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A NEW 3D ROLLER APPROACH FOR FACING ROTATIONAL SURF  ZONE 
HYDRODYNAMICS 

Antonino Viviano1, Rosaria Ester Musumeci1 and Enrico Foti1 

A 2DH highly nonlinear Boussinesq-type of model for breaking waves has been developed in order to investigate surf 
zone hydrodynamics, also in the presence of complex bathymetries. The set of equations includes continuity and 
rotational momentum equations, coupled with the vorticity transport equation. An appropriate spatial definition of 
the 3D roller concept, along with an algorithm for accurately tracking the roller position, have been on purposely 
developed. Several numerical simulations have been carried out for the case of a submerged elliptic shoal. The results 
have been compared with both experimental data and with the results of other numerical models available in the 
literature. Finally, the vorticity dynamics under a breaking wave has been analyzed both in time and space, showing 
that a fairly correct interpretation of the wake effect in the rear part of the wave crest is obtained. 
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INTRODUCTION 
Many coastal studies are aimed at investigating the complex interaction of the wave motion with 

non-uniform bed morphologies. Indeed, in such cases, phenomena such as refraction, diffraction, 
reflection, shoaling need to be taken into account. The situation is even more complex in the presence 
of breaking waves, since the flow becomes rotational and vortices are generated, thus inducing 
important dissipation of wave energy. The breaking process also induces a number of phenomena, such 
as wave set-up, rip current and alongshore current. In the presence of erodible bottom, a huge amount 
of sediment transport occurs as well. Just to provide a picture of the problem, a nonexhaustive overview 
of the aforementioned phenomena is sketched in Figure 1. 

   

 
 

Figure 1. Sketch of the main nearshore dynamics phe nomena induced by waves. 

 
A fairly good equilibrium between an accurate description of the above mentioned wave-forced 

phenomena in coastal regions and a limited computational effort is given by Boussinesq-type of models. 
Indeed they appropriately describe wave propagation and permit to extract information about the 
vertical distribution of the horizontal velocities despite they are managed as depth-integrated equations. 
After the first definition of such kind of equations by Boussinesq (1872), in the last decades their 
dispersive and nonlinear characteristics have been greatly improved, see for example: Madsen and 
Sørensen (1992), Wei et al. (1995); Gobbi and Kirby (1999); Lynett and Liu (2004); Madsen et al. 
(2006); Bingham et al. (2009). However such formulations do not include directly energy dissipation 
terms due to breaking phenomena because of the hypothesis of irrotational flow motion. Therefore, in 
order to face wave breaking effects, it is necessary to insert additional terms in the momentum equation 
able to simulate the enhancement of the momentum flux generated by turbulence due to breaking. 
Traditionally two main strategies have been adopted:  
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1. eddy viscosity models (Zelt, 1991; Kennedy et al., 2000) which introduce artificial viscosity terms 
into the momentum equation in order to model the turbulent mixing and the dissipation caused by 
breaking; 

2. surface roller models (Schäffer et al., 1993; Madsen et al., 1997) which account for the excess of 
momentum originating from the non-uniform velocity distribution under a breaking wave.  
The intent of obtaining a more physically based model led Veeramony and Svendsen (2000) to 

