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NUMERICAL ANALYSES ON PROPAGATION OF NONLINEAR INTERNAL WAVES 

Kei Yamashita1, Taro Kakinuma2 and Keisuke Nakayama3 

A set of nonlinear surface/internal-wave equations, which have been derived on the basis of the variational principle 

without any assumptions concerning wave nonlinearity and dispersion, is applied to compare numerical results with 

experimental data of surface/internal waves propagating through a shallow- or a deep-water region in a tank. Internal 

waves propagating over a submerged breakwater or a uniformly sloping beach are also simulated. The internal 

progressive wave shows remarkable shoaling when the interface reaches the critical level, after which physical 

variables including wave celerity become unstable near the wave-breaking point. In the case of the internal-wave 

trough reflecting at the vertical wall, the vertical velocities of water particles in the vicinity of the interface are 

different from that of the moving interface at the wall near the wave breaking, which means that the kinematic 

boundary condition on the interface of trough has been unsatisfied. 
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INTRODUCTION 

In a lake or an ocean where density stratification is well developed, not only internal long-period 

waves, e.g. internal seiches and tides, but also internal short-period waves are observed. The sources of 

the latter include bottom topography and interfacial instability. In coastal zones, internal waves play an 

important role in nearshore environment including nutrient salts, water temperature, etc., so that it is 

important to know the characteristics of internal-wave propagation in consideration of both nonlinearity 

and dispersion of internal waves. In the present study, internal waves in two-layer systems are 

numerically simulated using a set of surface/internal-wave equations (Kakinuma, 2001). In the 

derivation process of the equations, no assumption is used for nonlinearity and dispersion of waves, 

such that the application of this model is expected to be theoretically free from limitations concerning 

the relative thickness of fluid layers or the frequency band of surface/internal waves. 

First the verification of numerical results through the present model is performed in two-layer 

systems. In shallow-water cases, computational results of interface displacements up to each order on 

the vertical length scale of motion are compared with the corresponding calculation results through a 

Boussinesq-type internal-wave model or the existing experimental data. On the other hand, in deep-

water cases, experimental data of surface/interface displacements are obtained and compared with the 

corresponding computational results through the proposed model. 

Second the numerical model is applied to internal waves propagating over a submerged breakwater 

or a uniformly sloping beach, where physical variables including water-particle velocity and internal-

wave celerity are examined near wave-breaking points. 

NONLINEAR EQUATIONS FOR SURFACE/INTERNAL WAVES 

Multilayer Fluids 

Inviscid and incompressible fluids, as shown in Fig. 1, are assumed to be stable in still water. The i-

layer thickness in still water is denoted by hi(x). None of the fluids mix even in motion and the density 

ρi (ρ1 < ρ2 < …< ρI) is spatially uniform and temporally constant in each layer. Surface tension and 

capillary action are neglected. 

Fluid motion is assumed to be irrotational, resulting in existence of velocity potential φi defined as 

 ,and zw iiii ∂∂=∇= φφ　u  (1) 

where ( )yx ∂∂∂∂=∇ , , i.e., a partial differential operator in the horizontal plane. 

Functional of the Variational Problem 

The pressure on z = ηi,0, i.e., the lower interface of the i-layer, is written by pi(x,t). In the i-layer, if 

both the elevation of one interface, z = ηi,1-j(x,t) (j = 0 or 1), and the pressure on the other interface, 

                                                           

 
1
 Department of Ocean Civil Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, Kagoshima 890-
0065, Japan 

2
 Ditto 

3
 Department of Civil and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, 
Hokkaido 090-8507, Japan 



 COASTAL ENGINEERING 2010 

 

2 

 
 

Figure 1. Mutilayer-fluid system. 

 

pi-j(x,t), are known, then the unknown variables are the velocity potential φi(x,z,t) and interface 
elevation ηi,j(x,t) such that the functional for the variational problem in the i-layer, Fi, is determined by 
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k kkii ghP ρρ ; g is gravitational acceleration; the plane A which is the orthogonal 

projection of the object domain on to the x-y plane is assumed to be independent of time. 

In comparison with the functional referred to in Luke (1967) for rotational motion, Eq. (2) has an 

additional term of pressure on interfaces, without the terms relating to vorticity. 

