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ASSIMILATING MODELS AND DATA TO ENHANCE PREDICTIONS  OF SHORELINE 
EVOLUTION 

Joseph W. Long1 and Nathaniel G. Plant1 

A modeling system that considers both long- and short-term process-driven shoreline change is presented.  The 
modeling system is integrated into a data assimilation framework that uses sparse observations of shoreline change to 
correct a model forecast and to determine unobserved model variables and free parameters.  Application of the 
assimilation algorithm also provides quantitative statistical estimates of uncertainty that can be applied to coastal 
hazard and vulnerability assessments.  Significant attention is given to the estimation of four non-observable 
quantities using the data assimilation framework that utilizes only one observable process (i.e. ,shoreline change). The 
general framework discussed here can be applied to many other geophysical processes by simply changing the model 
component to one applicable to the processes of interest. 
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INTRODUCTION  
Shorelines represent the dynamic boundary separating beaches from the continual impact of waves, 

winds, surge, and tides.  This boundary evolves over timescales of hours (e.g., changing tides or wave 
conditions) to decades (land subsidence, rising sea level, etc).  The full spectrum of processes 
responsible for forcing evolution of the shoreline is not well understood, hindering the development of 
skillful predictive models.  The need for such models, however, is becoming increasingly clear as 
coastal managers require information about shoreline evolution to plan construction setbacks, beach-
nourishment projects, and to assess coastal vulnerability to a variety of natural events. 

Most existing studies of shoreline evolution consider long-term or short-term processes in 
isolation.  When considering the former, the typical approach consists of determining the shoreline 
migration rate using a linear regression of historical shoreline position.  Observations scattered about 
the best-fit regression line are considered noise.  This type of analysis is intended to characterize 
historical response and is, essentially, a hindcast model of shoreline change.   If predictions of future 
positions are required from this approach, they are extrapolated using the best-fit slope.  There are a 
number of inherent problems in forecasting shoreline position with this method.  This approach 
neglects acceleration of the shoreline-change rate and eliminates all short-term process-driven shoreline 
change. Moreover, because shoreline positions are often measured immediately after large storm 
events, the data may provide change rates that are biased high by neglecting natural beach recovery 
(e.g., Frazier et al. 2009). 

Studies of short-term process-driven shoreline change attempt to focus more on annual and storm-
driven change by assuming that the primary driver is the incident wave height (e.g., Miller and Dean 
2004, Yates et al. 2009).  Unfortunately, the exact relation between wave height and shoreline position 
is unclear.  This leads to highly parameterized and calibrated models that are site-specific and do not 
account for temporal variations in the model free parameters.  Moreover, the time horizon of coastal 
managers is dependent on the application at hand.  Therefore, a model that considers both long- and 
short-term processes will provide greater flexibility in determining vulnerability assessments and 
project planning.  Finally, assessment of coastal vulnerability and risk must always take into account 
some level of uncertainty.  Unfortunately, the current numerical models can only provide information 
about hindcast model performance (i.e., spread/variability in best-fit parameters, etc.) and do not 
provide adequate information about forecast uncertainty. 

Given the unknowns associated with predicting shoreline evolution, it is inevitable that as the 
prediction horizon increases, the model accuracy will degrade.  Eventually, the uncertainty in the 
forecast will reach a point that renders it useless.  One method to help ‘guide’ numerical models used 
for long-term predictions is to periodically update the forecast with available observations.  This 
correction serves to re-initialize the modeled position.  However, neither the model nor the data should 
be considered as exact.  They are both methods that help estimate a particular geophysical state, but 
they both have limitations.  Measurements suffer from instrument noise and offsets, and are spatially 
and/or temporally sparse.  Models, on the other hand, must employ parameterizations of sub-grid-scale 
processes and often suffer from poor initial or boundary conditions.  Therefore, the ideal approach to 
coastal-change forecasting is one that combines the inherent advantages of models and data to obtain 
accurate forecasts with the additional benefit of being able to quantify the uncertainty in the combined 
forecast. 
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This work represents an effort to devise a numerical model capable of forecasting combined long- 
and short-term shoreline evolution and implementing it as part of a data assimilation framework for 
coastal change.  The data assimilation scheme accomplishes three goals:  1) periodically correcting the 
modeled shoreline position with available observations to prevent forecasts from diverging from the 
true state; 2) estimating shoreline positions, rates, and model free parameters; and 3) providing a 
quantitative measure of the forecast uncertainty based on knowledge of the accuracy of both the model 
and the data.  The numerical model and data assimilation strategy are documented in the second and 
third sections, respectively.  We then present a demonstration of this method using an idealized model 
scenario followed by brief concluding remarks. 

