REGULAR PERIODIC WAVES RUNUP AND OVERTOPPING SIMULA TIONS BY
LAGRANGIAN BLOCKS

Lai-Wai Tart and Vincent H. Chu

Wave runup and overtopping of truncated beacheg he@en simulated using the method of LagrangiartkBlo
Hydrodynamics (LBH). Instead of interpolation, whicAuses numerical oscillations, the fluxes throthghface of
the finite-volume in the LBH method are determir®dthe advection of the blocks. Negative water deptnot
possible and the computation is unconditionallylstaas the momentum is updated by the re-consbruct the
blocks. The accuracy of the method is evaluatedgusi) the exact solution of the collapsing borel i) the
available laboratory data of the solitary wavesh@sbenchmarks. The numerical simulations carrigdfar regular
periodic waves cover a wide range of wave steepardsbeach slopes taking advantage of the inhetetk-
capturing and shoreline-tracking capabilities & tBH method.
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INTRODUCTION

Design of the coastal defense structures would depend on simuifateliable numerical method
could be employed to compute the wave impact on the structtrestural porosity, roughness and
other effects could be readily determined by numerical caatipns for optimal design of the
structures. The numerical challenges have been in thericapaid the breaking-wave and the tracking
of the moving shoreline where the water meets the dry. |@omputations will collapse as a
consequence of numerical instability when the depth oémla#comes negative at the shoreline. The
artificial numerical oscillations have to be managed Mfamg-term computational stability in a
simulation using the classical finite-volume method (Kokhy& Wurjanto 1989, Dodd 1998, Titov &
Synolakis 1995, Li & Raichlen 2002, Lynett & Liu 2002, Brigia& Dodd 2009). Total control of the
numerical oscillations is not generally feasible withinftiaenework of the classical method.

In the Lagrangian Block Hydrodynamics (LBH) method developedTay & Chu (2009a,b,
2010a-c), the mass and momentum are transferred byatpengian advection of the blocks. The
computational stability of the LBH method is absolute duse the spurious numerical oscillations
associated with the classical Eulerian method of the flakesavoided. The blocks capture depth and
velocity discontinuities accurately. Negative water tHefs not possible and the computation is
unconditionally stable as the momentum is updated éydkconstruction of the blocks. In this paper,
the accuracy of the method is determined by the wawepr and overtopping problems that have either
exact solutions or reliable experimental data. The fesies of simulations were conducted for the
collapsing bore. The results are compared with the es@lations of Shen & Meyer (1963) and
Peregrine & Williams (2001). The second series of siriaratwere carried out for runup of the
solitary waves. The simulation results are verified byatveilable laboratory experimental data. Taking
advantage of the shock-capturing and shoreline-trackipgbdigties of the LBH method, the runup and
overtopping simulations of the periodic waves are carried ©anapplication. The simulations of the
periodic waves covered a wide range of wave steepness ard ddepes. The results are compared
with the formulae for the regular waves that are recenuad for the design of the coastal defense
structures.

LAGRANGIAN BLOCK HYDRODYNAMICS

The Lagrangian blocks are arrays of contiguous fluid elenvelitsh are numerically constructed
to satisfy the mass and momentum conservations. Figureshida)s the Eulerian mesh and the nodes
where the water depth(i,j), and the velocitiesi(i,j) and v(i,j) are defined. Figure 1(b) shows the
advection of the volume block and Figures 1(c-d) show the adwecfithe momentum blocks. The
mass and the momentum are carried by separate systeims blocks. The numerical computation
consists of two steps: (i) Lagrangian advection of the blackk (ii) re-construction of the blocks as
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mass and momentum are re-distributed back onto the Eulmgah in every time increment. The re-
construction algorithm assumes advection of the bloaly to its neighboring cells. Therefore, the
computational time step must not be too large to cadgection beyond its neighbors. A numerical
solution is possible as long as the minimum of the two Couranbars Ce= uAt/Ax and Cg= VAt/Ay

is less than the value of unity.
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Figure 1. (a) The staggered grid showing the depth and velocity nodes, (b)-(d) block denoted by the so  lid
rectangle at the beginning of the Lagrangian advect  ion when time = t, and the block denoted by the dashed
rectangle at the end of the advection time incremen  twhentime = t + At.