Vertically Distributed Functions of Velocity Potential 

In order to derive a set of equations of a horizontally two-dimensional type, vertical integration is 

performed analytically. In a manner similar to that in the derivation process of the nonlinear surface-

wave model (Isobe, 1995), the velocity potential φi is expanded into a series in terms of a given set of 

vertically distributed functions Zi,α multiplied by their weightings fi,α , i.e., 
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where the sum rule of product is adopted for subscript α. 

Euler-Lagrange Equations 

We substitute Eq. (3) into Eq. (2), after which the functional Fi is integrated vertically, see 

APPENDICES. Then the variational principle is applied to obtain the following Euler-Lagrange 

equations, i.e., the fully nonlinear equations for surface and internal waves (Kakinuma, 2001): 
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where 1,,2,1,0 −= NLα ; 
ei
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zii ZZ
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Selection of Vertically Distributed Functions in Expanded Velocity Potential 

In the present paper, the vertically distributed function Zi,α is determined by 

 .,

α
α zZ i =  (6) 
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NONLINEAR EQUATIONS FOR SURFACE/INTERNAL WAVES IN A TWO-LAYER SYSTEM 

Nonlinear Equations for Internal Waves in a Two-Layer System Covered with a Fixed 

Horizontal Plate 

If we consider a two-layer system covered with a fixed horizontal plate, where η1,1 = 0 and η2,0 = 

b(x), and the interface profile is described by z = η (x,t), where η = η1,0 = η2,1, then Eqs. (4) and (5) are 

reduced to the following equations. 

[Upper layer] (i = 1) 

In the upper layer, i = 1 and j = 0. Equation (6) is substituted into Eqs. (4) and (5), resulting in 
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[Lower layer] (i = 2) 

In the lower layer, i = 2 and j = 1. Equation (6) is substituted into Eqs. (4) and (5), leading to 
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Nonlinear Equations for Surface and Internal Waves in a Two-Layer System 

If we consider a two-layer system with a free surface where the pressure p0 is set at zero and the 

surface profile is described by z = ζ (x,t) = η1,1, then Eqs. (4) and (5) are reduced to the following 

equations. 

[Upper layer] (i = 1) 

In the upper layer, i = 1 and j = 0 or 1. Equation (6) is substituted into Eqs. (4) and (5), resulting in 
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where the interface profile is described by z = η (x,t). 

 [Lower-layer] (i = 2)  

In the lower layer, i = 2 and j = 1. Equation (6) is substituted into Eqs. (4) and (5), leading to 

 ( ){ } ( ) ,0
11

1
,2

11

,2

11 =−
−+

−∇−∇
++

+
∂
∂ −+−+++++

β
βαβα

β
βαβαα η

βα
αβ

η
βα

η
η fbfb

t
 (14) 

 
( )

,0
2

1

2

1

2

1121
,2,2

2

,2,2

,2 =
−+

+++∇∇+
∂

∂ −++

ρ
ρρ

ηβγηηη γβ
γβ

γβ
γβββ ghp

gffff
t

f
 (15) 

where the seabed configuration is described by z = b(x). Eliminate the pressure on the interface, p1, 

from Eqs. (12) and (15), then we obtain 
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(a) Dimensions of the laboratory tank.               (b) Initial condition. The interface is inclined linearly 

with the angle θθθθ in the horizontal tank. 

Figure 2. Schematic of tanks. 
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NUMERICAL CALCULATION METHOD 

Two-layer problems are solved in vertically two-dimensional cases. The set of Eqs. (7), (8), (9), 

and (10) or the set of Eqs. (11), (13), (14), and (16) is rewritten to a set of finite difference equations 

and the time development is carried out by applying implicit schemes similar to that of Nakayama and 

Kakinuma (2010). 

NUMERICAL SIMULATION OF INTERNAL WAVES REFLECTING IN A TANK BETWEEN TWO 

FIXED HORIZONTAL PLATES 

Shallow-Water Case 

Horn et al. (2000) performed hydraulic experiments using a tank, where the length L, depth D, and 

width W were 6.0, 0.29, and 0.3 m, respectively, as shown in Fig. 2(a). Three ultra-sonic wave gauges 

were set at the positions marked A, B, and C. The tank was filled with a two-layer stratification, where 

h1/D = 0.8, after which it was rotated very slowly around the axis of rotation. At the beginning of 

experiments, this tilted tank, where the tilt angle was θ, was returned to a horizontal position very 
quickly, after which internal waves traveled in the two-layer system between two fixed horizontal plates. 