remove the hypothesis of irrotational motion and to solve the vorticity transport equation coupled with a 
weakly nonlinear Boussinesq one-dimensional model. In particular, such a model was derived starting 
from the Reynolds-averaged equations and the source of vorticity was assumed to be located on the 
turbulent front of the breaking wave. To this aim, the roller concept has been used as it was 
geometrically defined by Svendsen (1984), and the breaking generated horizontal vorticity has been 
injected through the lower edge of the roller itself inside the domain. The value of the vorticity at this 
location is quantitatively determined by assuming the hydraulic similarity between breaking waves and 
hydraulic jumps with low Froude numbers (Svendsen et al., 2000), while the vorticity transport 
equation is solved analytically under the assumption of a depth-constant eddy viscosity. Musumeci et al. 
(2005) extended such an approach by deriving a fully nonlinear version of the model, in order to obtain 
better shoaling properties close to the breaking point, and by implementing an original algorithm to 
avoid losses of vorticity at the toe of the roller. Although the results obtained by Veeramony and 
Svendsen (2000) and Musumeci et al. (2005) satisfactorily compare with laboratory data, real situations 
are quite different. Indeed in the field the angle of wave attack or the randomly variable water depth, 
due to natural or artificial complex bathymetries, dramatically affect wave propagation. Furthermore, 
breaking generated longshore currents are totally out of the picture of a one-dimensional model. Aiming 
at coping with such problems, in the present work a new set of 2DH horizontal equations has been 
derived, able to deal with the rotational motion which is characteristic of the surf zone. The equations 
include the effects of vorticity, by extending the 1D fully nonlinear approach of Musumeci et al. (2005). 
In such a framework, an appropriate numerical strategy has been also developed to track the position of 
the surface 3D roller over the horizontal plane.  

In the following section, first a description of the model is provided, along with a discussion of the 
derived governing equations; then the numerical algorithm implemented to track the 3D roller and, in 
turn, to solve the vorticity transport equation is presented; the results obtained for the case of an elliptic 
submerged shoal are analyzed by making a comparison with both experimental and other numerical 
results; moreover the 3D vorticity dynamics under breaking waves is investigated; finally some of the 
main conclusions of the work are summarized.   

DESCRIPTION OF THE MODEL 

Variable definition 
The Cartesian coordinate system adopted is assumed in such a way that x̂  and ŷ  are the horizontal 

coordinates, with x̂  in the cross-shore direction pointing onshore, and ẑ  is the vertical one, being 
0ˆ =z at the still water level. Figure 2 shows the adopted reference coordinate system along with the 

water depth ĥ  and the main variables of the problem, i.e. the three velocity components û , v̂  and ŵ  

and the free surface elevation ζ̂ . The mathematical notation adopted in the present work is such that 

the symbol ( ˆ ) means that the corresponding variable is dimensional. 
The derivation of the proposed 2DH Boussinesq-type equations has been executed in dimensionless 

form. The following dimensionless parameters have been chosen to be representative of the investigated 

flow: (i) the dispersive parameter 00
ˆˆ= hkµ  and (ii) the nonlinear parameter 00

ˆ/ˆ= haδ , where 0̂h  is the 

water depth at a reference location, and 0k̂  and 0â  are the corresponding wave number and wave 

amplitude respectively.  
In shallow waters it is usually assumed that the changes in horizontal dimensions, scaled by means 

of the wave number, are much slower than the changes in the vertical dimension, generally scaled by 
means of the water depth. This leads to the fact that it is reasonable to assume that µ 2 << 1. As regards 
the nonlinear parameter δ, whereas in the so-called weakly nonlinear model it is assumed as  
O(µ2) = O(δ ), in the present model no restriction are introduced on the magnitude of δ. In this sense, 
the model can be classified as fully nonlinear. As demonstrated by Musumeci et al. (2005), the main 
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advantage of such characteristics is related to the fact that wave propagation during shoaling close to 
the breaking point can be better predicted. 

 

 
 

Figure 2.  Definition of the main variables and reference syst em adopted in the present model. 

 
The independent variables can be appropriately made dimensionless as follows:  
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where g is the gravity acceleration and t̂ is time. The free surface elevation ζ̂ , the pressure p̂  and the 

three velocity components in dimensionless form read:  
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where 
0â is the wave amplitude.  

Since in the present model the flow after breaking is considered to be rotational, the vorticity field 
ω̂  must also be solved. From the definition of vorticity, its components

xω̂ , 
yω̂  and 

zω̂  can be scaled 

as follows  
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In order to model the turbulent shear stresses, an eddy viscosity tν̂  is introduced, which in 

dimensionless term is:  
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where Cν is a dimensionless coefficient which can be estimated to be about 0.01 ÷ 0.03, according to 
the experimental analyses of Cox et al. (1995). 