A block of fluid is defined by its depth,(i,j), and widthsx (i,j—1) = x.(i,j) = &Ax. andy,(i,j) -
y.(i,j=1) = Ay,. At the beginning of the computation time stefhe Lagrangian blocks fit the Eulerian
mesh, that isx (i,j) = x(i,)) andy.(i,j)) = y(i,j)- At the end of the time step+ At, for volume
conservation:Ax Ay h (i,j)) = AxAyh(i,j). In the present simulation, the forces on the blocks are
calculated assuming hydrostatic pressure variation overdpth.dThe edge positions of the blocks
x.(i,)) andy,(i,j) at timet + At are calculated by integrating the momentum equations:

du . h -h._.
Lo i 1-1,j

=- -g(Sx-S 1

dt g AX g( (014 fx) ( )
dv. . h -h..
i,j i,j -1,

=- -gls, -S 2

a9 oy ofs, -s,) @

where (i , vij ) = velocity, Gx. Sy) = bottom slopeSy = ¢ u;j|u;;|/(2ghayg) andSy = ¢ vij|vi;l/(20havg)

are x-component andy-component of the friction slope, respectively. To avoidaegiement of
Lagrangian paths between adjacent blocks, the mass blazke-aonstructed at each time step. The
mass and momentum are perfectly conserved through theegs of re-distribution and the re-
construction of the blocks. The most significant advantdgdis LBH method is its computational
stability. The method ensures positive water depth andhbaproduced any numerical oscillation.
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LBH simulations have been conducted for various problems. Giiteneent studies were carried out
for a number of problems by Tan & Chu (2009a,b, 2010a-c) to sheveconvergence of the LBH
simulations to the exact solutions. These include the deakbwaves on flat beds of Ritter (1892),
Stoker (1957) & Hogg (2006), the dam-break waves on a stepp of Ancey et al. (2008), and the
solution of Thacker (1981) for the wetting-and-drying atev in a parabolic bowl.

COLLAPSING BORE - RUNUP

The runup and overtopping simulations by LBH method asedarried out for the collapsing bore.
The collapsing bore has an exact solution due to Shen & M&96B) and it has been widely studied
as an idealized model of the processes in the surf zigngeR2(a) delineates the model. The bore is
initially a sharp front of water on the beach of slope amléth the horizontal. The velocity, and
depthh, of the bore are initially constant behind the front. Thé&apse of the bore causes the water in
the bore to run up the slope. Subsequently, the water downesvdke slope upon reaching the
maximum runup heighR,, The very tip of the water on the slope is the shorelihe.advancing and
receding shoreline on the slope is one of the most challemgimgrical problems when the classical
finite-volume methods are employed to solve it. The wdegpth vanishes to zero at the shoreline.
Spurious numerical oscillations can lead to negative wddpth and subsequent breakdown of the
numerical simulation. However, these classical nurakrigscillation problems are completely
eliminated when the LBH method are employed for the rundpoaertopping simulations.

Figure 2. (a) Collapsing bore of Shen & Meyer (1963)  with initial velocity u, and initial depth h, on a slope of
angle @ (b) collapsing bore overtopping a levee of berm h  eight B above its point of initiation.

Three collapsing bores with the same initial water dapth 0.6 m but different initial velocity,
and beach slop&, are computed using the LBH method. The comparison ofdhguatation results
obtained usingdx = 0.001 m with the exact solutions is shown in Figs. 3 affchllle 1 summarizes the
initial conditions and the simulation results that are obthineextrapolation to zero block size.

Table 1. Maximum runup height ( Rmax)ax_o and maximum overtopping volume
(V*ormax)ax -0 for the collapsing bores with the initial water de pth h, =0.6 m
Slope S, Initial velocity Maximum runup height Maximum Overtopping
Ut=0 (Rmax)ax-.0 (M) volume (V*OTmaX)Aan
1v:lh 0 0.880 0.151
1v:2h 0 0.985 0.169
1v:lh (gho)*? 2.07 0.165

The exact solutions for the depth and velocity of the collapsing &s given by Shen & Meyer (1963)
and Peregrine & Williams (2001) are:

h = gtl (xs -X )2 3

' +t*:g[x jxs] @)
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The dimensionless variables in these exact sokiimeh” = 2h COSAR 2 X = 2X SINARpay Xs = 24 —
22,1 =t sinf(29/Rnax)” andu’ = u sind (2/gRnax )™ which are based on the normalization by the
maximum runup heigh® ... The dimensionless position of the shorelingis