SHORELINE-EVOLUTION MODEL 
Shoreline position, ����, is treated here as the summation of a position driven by long-term 

processes, ������, and a short-term position, ������,  such that 
 

                  ���� 	  ������ � ������.                               (1) 
 

The position of the shoreline, considering only long-term processes (such as sea-level rise), can be 
expressed with a typical linear model using a nearly constant change rate ���).  With this, changes in 
the shoreline position are represented as 

  
                   ����� � ∆�� 	 ������ � ��∆�.                      (2) 

 
At this stage, we do not actually attribute the long-term shoreline movement to a particular process, nor 
do we perform a linear regression to determine the applicable change rate.  Instead, we will use the 
combined model and available data to simultaneously determine the long- and short-term model states 
and parameters. 

We assume that shorter-term variations in the shoreline position are driven by the incident wave 
height and use the equilibrium model approach of Plant et al. (1999).  Equilibrium theory assumes that 
for a given wave height, there exists a shoreline position such that the beach would be in equilibrium 
(i.e.,  remain stationary with stationary wave forcing).  Variations of this method have been applied by 
other studies of shoreline evolution (e.g., Miller and Dean 2004, Yates et al. 2009) when considering 
shoreline time series on the order of years.  Of course, because the wave height varies continuously, the 
beach is constantly trying to move from one equilibrium state to another and may never reach 
equilibrium, depending on the rate at which the wave height changes.  This method provides a 
description of the rate of shoreline movement, based on the present position of the shoreline and the 
natural equilibrium condition it is trying to achieve. 

  

                                                    
������ 	  ��������������� �  ������Δ�              (3) 

 
In Equation 3, ���� represents the time varying wave height and � is a free parameter that linearly 
relates the wave height to the associated equilibrium shoreline position.  The term in front of the 
brackets, ��������, describes how fast the shoreline is able to move from the present position �������) 
to the equilibrium position and is assumed to be related to wave height so that large waves move the 
shoreline position faster than small waves.   

The combined model for shoreline position is then: 
 
          ���� 	  ������ �  ��∆� � ������ � �������������� �  ������Δ�        (4)       
 

The model is solved using a forward Euler finite-difference scheme with either a measured wave-height 
time series (hindcast) or a schematized/climatological wave-height time series (forecast).  We use a 
time step of 0.1 months, and the model prediction is updated with the data assimilation filter described 
below at time steps when observations of shoreline position are available. 

DATA ASSIMILATION ALGORITHM 
The combination of modeled and observed shoreline position is achieved using the Kalman filter 

(Kalman 1960, Maybeck 1979).  Here, the Kalman filter serves as an optimal data-processing 
algorithm that allows for a way to combine observed and modeled information about a physical state 
(i.e.,  shoreline position).  The filter minimizes the variance of the error in the analyzed state (includes 
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model forecast and observed state) and because it is a recursive filter, it is necessary to store prior 
information from only the most recent time step.  Hence, it is a computationally efficient algorithm, 
which is essential for long-term forecasting.  Observations of the state can be non-uniform in space and 
time and inferred from different types of instruments with different noise thresholds. 
 The general form of the Kalman filter is given by: 
   

                              �� 	 �� � �� � !���                       (5) 
 
where � is the physical state of interest and �� and ��  represent the forecasted and analyzed state, 
respectively.  The forecasted state corresponds to the value predicted by the model at that time step, 
while the analyzed state represents a state ''corrected'' by the data available at that time step.  The 
quantity in parentheses is the innovation, or the difference between the observation,  , and the 
corresponding modeled state, !��.  Note that the filter does not require that the observed state and the 
forecasted state be the same, only that they are linearly related by !.  The innovation is weighted by 
the Kalman gain, which is computed using the following equation: 

 
                                                   � 	 "�!#�!"�!# � "��$�.                       (6) 
 

In the above, the superscript % represents the transpose of the matrix.  Therefore, the innovation is 
weighted according to the error covariance of the predicted state, "�, and the observed state, "�.  For 
small values of "� (very accurate measurements), the value of � tends toward unity, and the analyzed 
state becomes equal to the observation.  Alternately, when the observations are noisy or inaccurate and "� is large, the forecast will not be influenced by the data and will remain equal to the value forecasted 
by the model.  After the forecast has been updated with available data, the error covariance of the 
analyzed state (the state that includes information from both the model and the data) is updated by 

 
                                                               "� 	 �& � �!�"� ,                            (7) 
 

where & is the identity matrix.  This provides the quantitative value of the uncertainty that remains in 
the analyzed state estimate. 