In order to derive the Boussinesq equations, a law for the velocity profile has to be considered, 
depending on some characteristic velocity. Several choices are possible, as the depth-averaged velocity 
or the velocity at some specific elevation. In the present case the depth-averaged velocity, whose 
components along x and y are: 
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has been chosen. 
The corresponding depth-averaged horizontal velocity vector is then ),(= vuu . Moreover, by 

considering that the flow is rotational, the dependency on the vorticity is made explicit through the 
horizontal rotational velocity profile vector 
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where ),(= xy ωω −ω
r

 and ( )yx ∂∂∂∂∇ /,/= . Such an horizontal rotational velocity turns out to be a 

component of the total horizontal velocity. In particular, eq. (9) has been derived here in a more general 
and flexible form compared to the corresponding procedure proposed by Musumeci et al. (2005). 
Indeed, in that work the authors adopted the stream function approach which is strictly two dimensional 
on the vertical plane and it cannot be extended to the present 2DH case. The method followed here 
consists: (i) in expressing the vertical component of velocity in terms of the horizontal ones by applying 
the continuity equation; (ii) in submitting the obtained expression of the vertical velocity into the 
definition of the horizontal vorticity components, i.e. eqs. (4)-(5); (iii) in integrating over the depth 
between the bottom –h and the generic elevation z.  

The formulation of the problem 
To derive the proposed rotational Boussinesq-type of formulation, the continuity and the Reynolds 

averaged Navier Stokes equations are integrated over the depth. Therefore, by applying the assumptions 
of fixed bed with a free slip condition and the Leibniz rule at the surface and at the bottom, the pressure 
term is eliminated from the equations. Moreover the expression for the horizontal velocity profile is 
used in order to obtain the governing equations as a function of the depth averaged velocity, of the 
vorticity and of the free surface elevation. After some algebra, the continuity and the combined 
momentum equations read:  
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where the pedix (t) indicates time derivatives. Moreover, in order to improve the dispersion 
characteristics of the model in deeper water, the linear operator 2221= ∇+ hBµL , proposed by Madsen 

and Sørensen (1992), has been adopted.  
It must be noticed that in eq. (11) the dependency on the rotational velocity ru , which in turn is 

function of the vorticity ωr  injected inside the flow by the breaking mechanism, is included exclusively 
within the terms )(∆M∇ , )( 1∆M∇ , t)]([ ∆P⋅∇∇ , wD , )( shsv DD +  and uwD , which, in analogy to 

the work of Veeramony and Svendsen (2000), are called breaking terms. Indeed, they represent the 
excess of momentum flux due to breaking, which in turn is related to the dissipation of wave energy in 
the surf zone. In particular: )(∆M∇  and ))(( 1∆M∇  give the excess of momentum flux due to the 

vertical variation of the rotational velocity; t)]([ ∆P⋅∇∇  is the contribution to the pressure due to the 

vertical motion; wD  is the excess of momentum due to the vertical motion; svD  and shD  are the shear 

stresses inside the fluid which depend, respectively, on the turbulence along the vertical and the 
horizontal planes; uwD  represents the interaction between the waves and the mean flow. 

Considering the solution of the vorticity transport equation, by assuming that within the surf zone the 
effect of convection is leading order with respect to the effect of vorticity stretching, the problem of 
determining the two-dimensional vorticity field can be reduced to a one-dimensional problem along the 
curvilinear abscissa s, which corresponds to the direction of wave propagation throughout the domain 
(see Figure 3).  

 

 
 

Figure 3. Plan view of a wave ray field with indica tion of the curvilinear abscissa s and of the horizontal 
velocity us. 

 
By cross-differenciating the Reynolds-averaged Navier-Stokes equations and by applying the 

discussed scaling arguments, the dimensionless vorticity transport equation along the abscissa s reads: 
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where us is the dimensionless horizontal velocity in the direction of wave propagation, which has a 
module equal to that of the horizontal velocity u. 

An analytical solution of such a vorticity transport equation has been found through a perturbation 
approach. The solution up to O(δ ) has been obtained starting from the basic state, which corresponds to 

Direction 
 of wave 

propagation 
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the linear solution. In this way, the vorticity distribution is calculated at a fixed time step, starting from 
the vorticity field at the previous steps and from the vorticity ωs pumped into the water column from the 
roller region by the breaking phenomenon. In order to find the solution, the vertical coordinate is 
stretched, in such a way to follow the shape of the domain, i.e. of the breaking wave. Finally the 
solution is found in a Fourier series form.  