The position of the shoreline is a parabola acogrdd the exact solution given by Egs. 3 and 4.
The water rises to the top of the parabola at theximum heightR. and then falls back
symmetrically. At the maximum height, = 2x sindR.x = 2. The LBH simulation data of the three
collapsing bores denoted by the circle, triangalad cross symbols all follow very closely the exact
solution of the parabola as shown in Fig. 3. Thetld@nd velocity of the collapsing bore profilefs, i
normalized by the initial depth, and initial velocityu,, would be time dependent as shown in Fig.
4(a,b). The different profiles at different timesllapse onto one depth and one velocity profiles as
shown in Fig. 4(c,d) when the results are preseintégrms of theswash coordinates, namely (i) when
the length scale of the normalization is the maximunup heighR.., and (ii) when the coordinates
are measured relative to the position of the shraral .

The LBH simulation results in Fig. 3 and Fig. 4jjcage obtained using the small block sizedof=
0.001 m. Improvement of the results are obtainedhbyrefinement of the block size and then by the
extrapolation of the results as block sleeapproaches zero. Figure 5 shows the convergeneede
the solution Ryadax-.o @s the block sizéx— 0. The convergence toward the exact solution i& o
this case when the bed friction is ignored in tineugation. The frictionless shoreline of the cobagy
bore is a rather difficult numerical problem be@tte depth of the front vanishes to zero followtime
guadratic relation Eq. 3. However, as it will berdastrated later, much faster rate of convergeane ¢
be obtained in other runup problems when the Ketidin is included in the simulation of the shomeli

X"

Figure 3. Shoreline trajectory for three collapsing bores: u, = 0, Sp= 1v:1h (circle), u, = 0, Sg = 1v:2h
(triangle), and u, = (gho)“z, So = 1v:1h (cross). The exact solution of Shen & Meye r (1963) is the solid line.
Initial bore heightis h, = 0.6 m and mesh size is Ax = 0.001 m.

Table 1 summarizes the extrapolations result fioengrid refinement. The maximum runup height
is (Rnayax_o = 0.880 m and 0.985 m for the cases of zero Inigéocity u, = 0 and beach slogg =
1v:1h and 1v:2h, respectively, and is as highRas)ax_o = 2.07 m when the bore is projected upward
with a non-zero initial velocity, = (gh,)“2 The simulation results are independent of théaini
conditionsu, andh, only when the results are expressed in termsedvihsh coordinates. It should be
noted that Egs. 3 and 4 is a special solution®fpttoblem that does not depend on the conditiotteat
seaward side of the waves. In particular, it dogtspnovide any information regarding the maximum
runup heighRax
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Figure 4. (a,b) Profiles of a collapsing bore on a 1  v:1h slope over a period of time from t=0.2sto 0.8 s.
Depth and velocity profiles normalized using the in itial water depth h, as the length scale, (c,d) depth and
velocity profiles normalized by the maximum runup h eight Rmax.
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Figure 5. Error reduction with block size that show s the convergence of the maximum runup height towar d
the true solution ( Rmax)axo-

COLLAPSING BORE - OVERTOPPING

Peregrine & Williams (2001) have utilized a trurezhtsolution of Egs. 3 and 4 to find the
following analytical solution for the volume of veasitovertopping the levee when the berm height @f th

leveeB is lower than the maximum runup hei@l.x as shown in Fig. 2b:

Ve :%(4—123* +88" V28’ —3B*3) )

whereV or = Vot Sin 20 Rz andB’ = 2B/Ryay According to this truncated solution, the maximum
overtopping volumé/ ormax= 0.15 occurs when the berm hei@htis zero, that is when the crest of the

levee is at the same height as the point of ifotiedf the collapsing bore.



Figure 6 compares the truncated solution Eg. 5 Wl LBH computation results. Table 1
summarizes the maximum overtopping volume which (M@Tmax)mﬁo = 0.151, 0.169 and 0.165
obtained for the three collapsing bores. Thesdtseas shown in the figure and summarized in théeta
are extrapolation fordx-0 from the grid refinement data. The agreementhefliBH computations
with Eqg. 5 is good but not perfect. The computationthe overtopping volume should be to some
extent dependent on the boundary condition at tbecated end of the beach. In the present
computation, the elevation of the water surfaceohdythe truncated beach is assumed to behgne
below the point of initiation point (see Fig. 1)hd consequence of this assumption is that a huge
unrealistic pressure gradient being artificiallypimsed at the line of truncation. Despite of this
unrealistic condition, the overtopping volume ialigtically determined in the sense that the sitedla
results of ¥ ormadax.o = 0.151, 0.169 and 0.165 are very close to theréiigal value oV ormax=
0.15 obtained by Peregrine & Williams (2001).

