1980) and Mitsuyasu et.al. (1982) 
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However, these empirical equations were deduced from the observational and the experimental 
data under wind speed conditions slower than 25m/s at the fastest and were extrapolated to faster wind 
speed conditions. Accordingly, accuracy of the computed wave height under strong wind conditions 
that cause severe disaster seems to be unreliable. Actually, the recent report of an aerodynamic 
observation suggested that the sea surface drag coefficient declines when wind speed exceeds about 
30m/s (Powell et. al., 2003). This result seems to be very important for forecasting the disaster caused 
by an intense typhoon under the global warming.  

To verify this fact, wave observations right under a severe typhoon is quite difficult and not 
realistic due to low feasibility. The preparation of the experimental equipment for the measurement is 
also very expensive. Theoretical approach for clarifying the mechanism of the energy transfer under 
strong wind condition is difficult because the mechanism includes very complicated physical processes 
such as wave breaking and spray. As an alternative method the inverse estimation method that presume 
internal structure through the model that utilizes the past wave observation data is considered as 
applicable. In this study, a data assimilation method was introduced into WAM to deduce a realistic 
and appropriate drag coefficient, and the validity of the method was examined by several wind and 
wave conditions.  

INVERSE ESTIMATION METHOD 

Sea Surface Drag Coefficient Assumed as a Piecewise-constant Function 
First of all, the expression of the energy transfer term in WAM Cycle4, Sin, was modified by 

replacing Janssen’s theory with Mitsuyasu & Honda’s equation (1982) that use sea surface drag 
coefficient. After that, in order to deduce the sea surface drag coefficient CD as an arbitrary function 
with respect to wind speed, it was the sea surface drag coefficient was assumed as a piecewise-constant 
function over the wide wind speed range as shown in Fig 2. 
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Figure 2. Drag coefficient assumed as a piecewise-constant function 

 

Data Assimilation Method 
The adjoint method, one of the data assimilation methods, used in this study is considered to be a 

tool of remote sensing with respect to not only space but also time in the past and at present, i.e., that 
utilizes observation data to connect the model with the reality when we try to reproduce natural 
phenomena by a model. The adjoint method can presume the optimum value of the unknown parameter 
including nonlinearity by using the maximum likelihood estimation method. Hersbach (1998) 
introduced the adjoint method into WAM and developed the adjoint model ADWAM. The adjoint 
model gives a better prediction by correcting several model parameters in the WAM. In the adjoint 
model, the most suitable parameters are automatically estimated by minimizing the cost function 
composed of the error margin of estimation and observed values, expressed by Eq. (3). 
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where x  is the vector of the model parameters, and ty   is the vectors of observed values, and tH  is 

the matrix of the operator converting the model state x  into ty . tR  is the covariance matrix of the 
observation errors, and is expressed as follow: 
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where ><   denotes the ensemble average, and y∆  is the vector of the observation errors. 
 The minimization of the cost function is necessary to obtain the optimum value of  x  but 

analytical approach for the minimization is not easy. Instead, a method of descent is usually applied, 
which requires the following descendent value of the cost function ( xJg ∂∂= / ). 
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The transpose of the operator matrix, TΗ , is necessary to estimate the descendent value g .This 

matrix corresponds to the adjoint operator *Η  of the tangent liner operator of Η .  
The computation of Eq. (5), it is directly computed through the adjoint run with the adjoint model 

code. We made the adjoint code of WAM using AMC (Adjoint Model Compiler, Giering, 1995). A 
descent method with Quasi-Newton Method was used for the minimization of Eq. (3). 

The procedure of data assimilation with adjoint WAM is almost the same as that of Hersbach 
(1998). In normal applications of wave hindcasting, the WAM code is used and the energy balance 
equation is integrated in the forward direction of time t (forward run). On the other hand in data 
assimilation, the ADWAM code is used and the equation is integrated in the reverse direction of time t 
(adjoint run) to obtain the information with respect to the control parameters to be modified for data 
assimilation. 

If nonlinearity is included in the forward run, the nonlinearity should be stored at each integration 
time step. To avoid the storage problem in the computations for realistic applications, a ‘check-point’ 
method has been implemented in the model the same as WAM Cycle 5 (Hersbach, 1998). 

 

A Priori Condition 
In the field of atmospheric research, data assimilation has generally been used for the correction of 

the initial state in the forecast, where the approximate value was predictable beforehand. This 
necessitates the introduction of the restriction condition that the optimum control parameters should 
exist in the vicinity of the initial guess of the computation. In the general form, the cost function is 
defined as the sum of the background error term and observation error term as expressed by Eq.  (6).  
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where ox  is the background model parameters (e.g. the first guess), and tΒ is the covariance matrix of 
the background errors. 