THE NUMERICAL SOLUTION 
The numerical scheme chosen to integrate the momentum and the continuity equations is always a 

crucial point; indeed it can make the difference between an accurate and efficient model and a poor one. 
In Boussinesq-type of models, a widely adopted numerical solution strategy (see, for example, Wei et 
al., 1995) is the one which considers a fifth-order finite difference scheme for the spatial derivatives and 
a thrid-order predictor, fourth-order corrector scheme, for the integration in time, known in the 
literature as Adams-Bashforth-Moulton or ABM scheme. The same approach has been used here since 
it allows to take advantage both of the relatively fast explicit scheme and of the accuracy of the spatial 
derivative discretization. 

As regards the offshore and the lateral boundary conditions, the computational grid is a rectangle in 
which three of the boundaries, namely the lateral ones and the onshore one, are vertical walls and the 
forth one is the offshore boundary. 

The condition at the vertical walls is that the horizontal velocity component is zero, which is an 
artificial condition for many applications. In order to overcome such a problem a sponge layer can be 
inserted in front of each wall. At the offshore boundary an absorbing-generating boundary condition is 
applied, modified with respect the one proposed by van Dongeren and Svendsen (1997) for their 
nonlinear shallow water equation model, since, in the present case, the forcing term includes also 
dispersive effects. 

The 3D Roller 
As mentioned, the wave breaking phenomenon has been modelled here by trying to follow its 

actual physical behaviour. In particular the loss of wave energy has been assumed to be related to the 
vorticity which appears below the free surface during the breaking of the waves. The main assumption 
of this model is that the vorticity is “pumped” inside the water column from the highly turbulent region 
which is present on the top of the wave during the breaking phenomenon. 

Such an approach has been already followed by Veeramony and Svendsen (1999) and by 
Musumeci et al. (2005) for the one horizontal dimensional case. In those models the direction of wave 
propagation is known and the turbulence related to breaking has been modeled by a single two-
dimensional roller, in which the vorticity ωs is perpendicular to the vertical plane of the roller. 

In the proposed model the presence of both the horizontal directions (x, y) causes a modification of 
the roller itself, which becomes a mass on the top of the wave which can change its form and length in 
time, since the same wave can start to break at different time and space along its front. The approach 
followed here to overcome this problem is to consider the so called “3D roller ”, as composed of 
several two-dimensional rollers which are placed on vertical surfaces which follows the wave 
propagation direction (see Figure 4).  

Moreover, the implementation of the analitical solution of the vorticity transport equation  
(i.e. eq. 12) for a generic two horizontal dimensions case needs an appropriate spatial definition of the 
3D roller in order to determine the value of ωs to be specified along the upper limit of the computational 
domain, corresponding to the lower boundary of the surface roller itself. 

A critical point, which is common to all the Boussinesq-type of models, is to establish a criterion 
for the onset of breaking, which is here complicated by the need to determine also the spatial location of 
the 3D roller, and particularly of the toe of the roller. In the proposed model it is assumed to trigger 
breaking when and where the local steepness of the wave front exceeds a critical surface gradient, equal 
to φtan . Precisely, the toe of the roller is defined as the location where the wave steepness is identical 

to φtan  and the roller itself is included between its toe and the wave crest. In order to account for the 

transition from the initial breaker to the bore-like stage within the inner surf zone, the critical roller 
angle, φ , is assumed to decrease from Bφ  up to its final value 0φ  as a function of the age τ  of the 

roller, i.e. the time interval measured from the initiation of wave breaking. The relation used here, 
initially introduced by Schäffer et al.(1993), is 
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where t1/2 defines the time scale for the development of the roller, and tB is the time of incipient 
breaking; the values for the coefficients presented in eq. (13), which have been used in all the results 
presented here, are: φB = 30° , φ0 = 12° and t1/2 = T/5, where T is a typical period of the waves.  