0.20[

0.15

0.05

Figure 6. Overtopping volume  V*or versus berm height B*. The line is the analytical solution of Peregrine &
Williams (2001). Initial bore heightis  h, = 0.6 m.

SOLITARY-WAVE RUNUP

The second series of runup and overtopping sinaulatis conducted for the solitary waves on
plane beach with bed-friction. Many experimentstftg runup of the solitary waves on smooth plane
beach have been conducted in the laboratory. Thearaount of laboratory data available is used to
validate the runup simulations by the LBH methadtHe present simulation of the solitary waves, the
friction coefficient of the hydrodynamically smoosiurface is calculated using a formula given in a
previous paper by Tan & Chu (2009a). The initi@dtion of the solitary waves is located in a positi
as described in Synolakis (1986) and in Tan & CR010a). Typical simulated runup depth and
velocity profiles were presented in the previoupgraHowever, a much more comprehensive series of
LBH simulations of the solitary waves has been detep recently. Only the results obtained for the
maximum runup heighR..x are presented in this paper.

Figure 7 compared the simulated maximum runup leigth six series of laboratory data. The
beach slope§, for the six laboratory experiments are &) 1v:5.375h (Jensen et al. 2003), &)
1v:5.67h (Hall & Watts 1953), (ck = 1v:15h (Li & Raichlen 2002), (d% = 1v:19.85h (Synolakis
1986), (e)S, = 1v:30h (Briggs et al. 1995) and &) = 1v:60h (Hsiao et al. 2008). The LBH simulation
data in the figure are calculated based on theapatation of the results obtained from the block
refinement study. When friction is included in thienulation, the convergence of results to the true
solution4x = 0 is very fast (see Tan & Chu 2010b). Thereftiie,extrapolation results for zero block
size Ax = 0 as presented in Fig. 7 are highly reliabletHe figure, the maximum runup height is
normalized by the undisturbed depth of wateas most of the laboratory data were presentéhisn
manner. The initial amplitude of the solitary waeesre selected in the simulation to be the sameeas th
laboratory experiments. The LBH simulations for theximum runup heigh®,.x have been conducted
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with and without bed-friction. The results in thgure clearly show the effect of the friction oreth
runup height. The effect is most significant forvesa of large wave steepnessl on a milder slope.
The example is the series of experiments by Hstaal. 2008), which was conducted on a 1v:60h
slope in a very large 300-m long wave flume. Theupuheight is reduced by as much as a factor of 2
when the bed friction is included in the simulatafrHsiao et al's laboratory experiments.

The validation of the simulation results usingtfi¢ exact solutions of the collapsing bore and (ii)
the laboratory data of the solitary waves as regbin the previous sections has given confidendbeo
LBH method. The computational stability clearly da advantage of the LBH method over other
numerical computation methods. Structural porosityughness, slope and other topographical

variations can be readily included in the LBH nuicer simulations to find the optimal design of the
structures.

10¢(a) S, = 1v:5.375h (Jensen et al. 2003) 10¢ (b) S, = 1v:5.67h (Hall & Watts 1953) 1r (¢) S, =1v:15h (Li & Raichlen- 2002)
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Figure 7. The maximum runup height

Rmax for solitary waves on six different slopes
1v:15h, 1v:19.85h, 1v:30h and 1v:60h.

o = 1v:5.375h, 1v:5.67h,

PERIODIC-WAVE RUNUP AND OVERTOPPING

The shoaling of the periodic-wave is by far the trdificult numerical problem. The overtopping
of levee by the periodic waves has not been attegnptany previous numerical simulation. Therefore,
the LBH simulations of the periodic waves are eatout here as a numerical challenge to demonstrate
further application of the LBH method. In the simtidn of the periodic waves, a wave maker is the
periodic supply and removal of water from an arofycells at the seaward side of the computation
domain. The LBH simulations are carried out for twave heightd, = 0.332 m andd, = 0.064 m,

shoaling on three different beach slofes 1v:1h, 1v:2h, and 1v:4h. The conditions of thewations
are summarized in Table 2.