In this new adjoint WAM, the background error term that restricts the initial condition is not 
necessary because the optimum parameters in high wind speed are uncertain at present. However, since 
the division number of the wind speed in the assumed piecewise-constant function is equal to the 
number of unknown parameters in the model, the larger the assumed division number is, the more 
difficult and unstable the inverse estimation of parameters become. This is namely an ill-conditional 
inverse problem and the minimization of the cost function composed of only the observation errors 
leads to unstable and unreliable computation. To solve this problem, two types of a priori conditions, 
that the sea surface drag coefficient is continuous and smooth between the adjoining wind speeds was 
added as a background error term to the cost function in the adjoint model of WAM , as expressed by 
Eqs. (7) and (8).  
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The most reasonable and suitable parameters are inversely estimated by minimizing the cost 
function assumed as the summation of the observation error (the difference between the observed wave 
data and the hindcasted wave data) and the background error (the degree of the satisfaction of a priori 
condition). In addition, a weighting coefficient W is introduced between the observation error and the 
background error and the dependence property of W in the inverse estimation is also discussed by 
changing the weighting coefficient W in the computations. 

 

VERIFICATION OF THE NEW METHOD  

Identical Twin Experiment 
The validity of the new inversion method was verified unknown drag coefficients being corrected 

to the vicinity of the target value from an arbitrary initial value by assimilating the time series of the 
computed wave height. Fig 3 shows the flow of the identical twin experiment. First, the target drag 
coefficient was assumed as a function of wind speed. This study assumed eq.(9) as a target value, 
which declines in wind speed higher than 30m/s. 
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Then, the time series of the wave height at the center of a sea area (in Fig. 5) was computed with 
the target function. These time series data were used as the wave observation data in the numerical 
experiments. Next, the unknown function was inversely estimated from an arbitrary initial value by 
assimilating the wave observation data. Finally, the estimated functions were compared with the target 
functions.  

Fig. 4 compares the time series of the computed wave height with that of the target value (solid 
line), the initial parameter (broken line) and the deduced parameter (white circles). Although the wave 
height computed with the initial parameter of Mitsuyasu & Honda (1982) overestimate the peak of the 
wave height, the wave height computed with the inversely deduced parameter shows good agreement 
with the observed (target) data.  

 
Assume Target Drag Coefficient  

Compute Observed Wave Data

Assume Arbitrary Initial Drag Coefficient 

Inverse Estimation 

Compare the Deduced Drag Coefficient 
Compare the Computed wave height  

Figure 3. Flow of identical twin experiment 
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solid line), and the deduced values (the white circles) ) 
 

Simulation Conditions  
The condition of the numerical simulation is that a typhoon passes through a rectangular sea area 

of the computation area from the south toward the north. The dimension of the computational area is 
10 degrees in latitude by 10 degrees in longitude, and the grid interval is 0.5 degree. The sea surface 
wind was estimated by an empirical parametric typhoon model. To focus on intense wind condition 
higher than 30m/s, we assumed the central atmospheric pressure 850hPa, the maximum wind speed 
radius 100km and migration velocity 50km/h. Fig. 5 shows an example of the wind field (t=24h) and 
the time series of the wind speed at the center of the computational area. As seen in the figure, the 
maximum wind speed exceeds 40m/s. 

   

OBS point

t=24h

typhoon course

t=36h

    
Figure 5. Example of wind field and time series of wind speed 

 
 

Characteristics of Estimated Parameter 
The behavior of the estimated drag coefficient was variously investigated by changing a) the 

number of unknown parameters, b) the number of observation data, c) the type of a priori conditions 
and the weighting coefficient, and d) the type of initial value and the weighting coefficient. The 
examination cases are shown in Table 1.  
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  Figure 6 compares the deduced value with the target value where the computations are carried out 

for different number of unknown parameter (=100, 50, 25) without adding a priori condition. The 
figure shows that the value in the wind speed of higher than 30m/s (where the initial value was 
intentionally separated from the target value) was corrected to the vicinity of the target value from the 
initial value. However, the deduced value is unstable for large number of the unknown parameter (=50, 
100) while the drag coefficient deduced by the inversion method is accurate if the number of 
observation data (=65) is sufficient compared with the number of unknown parameter (=25). Because 
the maximum wind speed generated in this typhoon is approximately 45m/s, the value in the wind 
speed higher than 45m/s is not corrected from the initial value. 
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Figure 6. Deduced Drag coefficients with different number of unknown parameter 

Table -1 Examination cases 

100 ( 0.5m/s interval ) 

50 ( 1m/s interval ) 

a)  compare the difference of the number of unknown 
parameter without a priori condition 
( the number of observation data : 65, 
initial value of parameter : Mitsuyasu & Honda  ) 25 ( 2m/s interval ) 

65 ( 1h interval ) 