It is worth pointing out that such a criterion permits a reliable definition of the toe position, i.e the 
zone where the injection of vorticity is stronger. Therefore, notwithstanding its complex numerical 
implementation over two horizontal dimensions, in the present case such a breaking criterion has been 
preferred to other criteria, as the one based on the time derivative of free surface elevation (see 
Kennedy et al. 2000).  

Indeed, in the two horizontal dimensions, the toe of the roller becomes a curve (see Figure 4), 
which can be defined as the points satisfying the condition that the absolute value of the surface 
elevation gradient |ζ∇ | is equal the instantaneous local value of φtan  and that the gradient in the 

direction of the wave propagation is negative. This last assumption is related to the fact that the present 
model aims at simulating the physical behaviour of spilling breakers, for which the roller appears on the 
front of the wave, where the free surface elevation decrease in the direction of propagation, i.e if 

0/ <∂∂ sζ . 

 

 
 
Figure 4. Photo of a breaking three-dimensional wav e, with a qualitative indication of the 3D roller, i.e. the 
region placed between the wave crest and the roller  toe curve; c is the wave celerity, φφφφ is the angle at the toe 
of the roller which influences the breaking onset c riterion; ωωωωs is the vorticity injected at the roller lower 
boundary. 

 
Another characteristic of the roller toe angle φ is that it can vary within the same roller during the 

different stages of the breaking process. For example, when oblique regular waves break on a beach 
with straight and parallel depth contours, both the initial and the final stages of the breaking process 
may be represented within the same roller. A clear example of such a situation is shown in Figure 4. 
Hence, it is necessary to keep track of the surface roller age along the orthogonal to the roller toe curve. 
Moreover the evolution of the roller position depends on the time-varying wave shape; thus an 
algorithm for accurately tracking the roller characteristics has been developed here. Even though the 
surface roller detection appears quite simple to be determined by using a continuous description, such a 
detection becomes rather complex over a numerical grid, where a discrete representation of the spatial 
variation of the hydrodynamic variables along the roller is required. 

In the past Sørensen et al. (1998) faced a similar problem by using a staggered grid for the 
determination of the toe points, by assuming a linear variation between two toe points and by defining 



 COASTAL ENGINEERING 2010 
 
8

the roller as the area comprised between each couple of toe points and the projection on the horizontal 
plane of the two lines tangential to the direction of wave propagation. 

In the proposed model, starting from the above mentioned strategy, the following approach has 
been adopted. With reference to Figure 5, it must be preliminarly stressed that the Boussinesq equations 
are derived over a rectangular grid; therefore the dependent variables ζ  and u  are known at each grid 

point. Instead, the surface elevation gradient, i.e. the vector )/,/( xy ∂∂∂∂ ζζ , and the direction of wave 

propagation α, defined as 

 
x

y

∂∂
∂∂
/

/
=tan

ζ
ζα  (14)  

are calculated in the correspondence of the central nodes of the rectangular grid (i.e. at the circles in 
Figure 5).  
 

 
 
Figure 5. Top view of the numerical grid in which t he roller toe points (×), rectangular grid points ( •) and 
centers of grid cells (o) are showed; the broken li nes represent the sections at which the injection o f 
vorticity ωωωωs is computed. 

 
The algorithm for accurately tracking the roller position has been developed and implemented as 

follows: 
1. a rectangular grid is defined, with a surface elevation computational node at each grid node;  
2. values of the roller angle φ and of the surface elevation gradient ζ∇  are then calculated at the 

centre of the grid cells;  
3. roller toe points satisfying the toe condition φζ tan=∇  are found by interpolation along 

consecutive centres of grid cells;  
4. the wave crest and the width of the roller in the wave propagation direction α are also found;  
5. the injection of vorticity ωs is computed along the sections comprised between the toe points and 

the wave crest;  
6. the age of the roller τ is updated and the corresponding toe angle can be calculated at the next time 

step. 
Finally, it must be stressed that the variable ωs is computed along the roller subgrid, but it is 

transferred and stored in the correspondence of the rectangular fixed grid, in order to solve the vorticity 
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transport equation and therefore in order to obtain the dissipative breaking terms of the proposed 
Boussinesq-type of equations. 