In the initial condition of numerical computation, the tank was horizontal and the interface was 

inclined linearly as shown in Fig. 2(b); the initial velocity potential was assumed to be zero through the 

computational domain. The grid width ∆x and the time-step interval ∆t were equal to 0.06 m and 0.02 s, 

respectively. 

In Figs. 3 - 5, the experimental and calculation results are compared for the time series of interface 

displacements at the position marked C in Fig. 2(a) in the case where the density ratio ρ2/ρ1 and tilt 

angle θ were 1.019 and 0.4617°, respectively. Figure 3 shows the experimental interface displacement 

measured by the wave gauge at position C. Figure 4 shows the corresponding calculation result through 

a Boussinesq-type model (BT), the fundamental equations of which are described in APPENDICES. 

Figure 5 shows the calculation result obtained using the proposed strongly nonlinear model (SN), where 

the number of vertically distributed functions in expanded velocity potential, N, was equal to 1, 2, 3, 4, 

or 5. 

When N = 1, the set of nonlinear internal-wave equations, i.e., Eqs. (7), (8), (9), and (10), is 

reduced to a set of nonlinear and non-dispersion internal-wave equations, which shows extreme 

disintegration around the wave crests as shown in Fig. 5, without dispersion balancing with nonlinearity. 

When N = 2, the SN takes into account linear and uniform distributions of ui and wi in the direction 

of z, respectively, such that the balance between nonlinearity and dispersion is considered, leading to 

the more accurate result than that when N = 1. 

When N = 3, the interface displacement evaluated using the SN is close to that shown in Fig. 4 

obtained through the BT, where the parabolic distribution of ui in the direction of z is considered in 

both the SN and the BT. It should be noted that though the effect due to the linear distribution of wi in 
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Figure 3. Time series of interface displacement measured using the wave gauge at position C in the 

hydraulic experiment. 

 

 
 

Figure 4. Time series of interface displacement obtained through the Boussinesq-type model. 

 

 
 
Figure 5. Time series of interface displacements obtained through the present model, where N is the number 

of vertically distributed functions in expanded velocity potential. 

 

the direction of z is considered in both the SN and the BT, the SN estimates the wave period, or the 

wave number, more accurately by solving the contribution of each order without perturbation, while the 

wave period through the BT is longer than that in the experiment. 
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Figure 6. Interface profiles obtained through the present model (SN), where the number of vertically 

distributed functions in expanded velocity potential, N, is equal to four, and the Boussinesq-type model (BT), 

when t = 280 s. 

 

 
 

Figure 7. Time series of interface displacements (h1/h2 = 0.25, θ = 3.8°,  x = 0.15 m). 

 

Figure 5 hardly shows difference in interface displacement obtained through the SN between the 

cases where N = 4 and 5. Although both the SN and the BT do not include dissipation effects due to 

friction, which results to wave heights larger than the experimental data, the harmony of results between 

the SN and the BT indicates the high accuracy of results calculated using the SN in this long-wave 

condition. 

Interface profiles obtained using the SN, where N = 4, and the BT when t = 280 s are shown in Fig. 

6, according to which the representative ratio of water depth to wavelength, h2/λ, was about 0.06. The 
SN estimated the wave heights larger and the wavelengths shorter with higher nonlinearity than the BT. 

Deep-Water Case 

Similar hydraulic experiments on two-layer systems between two fixed horizontal plates were 

performed using a tank, where the length, depth, and width were 0.6, 0.3, and 0.1 m, respectively. The 

thickness ratio h1/h2 and density ratio ρ1/ρ2 were equal to 0.25 and 0.802, respectively. 

When the tilted tank was returned to a horizontal position, the interface profile was measured and 

given as the initial interface profile in numerical computation; the initial velocity potential was assumed 

to be zero through the computational domain. The number of terms in expanded velocity potential, N, 

was equal to three. Equations (7), (8), (9), and (10) were solved, where ∆x and ∆t were 0.005 m and 

0.00005 s, respectively. 

Figure 7 shows interface displacements of both calculation results and experimental data, where the 

tilt angle θ was 3.8° and the position x of measurement was 0.15 m. An internal seiche was generated. 