Table 2. Simulated maximum runup height ( Rmax)ax-o and overtopping volume ( V*or)ax-o
for periodic waves of period T, =1 s and undisturbed depth d=1m
Slope So Ho =0.332 m Ho = 0.064 m
(Rmax)ax0 (M) (V ot)ax-0 (Rmax)ax-0 (M) (V or)ax-0
1v:lh 0.755 0.149 0.288 0.174
1v:2h 0.386 0.155 0.270 0.162
1v:4h 0.150 0.162 0.137 0.159
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Two typical depth and velocity profiles on a 1viZach slope obtained from the LBH simulations over
a time period of one wave cycle are given in Fgyand 9. Figure 8 shows the profiles of a relayivel
small amplitude wave dfl, = 0.064 m, and Figure 9, the profiles of a largeplitude wave oH, =
0.332 m. The simulation of the periodic runup ishallenging numerical problem. Besides tracking the
movement of water runup and downwash the beacteskhye computation scheme must be able to
capture the wave breaking as the water on the slopewash and collide with the incoming waves.
The waves of the smaller amplitude on a steep sttipaot break. On the other hand, breaking is a
certainty in the waves of large amplitude on a mallibe. The swash event starts with a high velatity
the shoreline. This is followed by the runup of evabn the slope which eventually reaches the
maximum heightR.. The velocity at the shoreline is zero when theupu of wave reaches the
maximum. The downwash of water follows the maximumup. The end of the cycle is the formation
of a surge as the shoreward incoming wave meetddth@ward swash along the slope. As shoreline
moves up and down along the beach, the LBH sinanatiof the waves are not interrupted by any
computational instability. Taking advantage of themputational stability of the method, the
computations are carried out to determine (i) tleximum runup heighR,.x as shown in Fig. 10(a)
and (ii) the overtopping volume when the berm helgjis below the maximum runup height as shown
in Fig. 10(b). Six simulations of the periodic wavere conducted for two wave heights= 0.332 m
andH, = 0.064 m and three beach slofs 1v:1h,S = 1v:2h andg, = 1v:4h. All waves has a wave
period of T, = 1 s and an undisturbed water depth at the tdlbeobeachd = 1 m. The wave length for
all waves id, = (gd)¥*T, = 3.13 m.

12r (a) Wave runup 12

(b) Wave overtopping
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Figure 10. (a) Runup of periodic waves to a maximum height of Rmax, (b) Periodic-wave overtopping a levee
of berm height B.

Shoreline Trajectory and Maximum Runup Height

Figure 11 shows the shoreline trajectory for théeseof six simulations of the periodic waves. The
shoreline heighR(t) moves up and down on the slope during the shpalinhe periodic waves into the
shallower water. The rise and fall of the shorelirear the maximum runup follow closely to a
parabolic trajectory. The downwash of the waveshenslope however is dependent on the wave height
and the slope of the beach. In some cases, thelsigomay fall below the mean sea level (MSL) when
the beach slope is sufficiently large. The maximmumup heighR,, for each simulation is determined
from the shoreline trajectories shown in Fig. 1lhe Wimensionless shoreline heigiH.<,) is defined
in term of the surf similarity parameter. Introdddey Battjes (1974), the surf similarity parameter
related to the slope angithe wave heightl, and the initial wave length, as follows:

— Ho _%
{o_ tan{ LU J (6)

The period of the swash event in periodic waveseigarkably close to the one obtained for the
collapsing bore. Therefore, the same dimensiorigsst* = t sind(2g/Rmax )" are used to present the
simulation results in Fig. 11. The Coastal EngimgeManual (Walton et al. 1989) has recommended
two formulae for the maximum runup height. Onehaf formulae due to Hunt (1959) is:
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% =¢, for 0.1<¢, <23 )
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The simulated maximum runup heights of the periatiwes are all below the value recommended by
the Hunt's formula. It should be pointed out thae¢ Hunt's formula is for regular waves. The regular
waves are random in phase and amplitude. The ioollief events in the regular waves of same
significant wave height and amplitude should predgreater runup than the periodic waves.

1 H,=0.332m, S, = 1:1, & = 2.049 H,=0.064 m, S, =11, & = 4.936
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Figure 11. Shoreline trajectories for periodic waves of height Ho, = 0.332 m and H, = 0.064 m on beach of
slopes So = 1v:1h, 1v:2h, and 1v:4h using Ax = 0.001 m.