The Kalman filter requires that the physical state be described by a linear model.  Therefore, we 
will assume that the values of �� and the exponent ' in Equations 3 and 4 will be constant with values 
inferred from previous studies (e.g., Plant et al. 1999, '=3; �� = 1).  We make use of the fact that the 
observable does not have to be the exact state of interest to expand the analysis in vector form so that 
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Here, our observable is the combined shoreline position that would be measured with a discrete 
morphological survey (�����.  This observation is related to our four states of interest, which include 
the separated short-term and long-term shoreline positions, long-term migration rate, and the model 
parameter, �.  At each time step when data are available, these quantities will be updated and then used 
to forecast to the next time step.  We also track the error covariance of each of the corrected variables, 
which provides a measure of uncertainty in the analysis. 

IDEALIZED CASE STUDY 
As an initial test, we implement the model-data assimilation algorithm using an idealized case 

study.  This is designed to demonstrate an application of this approach and illustrate the ability of this 
method to estimate multiple variables/parameters from one related but separate observable.  A 13-year 
wave-height time series is constructed that contains seasonal variations in wave energy along with 
some characteristic noise (Figure 1).  Given this time series, the ''true'' shoreline position is determined 
using Equation 4 with �� = 0.6, ' 	 3, �� 	 1, and � 	 1.  The 'data' to be used in the assimilation 
process are then sub-sampled, annually, from this time series of shoreline position, and normally 
distributed noise is added to each yearly observation.  Note that this sub-sampling interval does not 
resolve the seasonal, short-term shoreline modulation. 
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Figure 1. Synthetic wave-height time series used in  shoreline-evolution model. 

 
We then model the shoreline position by choosing incorrect values for the model parameters and 

later allow the values to be updated and estimated by the assimilation process.  Here, we initialize the 
model with the following: �� = 0 and � = 0.  Hence, we assume there is no long-term component of 
shoreline evolution and that the short-term movement is unrelated to the equilibrium position.  Then, at 
each time step in the model when data are available, we compute the Kalman gain and allow the filter 
to update the modeled shoreline position and, in particular, the four specific quantities of interest 
(��� , ����� , �� . 

The time history of the shoreline position and individual quantities are given in Figure 2.  Clearly, 
the model, initialized with incorrect physical conditions, would have given an erroneous forecast of the 
shoreline position.  The Kalman filtering approach, however, was able to converge on the correct 
shoreline position within a two-year period.  The filtering routine was also able to detect the long-term 
shoreline movement from the data and to determine the actual long-term migration rate, despite the fact 
that it had been assumed to be zero at the beginning of the simulation period.  Likewise, both the short-
term shoreline position and the relation between the wave height and equilibrium shoreline position 
were identified.  The results indicate a decreasing uncertainty with time when data are available to keep 
the model on track.  Once values converged to the true values, the levels of uncertainty also converged 
to the minimum levels of uncertainty which correspond to the error estimates provided to the Kalman 
filter for the model and data. 

SUMMARY 
 This paper represents the first steps toward developing a forecasting system consisting of a 
shoreline-evolution model that incorporates a range of long- and short-term processes and a Kalman 
filter data assimilation scheme. Assuming that the dominant physics are represented in the model 
formulation, the predictor-corrector cycle of the Kalman filter will update modeled quantities, 
including free parameters.  It is expected that if these quantities change with time (i.e., change of long-
term migration rate), the filter will identify this change, unlike typical linear-regression analysis of 
historical data.  The case study included here showed the ability to estimate four model quantities with 
the assimilation of only one variable, which itself was not one of the quantities being estimated.  The 
algorithm was able to separate short- and long-term processes despite our having initialized the 
prediction with inaccurate model parameters.  We suggest that data assimilation is an under-utilized 
tool in coastal/nearshore science and that it is essential when forecasting morphological conditions, 
especially over long timescales. 
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Figure 2. Results from the model-data assimilation algorithm. (top) Total shoreline position 
comparing ''true'' (blue) and modeled (red) results  and data (asterisks) used in the assimilation 
process.  (middle-top) Long-term shoreline change r ate.  (middle-bottom) Short-term shoreline 
position.  (bottom) Free model parameter ( 3) relating instantaneous wave height to an equilibr ium 
shoreline position. 
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