WAVE PROPAGATION OVER A SUBMERGED SHOAL 
To test the capabilities of the proposed model to handle a fully 2D bathymetry, numerical 

simulations have been carried out by considering a submerged elliptic shoal, as in the experiments of 
Vincent and Briggs (1989), both in breaking and non breaking conditions. Indeed, this test is an ideal 
case for the validation because intrinsic two-dimensional phenomena such as diffraction, refraction and 
jet-like strong shear current induced by breaking, are generated. Moreover other authors have also 
adopted such a test as a benchmark for validating numerical models. As an example, Choi et al. (2009) 
performed numerical simulations using both phase-averaged literature models and phase-resolving 
literature models. In particular they used also the Boussinesq-type of model developed by Chen et al. 
(2000), known in the coastal community as FUNWAVE.  

Figure 6 shows the top view of the bathymetry used here for the application of the proposed model. 
Moreover in the mentioned Figure 6 a section onshore of the shoal is shown (Transect 4), at which 
experimental data are provided.  
 

 
 

Figure 6. Bathymetry of the submerged elliptic shoa l defined by Vincent and Briggs (1989) with indicat ion of 
the Transect 4 at which results are provided.  

 
For the numerical simulation, the adopted computational grid is uniform (0.1 m x 0.1 m) and the 

domain where the results have been analyzed is 19 m along the x̂  direction and 25 m in the ŷ  

direction. As a matter of fact, in order to avoid distortions due to the boundary the actual numerical 
domain is 14 m larger in the ŷ  direction and 20 m larger in the x direction. Moreover the time step for 

the numerical integration is fixed equal to 0.013s .  
Two different regular waves have been considered as input of the proposed model: the first one, 

which represents a non breaking case, has significant wave height equals to 2.54 cm, wave period of  
1.3 s and corresponds to case M2 of the experiments; the second wave, which corresponds to the case 
M3 of the experiments, has the same wave period as the previous one but the wave height is much 
larger and equal to 13.5 cm thus providing a test for the breaking model.  

Wave height distribution 
In order to give a comprehensive description of the wave height modification due to the presence of 

the submerged elliptic shoal, the results of the proposed numerical model have been provided in terms 
of the disturb coefficient Cd, i.e. the ratio of the local depth over the incident wave height. Figure 7 
shows the top view of such an outcome, for the non breaking M2 case, obtained by using the proposed 
model and the results obtained by Choi et. al (2009) by using the FUNWAVE model (Chen et al., 
2000).  

It can be noticed that the presence of the submerged shoal causes reflection-refraction effects which 
are highly dominated by the shape of the shoal. Indeed the regions which have a disturb coefficient 
greater than 1 are strongly bent around the shoal. Shoreward, the presence of the shoal induces a 
refraction process which generates a strong symmetric focusing of wave energy after the crest of the 
shoal, whose values are in agreement with the results of Vincent and Briggs (1989). Moreover, as it can 

Section along which 
experimental results are 
provided 

Sponge layer 

Direction of wave 
propagation 

Absorbing-generating 
boundary condition 
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be seen, the interference patterns are stretched and oriented towards the centre of the shoal. Such results 
are very similar to the numerical results obtained by Choi et al. (2009) by using the FUNWAVE model. 

In Figure 8 numerical results of the proposed model in terms of the disturb coefficient Cd have been 
compared also with the experimental results gathered along Transect 4 (by Vincent and Briggs, 1989).  

 

 
 

Figure 7. Non-dimensional wave heights (i.e. distur b coefficient Cd) for the non breaking wave case M2, with 
indication of the section at which the experimental  results of Vincent and Briggs (1989) are provided:  (a) 
proposed model; (b) FUNWAVE model applied by Choi e t al. (2009).  

 
 

  
 
Figure 8. Wave height distribution normalized respe ct to the incident one ( Cd) at Transect 4 for the M2 wave.  