Also in the deep-water case, where the BT based on a perturbation method around the shallow-water 

condition should not be applied, the calculation results through the SN are in harmony with the 

corresponding experimental data. 
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Figure 8. Time series of surface (a) and interface (b) displacements (o : experimental data, −−−−    : calculation 
results through the present model, where N = 3; h1/h2 = 0.4, θ = 1.8°, x = 1.065 m). 

 

 
 

Figure 9. Time series of surface (a) and interface (b) displacements (o : experimental data, −−−−    : calculation 
results through the present model, where N = 3; h1/h2 = 2.3, θ = 1.9°, x = 1.065 m). 

 

NUMERICAL SIMULATION OF SURFACE AND INTERNAL WAVES REFLECTING IN A TANK 

Hydraulic experiments on two-layer systems where the top face, i.e., the upper face of the 1-layer, 

was a free surface touching the air were performed using a tank of length 1.663 m, height 0.34 m, and 

width 0.1 m. The density ratio ρ1/ρ2 was equal to 0.802. 

In numerical computation, the set of Eqs. (11), (13), (14), and (16) was solved, where ∆x and ∆t 
were equal to 0.01663 m and 0.0001 s, respectively. The initial velocity potential was assumed to be 

zero through the computational domain. 

Figure 8 shows time series of surface and interface displacements obtained through the experiment, 

as well as the calculation, where the thickness ratio h1/h2 and tilt angle θ were 0.4 and 1.8°, respectively. 

The position x of measurement was 1.065 m. The calculation results show good accuracy especially in 

the wave periods. The surface-wave mode was dominant in both the surface and the interface 

displacements for the thickness of the upper layer was quite thinner than that of the lower layer. 

On the other hand, Fig. 9 shows the time series of surface and interface displacements obtained 

through the experiment and calculation, where the thickness ratio h1/h2 and tilt angle θ were 2.3 and 

1.9°, respectively. The position x of measurement was 1.065 m. The predominant modes were different 

between the surface and the interface displacements. 

NUMERICAL SIMULATION OF INTERNAL WAVES OVER A SUBMERGED BREAKWATER 

Initial Setup Using a Third-Order Theoretical Solution of Internal Solitary Wave 

The proposed model was applied to internal waves propagating over a submerged breakwater as 

shown in Fig. 10, where the breakwater shoulder was located where x = 5.0 m and the lateral 

boundaries were vertical walls of perfect reflection. The thickness ratio h1/h2 and density ratio ρ1/ρ2 

were equal to 0.25 and 0.98, respectively. 

A third-order theoretical solution of internal solitary wave in a two-layer system between two fixed 

horizontal plates derived by Mirie and Pennell (1989) was given in the initial condition of an interface 

profile and velocity potentials in computation. The initial wave amplitude was equal to 0.02 m. The 

number of terms in expanded velocity potential, N, was equal to three. The set of Eqs. (7), (8), (9), and 

(10) was solved, where ∆x and ∆t were equal to 0.02 m and 0.005 s, respectively. 
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Figure 10. Submerged breakwater and the initial interface profile. 

 

 
 

Figure 11. Time variation of interface profile. 

 

 
 
Figure 12. Vertical distributions of horizontal velocity u2 and dynamic pressure pd below the internal-wave 

trough when the trough passed the places. 

 

Wave Shoaling and Disintegration 

Numerical results of interface profiles are shown in Fig. 11. The internal-wave trough was inclined 

backward due to the nonlinearity over the breakwater slope, after which wave disintegration occurred 

just over the breakwater shoulder. 

Figure 12 shows vertical distributions of horizontal velocity u2 and dynamic pressure pd, i.e., total 

pressure minus hydrostatic pressure in consideration of the interface displacement, below the internal-

wave trough when passing the places. At the beginning of wave disintegration, both u2 and pd showed 

remarkable curvature in their vertical distributions with wave dispersion. 

NUMERICAL SIMULATION OF INTERNAL PROGRESSIVE WAVES OVER A UNIFORMLY 

SLOPING BEACH 

Internal waves propagating over a uniformly sloping beach as shown in Fig. 13(a) were simulated 

by applying the present numerical model. As mentioned above, a third-order theoretical solution of 

internal solitary wave was given in the initial condition, where the amplitude of internal wave was 0.02, 

0.04, 0.05, 0.07, or 0.08 m. The number of terms in expanded velocity potential, N, was equal to three. 