Periodic Waves and the Collapsing Bore

The collapsing bore, and particularly the swashtgm of Peregrine & Williams (2001), has been
considered as a model of the processes in thezeud. It is therefore interesting to see whether th
periodic-wave simulation results may be relatedht collapsing bore. Figure 12 shows the shoreline
trajectory of the periodic waves normalized by ¢heash variables of the collapsing bore. If the time
origin is defined by the intersection of the shimeelwith MSL, the normalized shoreline trajectory
would match closely the collapsing bore's parabpliafile defined by Egs. 3 and 4. The initiation of
the collapsing bore starts at timie= 0. Therefore, the corresponding initiation tifoe the periodic
waves is defined at a time when the shoreline nteetMSL. The time” =t,, t, andt; are guarter, half
and three quarter of one runup and downwash cytle parabolic shoreline trajectory fits well theala
over the period close to the maximum runup. It doesalways fit the data in other period of time
particularly for waves of small amplitude. In thases with steep slopes, the downwash is relatively
strong and shoreline dives below the MSL some eftitihe as shown in Fig. 12. The time for the water
on the beach to rise from MSL to the maximum ruheghtR,.x and back to the MSL 9.4 =to_s
Sin@ (20/Rmax)“? ~ 4, which is approximately the same as the coltapbbre.

Figure 13 compared the depth and velocity profitthe periodic waves with the swash solution
of the collapsing bore. The data are plotted ufiegswash variables of Peregrine & Williams (2001).
The line identified as PWO01 is the swash solutibEgs. 3 and 4. The depth and velocity profilesadat
for time t = t;, t, and t; are all greater than the swash solution PWOL1. fi¢réodic waves have
produced a much stronger swash event that is Bntlifeerent from the swash event of the collapsing
bore. It is clear from Fig. 13 that the profilestbé periodic waves are different. The incoming egav
interact continuously with the downwash of wateheTinteraction causes the waves to break. The
breaking wave is a prominent feature of the shgaperiodic waves. It is however a phenomena
completely missing in the solution for the collagsbore.
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Figure 12. Shoreline trajectory for one wave period of the periodic wave plotted using the swash variab les.

The triangle symbol denotes the simulated shoreline trajectory of the periodic wave and the solid line is Eqgs.
3 and 4 for the collapsing bore.
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Figure 13. Depth and velocity profiles of two perio  dic waves expressed in terms of the swash variables  ; (a-b)
Ho = 0.332 m, and (c-d) H, = 0.064 m in the surf zone attime t =t; (circle), t, (diamond) and ts (rectangle). The
collapsing-bore solution of Peregrine & Williams (20 01) is identified as PWO1.

Grid Refinement and Extrapolation for the Maximum R unup Height

Accurate determination of the maximum runup helghy, of the periodic waves is obtained from a
series of block-refinement simulations. Figure hdves the convergence of the maximum runup height
towards the value corresponding to zero block 8R%g)ax_.o- The rate of convergence is rapid in these
simulations of the shoreline. Table 3 summarizesektrapolation valueR{a)ax_o for the periodic
waves and the comparisons with the two formulaemeoended by the Coastal Engineering Manual
(Walton et al. 1989). Figure 15 correlates the disienless runup heighR{a)ax_.o/Ho With the surf
similarity paramete&,(Hy/Lo) 2 The formulae of van der Meer (2002) for regulaves are included
in the figure for comparison. The Hunt's (1959)rfioa is recommended whé&j(H/Lo) 2 < 2. The
LBH simulation follows the trend of the van der Msdormula. However, the maximum runup height
of the periodic waves is expected to be below égular (random) waves of the same significant wave
height and wave period. The collision of the randewents of the regular waves can briefly lead to
much greater wave height than the significant waeight.
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Figure 14. Convergence of the maximum runup height of periodic waves toward ( Rmax)ax-o for (@) Ho = 0.332
m, and (b) Ho = 0.064 m on slopes of S, = 1v:1h (circle), 1v:2h (triangle), and 1v:4h (cro  ss).