 
Both numerical and experimental data show the presence of an increase of the wave height 

shoreward of the submerged shoal. Generally, small values of the gradient of the disturb coefficient are 
obtained by the proposed model compared to the laboratory data. Indeed, for example, the location of 
the lowest values of the wave height dislocated of about towards the lateral boundaries of the domain. 

The analysis of the breaking wave case M3 is provided in Figure 9 where the results of both the 
proposed model (a) and the FUNWAVE model (b) are showed.  

In such a case, the breaking effect causes a completely different pattern shoreward of the shoal in 
comparison to the non-breaking one. First of all, it can be observed that offshore of the shoal, while the 
results of Choi et al (2009) in Figure 9.b show that the wave fronts are not bending, thus obtaining that 
reflection does not act when waves are breaking, in the present case (see Figure 9.a) the curvature is 

Transect 4 Transect 4 

(a) (b) 
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preserved. As a matter of fact it is questionable that breaking may eliminate entirely sea-ward effects, as 
shown by the results of Choi et al. (2009).  

 

 
 

Figure 9. Non-dimensional wave heights (i.e. distur b coefficient Cd) for the breaking wave case M3, with 
indication of the section at which the experimental  results of Vincent and Briggs (1989) are provided:  (a) 
proposed model; (b) FUNWAVE model applied by Choi e t al. (2009). 
 

An explanation of such a result could be attributed to the eddy-viscosity breaking-generated model 
used in FUNWAVE which spreads the breaking dissipation more than it should do through the entire 
domain. Such a behavior is not present in the proposed model, since the introduction of breaking 
generated vorticity is strictly limited backward from the wave crest position.  

Furthermore, in such a case, the shoaling effect causes the wave breaking condition to be satisfied 
just before the top of the shoal. After that, the breaking phenomenon evolves and the excess of 
momentum flux due to it causes a jet-like current on-shore directed. Such a current contrasts the 
convergence of the wave rays within the focusing zone, seen in the non breaking case. As a result, a 
decrease of wave height at the back of the shoal is obtained. Such a mechanism was explained by Yoon 
et al. (2004) and it is caught also by the present model, as it can be observed by the results in  
Figure 9.a.  

It can be also noticed that the breaking waves are clearly strongly three-dimensional because of 
reflection and refraction induced by the depth varying bathymetry. It follows that the numerical model, 
and in particular the roller tracking module, seems to be able to represent such a case of a curved wave 
front. Moreover the horizontal distribution of the normalized wave height shows that an increase of 
wave height is located more shoreward in comparison to the non breaking case, along with the 
alternation of region with lower and higher waves. 

The comparison of the proposed model results with the available experimental data along the 
Transect 4 for such a breaking case M3 is shown in Figure 10. From its analisys it is possible to state 
that the proposed model can interpret the order of magnitude of the wave height after breaking, 
although it appears that the dissipation induced by wave breaking is still not high enough to reproduce 
the experimental data accurately.  

Vorticity results 
The breaking case M3 of Vincent and Briggs (1989) represents a good reference for testing the 

capabilities of the proposed model to simulate realistic vorticity dynamics induced by the injection of 
turbulence inside the flow domain. Indeed, in such a case the direction of wave propagation is deviated 
by refraction caused by the shoal, which also determines an increase of wave steepness up to breaking.  
 

Transect 4 Transect 4 

(a) (b) 
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Figure 10. Wave height distribution over the incide nt one ( Cd) at Transect 4 for the M3 breaking wave.  