The set of Eqs. (7), (8), (9), and (10) was solved, where ∆x and ∆t were equal to 0.02 m and 0.005 s, 

respectively. 
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Figure 13. Computational domains including a uniformly sloping beach. The slope of the beach is 1/50. 

 

Calculation results of time variations of interface profiles are shown in Fig. 14, where the broken 

line shows the critical level, i.e., the lowest position where an interface of internal solitary wave can 

appear. The critical level zc is determined through the KdV theory by 

 ).1/( 12c ρρ+= bz  (17) 

In Fig. 14, when the interfaces reached the critical level, the internal-wave profiles began inclined 

backward, after which the internal wave showed remarkable disintegration. 

Figure 15 shows the internal wave height H, i.e., the vertical distance between the first trough and 

the first crest when the internal-wave trough passed each place. It should be noted that the amplitude of 

the first crest increased gradually after the internal-wave trough touched the critical level. 

Computational results of wave celerity and horizontal velocities of water particles in the vicinity of 

trough interfaces when the internal-wave troughs passed each place are shown in Fig. 16, where the 

wave celerity is determined by the horizontal velocity of moving internal-wave trough, while the 

horizontal velocities of water particles in the vicinity of an interface, i.e., u1,η and u2,η in the upper and 

lower layers, respectively, are 
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According to discrete variables, see Fig. 17, the horizontal velocity of water particle in the vicinity 

of an interface where 
mxx = , i.e., 
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where the subscript m indicates the grid-point number in the direction of x and ∆zi = ηm – zi. 

In every case of Fig. 16, there existed a place where the physical variables showed rather 

discontinuous change; after the internal-wave trough passed this place, the calculation stopped due to 

numerical divergence. The last profiles of interfaces shown in Fig. 14 are the profiles just before the 

stops of calculation. According to Fig. 14, the maximum slope of interface was not more than 2.0 near 

the breaking point in any present case, such that it was not the reason why the calculation stopped that 

the proposed vertically-integrated model could not treat discontinuous change in an interface profile but 

that the variatioal principle could not find correct solutions where the kinematic boundary conditions on 

interfaces were satisfied on the assumption of the expanded velocity potentials. 

In addition, the condition where the Kelvin-Helmholtz instability occurs for linear shallow-water 

waves is described as 

 ,
tanhtanh||

2

21

2

21

2

2

21

h

hh

kh

khkh

gh

UU +
≈

+
>











 −

ε
 (20) 



 COASTAL ENGINEERING 2010 

 

10 

 
 
Figure 14. Time variations of Interface profiles. The broken line shows the critical level obtained through the 

KdV theory. 

 

where k is wave number and ε = (ρ2 −  ρ1)/ ρ1; we assume that | U1 − U2 | = | u1,trough − u2,trough |. In any 

case of Fig. 16, the Kelvin-Helmholtz instability did not occur, which means that the wave breaking was 

not caused due to this instability. 
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Figure 15. Wave height when the first internal-wave trough passed each place. 

 

NUMERICAL SIMULATION OF INTERNAL WAVES REFLECTING AT A VERTICAL WALL 

Internal waves propagating over a uniformly sloping beach as shown in Fig. 13(b) and then 

reflecting at a vertical wall where x = 10.0 m were numerically simulated by applying the present model. 

A third-order theoretical solution of internal solitary wave was given in the initial condition, where the 

amplitude of internal wave was 0.02 or 0.08 m. The number of terms in expanded velocity potential, N, 

was equal to three. The set of Eqs. (7), (8), (9), and (10) was solved, where ∆x and ∆t were equal to 
0.02 m and 0.005 s, respectively. 

Vertical velocities of water particles in the vicinity of an interface, i.e., w1,η and w2,η in the upper 

and lower layers, respectively, at a vertical wall are 
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Figure 18 shows time variations of interface displacements and vertical velocities of water particles 

in the vicinity of interfaces at the wall where x = 10.0 m. In the case where the initial wave amplitude a 

was equal to 0.02 m, w1,η was in agreement with w2,η at the vertical wall. 