33 ( 2h interval ) 

b)  compare the difference of the number of observation 
data without a priori condition 
( the number of unknown parameter : 25, 
initial value of parameter : Mitsuyasu & Honda  ) 11 ( 6h interval ) 

W=0 

W=103 

W=104 

c)  compare the difference of weighting coefficient with 
two type of a priori condition 
( the number of unknown parameter : 100,  

     the number of observation data : 65, 
initial value of parameter : Mitsuyasu & Honda  ) W=105 

W=0 

W=103 

d)  compare the difference of weighting coefficient with 
of a priori condition  
 ( the number of unknown parameter : 100,  

 the number of observation data : 65, 
initial value of parameter : constant by 1*10-3 ) 

W=104 
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Figure 7 compares the deduced value with the target value for various number of observation data 
(=65, 33, 11) without adding a priori condition. This figure shows that the deduced value is unstable if 
the number of observation data is insufficient (=11) while the drag coefficient deduced by the 
inversion method is accurate if the number of the observation data is sufficient (=65, 33) compared 
with the number of the unknown parameter (=25). These results leads that it is important to chose an 
appropriate number of unknown parameters by considering the number of the observation data. 
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Figure 7. Deduced Drag coefficients with different number of observation data 

 
The panels in the left column on Figure 8 compare the deduced value with the target value, where 

the computations are carried out for different weighting coefficients (W=0, 103, 104, 105) with the a 
priori condition of 01 ≈− −nn xx . Although the deduced value is unstable when W=0, no addition of 
the a priori condition, the deduced value approaches the target value by adding the a priori condition. 
The deduced value is almost equal to the target value for W=104. These results lead that the accuracy of 
the inversion can be improved by adding the a priori condition to the cost function even if the number 
of the wave observation data is insufficient and the deduced value is unstable. The deduced value of 
the wind speed around 30m/s is parted from the target value for W=105 compared with the one with 
W=104. It is suggested that the weighting coefficient for the a priori condition is too large compared 
with the observation error.  

The panels in the right column in Figure 8 compares the deduced value with the target value, 
where the computations are carried out for the same condition as left column respectively with a 
different type of the a priori condition of 02 11 ≈+− −+ nnn xxx  from the left column. As well as the 
left panels, the deduced value was accurately corrected to the target value from the initial value for 
W=104. The deduced value in high wind speed is little unstable compared with the left figures 
especially in the case of W=105.  
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Figure 8. Deduced drag coefficients with different  weighting coefficient of the a priori conditions 

 
In the above experiments, the behaviour of the parameter in a wind speed higher than 30m/s was 
examined by assuming the initial value given by Mitsuyasu & Honda's equation. In the following 
examinations, in order to examine the possibility of the inverse estimation from the arbitrary initial 
value, the initial value was changed and assumed as constant value given by 1*10-3 whose parameter 
value differs from the target value in almost all the range of wind speed as seen in Fig. 9. Figure 9 
compares the deduced value with the target value, where the computations are carried out for different 
weighting coefficients (W=0, 103, 104, 105) with the a priori condition of 01 ≈− −nn xx . As seen in 
the figures, the deduced value approaches the target value by adding the a priori condition although the 
deduced value around the wind speed of 30m/s was also unstable when W=0 due to the large difference 
between the initial value and the target value is large. Therefore, it was confirmed that the new model 
can estimate optimal parameters appropriately by adding a priori condition with adequate weight 
coefficient W even if the initial value is arbitrary. 
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Figure 9. Deduced drag coefficient computed with constant initial value by 1*10-3 

 

 

RESULTS 
For the clarification of the mechanism on energy transfer from high wind to waves, the ADWAM, 

a wave prediction model incorporating data assimilation method, was modified to deduce the sea 
surface drag coefficients as its control variables. Then, the validity of the new model was verified 
through identical twin experiments in deep sea conditions. Also, the behavior of the deduced parameter 
was investigated for several experiments. The major conclusions are as follows. 

1) The new model can estimate the optimal parameters appropriately from arbitrary assumed initial 
value by adding a priori condition with adequate weight coefficient even if the target values are 
unpredictable. 

2) The drag coefficient deduced by the proposed inversion method is accurate if the number of the 
observation data is sufficient compared with that of unknown parameters.  

3) The accuracy in the inversion of the drag coefficient can be improved by adding a priori 
condition even if the number of the observation data is insufficient. 

 

FUTURE PLAN 
1) The wave prediction accuracy in severe sea conditions may be improved if the drag coefficients 

are clarified by applying the method to the actual wave data measured under severe sea conditions. We 
will therefore try to apply the proposed method to the actual wave observation data. 

2) Furthermore we will improve this model so as to be applied to the time series data of directional 
wave spectrum as the observation data instead of those of the significant wave height that was used as 
the observation data in this study. This improvement will enable the method more accurate and reliable. 
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