Table 3. Maximum runup height of periodic waves com pared to Hunt's formula and
Miche & Keller's formula
(Rmax)Axao
o 80 | (Rmwduwo () . Miche (1951) &
iche
LBH Hunt (1959) Keller (1961)

0.332 | 1v:lh 0.755 1.416 3.071 2.806
0.332 | 1v:2h 0.386 0.828 1.536 3.337
0.332 | 1v:4h 0.150 0.331 0.768 3.969
0.064 | 1v:1h 0.288 2.828 6.976 2.806
0.064 | 1v:2h 0.270 2.804 3.488 3.337
0.064 | 1v:4h 0.137 1.438 1.744 3.969

I 002)
eer (2
Formula 3 of van der M
n der Meer (2002)
3 L
Rmax O O
HO
2+
A
1 .
he O Hy/d =0.332
/A .
1 | 1 1 |
0 i . 0 8 10
SYNENN
Figure 15. Correlation of the maximum periodic-wave runup ( Rmax)ax-o and comparison with the van der

Meer (2002) and Hunt (1959) formulae.

Periodic Wave Overtopping over Truncated Beach

Water would intermittently flow over the levee fifet berm height of the levd®is lower than the
maximum runup heighR..x. The shoaling of the periodic waves causes thentatrun up the slope on
the front face of the levee, flow overtop the leaed then retreats below the berm. Figure 16 shiogvs
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intermittent flow over the levee for the two wave3H, = 0.332 m and (b, = 0.064 m on the slope
S = 1v:2h. The dimensionless flow rate over the éaye= q cos9/[g(Rmad2)’]** depends on the berm
height B above the mean sea level. The overflow is zerchélimit when the dimensionless berm
height B* = 2B/R.x = 2. The volume of the overtopped water per welye is determined by time
integration of the flow rate over the period of amave. The dimensionless overtopping volume per
wave for the periodic waved o = Nor sin 20 IR ., is compared with the collapsing-bore solution
Eq. 5 of Peregrine & Williams (2001) and experimdata of Baldock et al. (2005) in Fig. 17. The
LBH simulation results give much larger overtoppimjume then the swash solution of the collapsing
bore. They are however consistent in trend anthénsame range as the laboratory data of Baldock et
al. (2005). Figure 18 is the correlation of the tpping volume of the periodic waves with the wave
heightH, and wave length,. The maximum runup height is not required to fihé overtopping
volume from this direct correlation shown in Fi@. 1

04r (a)H,=0.332m, S,=1:2

10 15

°o—m
1l

/;2>/
s

031 (b)H,=0.064m,S,=1:2

q*o.z— E\
NN

12 18

Figure 16. The intermittent overtopping discharge q'(t") produced by the periodic waves; (a) Ho =0.332m, S,
=1v:2h, and (b) Ho, =0.064 m, S, = 1v:2h for three berm heights B = 2B/Rmax =0, 0.4 and 0.8.

12 r
(@aH,=0.332m,d=1m, T=1s (b)H;=0.064m,d=1m, T=1s

VOT

Figure 17. Overtopping volume per wave of two perio  dic waves (a) Ho, = 0.332 m and (b) Ho, = 0.064 m on
slopes S = 1v:1h (circle), 1v:2h (triangle), and 1v:4h (cro  ss). The formula of Peregrine & Williams (2001) for
the collapsing bore is the thick solid line. The la  boratory data of Baldock et al. (2005) for periodic waves is
denoted by solid rectangle.
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Figure 18. Overtopping volume per wave of the two p
1v:1h (circle), 1v:2h (triangle), and 1v:4h (cross)
2B/Rmax =1.0, and (d) 2 B/Rmax = 1.6.

eriodic waves Ho, = 0.332 m and 0.064 m on slopes S, =
over berm of height (&) 2 B/Rmax = 0, (b) 2B/Rmax = 0.6, (C)

CONCLUSION

This paper takes the advantage of the shock-capgtad shoreline-tracking capabilities of the
Lagrangian Block Hydrodynamics (LBH) method to stutle periodic waves in the surf zone. The
runup and overtopping computations are validatégu$) the exact solutions of Shen & Meyer (1963)
and Peregrine & Williams (2001) and (ii) the vastaant of laboratory data available for the solitary
waves. The results of the runup computations fergériodic waves follow the trend of the formulae
recommended for regular (random) waves by the @bEsigineering Manual (Walton et al. 1989) and
the Flood Defense Technical Advisory Committee (d@n Meer 2002). The overtopping volumes
determined by LBH simulations for the periodic wavall within the same range as the experimental
data of Baldock et al. (2005). The present numksitaulations are the necessary step to take before
the ultimate recommendation of the LBH method foastal engineering design. The inclusion of the
sediment suspension and deposition effects in tB#l Lsimulations would be a natural and
straightforward extension.
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