On the other hand, in the case where the initial wave amplitude a was 0.08 m, w1,η became larger 

than w2,η just after the interface displacement showed the minimum value at the wall where x = 10.0 m, 

which means that in the normal direction of the interface the velocity components of water particles in 

the vicinity of the interface were different from that of the moving interface at the vertical wall such that 

the kinematic boundary condition on the interface was unsatisfied to detach the upper layer from the 

lower one in the wave-breaking process. 

CONCLUSIONS 

The surface and internal waves in the two-layer systems were simulated by solving numerically the 

set of nonlinear equations in consideration of both strong nonlinearity and strong dispersion of waves. 

The calculation results of surface/interface displacements were in harmony with the corresponding 

experimental data in both the shallow- and the deep-water cases. 

The internal waves propagating over the uniformly sloping beach were simulated by applying the 

present numerical model. When the internal-wave trough reached the critical level, the internal-wave 

profile began inclined backward, after which the internal wave showed disintegration remarkably, 

increasing the amplitude of the first crest gradually. The celerity of internal wave, as well as the 

horizontal velocities of water particles in the vicinity of the interface, showed rather discontinuous 

change near the wave-breaking point for the variational principle could not find correct solutions where 

the kinematic boundary condition was satisfied on the interface; then the calculation stopped due to 

numerical divergence. 

In the reflection of internal wave at the vertical wall, the kinematic boundary condition on the 

interface was unsatisfied in the wave-breaking process, where the initial amplitude of internal solitary 

wave was large. 

In future work the wave-breaking criteria of internal waves will be discussed using more terms in 

expanded velocity potentials such that we can investigate the details of the wave-breaking mechanisms. 
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Figure 16. Horizontal velocities of water particles in the vicinity of the interface and wave celerity when the 

first internal-wave trough passed each place. 
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Figure 17. Interface profile. The filled circles denote water particles in the vicinity of the interface, where m is 

a grid-point number in the direction of x. 

 

 
 
Figure 18. Time series of interface displacements and vertical velocities of water particles in the vicinity of 

interfaces at the vertical wall where x = 10.0 m. 
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APPENDICES 

Euler-Lagrange Equations of the Variational Principle 

The first variation of the functional Fi determined by Eq. (2) is 
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where closed curve C is periphery of plane A; s and n are tangential and outdirected-normal axes to the 

curve C, respectively, such that if δ Fi is equal to zero for any δφi and δη i,j, the equation of continuity in 
the i-layer, the kinematic boundary condition on the lower interface of the i-layer, the kinematic 

boundary condition on the upper interface of the i-layer, and dynamic boundary condition on the 

unknown interface of the i-layer are satisfied with appropriate initial and lateral-boundary conditions. 

We substitute Eq. (3) into Eq. (2), after which the functional Fi is integrated vertically as follows: 

 ∫ ∫∫≡=
1

0

,];[];[],[ ,,,

t

t A
jiiijiiijiii dtdAfLfFF ηηηφ  (A-2) 

 

( ) ( ),
2

2

1

2

1
];[

0,1,

2

0,

2

1,

,,

,,

,,,,

,

,,

1,

0,

1,

0,

1,

0,

ii

i

iji

ii

ii

ii

iiii

i

ijiii

Ppg

ffdz
z

Z

z

Z

ffdzZZ
t

f
dzZfL

i

i

i

i

i

i

ηη
ρ

ηη

η

βγ

η

η

βγ

βγ

η

η βγ
βη

η β

−
+

+−+

∂

∂

∂

∂
+

∇∇+
∂

∂
=

−

∫

∫∫
 (A-3) 

where 
1,2,1,0, ,,,, −Niiii ffff L  are simplified into 

if . 

Then the Euler-Lagrange equations of the variational problem are 
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from which Eqs. (4) and (5) are derived as the nonlinear surface/internal wave equations. 

Boussinesq-Type Equations for Internal Waves 

We also utilize the numerical model based on the Boussinesq-type equations, i.e., 
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 [Lower layer] 
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where η is interface elevation; 
111 /)( hh+= ηξ ; 

212 /)( hh+= ηξ ;  φ 1 and φ 2 are velocity potentials in 
the upper and lower layers, respectively. 

The numerical schemes with finite difference methods to solve these equations are resemble to 

those applied in the proposed nonlinear model. 
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