 
In order to carry out a detailed analysis, the attention has been focused on a water column located 

onshore of the crest of the shoal (see Figure 11). The contour plots of the spatial distribution of vorticity 
ω at the still water level (i.e. at z = 0) within such a region are shown in Figure 12, along with the 
corresponding contour plots of the surface elevations. The attention has been fucused over half of the 
wave period (T ), in particular it has been considered the time interval during which breaking generated 
vorticity is espected to be not negligible, i.e. from the instant of incipient breaking (t = 0.2 T ). Indeed, 
the vorticity field at such a timestep (Figure 12.f) is characterized by low values, due to the fact that 
vorticity at the roller have not yet spread into the water column. During the following instants (from 0.3 
T up to 0.5 T ) the waves are still breaking, as demonstrated by the decreased elevation of the wave 
crest, while the vorticity increases suddenly, reaching its maximum (40 Hz). Such a behaviour shows 
that the vorticity dynamics is solved appropriately indeed, in actual breaking waves, the presence of 
vortices on the rear part of the wave appears a bit delayied with respect to the initiation of the breaking 
phenomenon and the foam generated vorticity increases gradually also at the front of the wave. A 
demostration of this peculiarity can be observed in Figure 4, where different stages of breaking 
phenomenon can be observed in the same 3D wave.  

 

 
 
Figure 11. Top view of the shoal with indication of  the water column in which the description of vorti city is 
investigated. 

 
During the second half of the wave period, i.e. for t greater or equal to 0.5 T , the slope of the free 

surface elevation is not large enough for maintaining the breaker and therefore wave breaking stops. As 
a consequence, vorticity decreases both in intensity and in space.  

As regards the analysis of vorticity spatial evolution, it is possible to note that vorticity is present 
mainly in the correspondence of the wave front at the initial instants of breaking (see for example 
Figure 12.g for t = 0.3 T ). During the following time steps, up to t = 0.4 T, the planar extension of 
vorticity increases in both the horizontal directions, penetrating also offshore with respect to the wave 
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crest. Such a behaviour seems to support the fact that the proposed model is able to simulates the wake 
generated on the rear side of surf zone waves.  

 

 
 
Figure 12. Distribution of the free surface elevati on ζζζζ (form a to e) and of the vorticity ωωωω  (from f to j) within 
half a wave period, i.e. from 0.2 T to 0.6 T, as ob tained at the still water level ( z = 0) of the water column. 

 

CONCLUSIONS 
A new two-dimensional Boussinesq type of model has been derived and implemented, aimed at 

studying the flow driven by breaking and non breaking waves in the surf zone, also in presence of 
complex bathymetries. The main feature of such a model is the absence of the usually adopted limiting 
hypothesis of irrotational flow; thus a more physical description of the flow within the nearshore region 
is provided. To this aim, particular attention has been devoted to the description of the breaking 
process, here implemented by using the well known surface roller approach. In particular, an extended 
3D roller model has been developed and implemented by means of an original numerical strategy in 
order to accurately compute the vorticity injected inside the domain by the breaking phenomenon. 

The importance of applying the above mentioned approach to a two-dimensional Boussinesq-type 
of model, as in the case being, is that it can manage in a proper way the presence of macrovortices 
generated by breaking waves over highly three-dimensional bathymetries like reefs, submerged 
breakwaters, gulfs, cuspidate beaches, etc. 

The proposed model has been tested for waves propagating over a submerged shoal for both non 
breaking and breaking conditions. Precisely the experiments of Vincent and Briggs (1989) and the 
numerical results obtained by Choi at al. (2009) using the well-established FUNWAVE model have 
been considered for comparison. From the analysis of the results on the spatial distribution of wave 
height, expressed in dimensionless form as the disturb coefficient Cd , it is possible to state that the 
numerical data are in a fairly good agreement with the experiments, above all for what concerns the 
presence of oscillations between higher and lower wave height regions shoreward of the submerged 
shoal. 

The vorticity dynamics under breaking waves has been deeply investigated for the wave breaking 
shoal case M3. In particular, the attention has been focused over a water column located onshore with 
respect to the top of the shoal where wave breaking develops. The analysis of the spatial and temporal 
evolution of the computed vorticity has shown that the vorticity increases rapidly in a small region near 
the roller and immediately below the free surface. Moreover it has been found that the horizontal 
extension of the vorticity structures increases, thus simulating the wake effect in the rear part of the 
wave crest. 

Notwithstanding some improvements which could be introduced in the numerical solution of 
breaking terms, the application of the proposed model to study nearshore hydrodynamics generated by 
complex conditions of engineering interest, even in the  presence of breaking, seems to be quite 
satisfactory. 
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