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THREE-DIMENSIONAL NUMERICAL ANALYSIS ON DEFORMATION OF RUN-UP 
TSUNAMI AND TSUNAMI FORCE ACTING ON SQUARE STRUCTURES 

Tomoaki Nakamura1, Norimi Mizutani2, and Koji Fujima3 

A three-dimensional two-way coupled fluid-sediment interaction model (FSM) is applied to investigate run-up 
tsunami deformation and tsunami force acting on square structures on land.  The FSM consists of a generalized 
Navier-Stokes solver (GNS) for multi-phase flow including porous flow, a volume of fluid module (VFM) for air-
water interface tracking, and a sediment transport module (STM) for fluid-sediment interface tracking.  In the FSM, a 
two-way coupling procedure is implemented at each time step to connect the GNS with the VFM and the STM.  The 
predictive capability of the FSM is demonstrated through comparison between numerical results and experimental 
data in terms of water surface elevation, inundation depth, and tsunami force.  The process of tsunami run-up in the 
presence of square structures is investigated in terms of vortex structures.  The result shows that the FSM is a useful 
tool providing detailed information in discussing run-up tsunami deformation and tsunami force. 
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INTRODUCTION 
 Tsunami-resistant structures have been constructed to serve as emergency evacuation sites in case 
of tsunami attack.  Such structures are also expected to reduce inundation depth in coastal areas and 
tsunami force acting on inland buildings.  Tsunami force has been investigated in many experimental 
and numerical studies (e.g., Asakura et al. 2000, Ikeno and Tanaka 2003, Ikeya et al. 2005, Nakamura 
et al. 2007).  However, most of the studies have been limited to investigations into a single structure. 
Simamora et al. (2007) carried out a series of hydraulic experiments on tsunami force in the presence 
of multiple cubic structures, and demonstrated the efficiency of tsunami-resistant structures to reduce 
tsunami force on inland structures.  Although the tsunami force was analyzed in terms of inundation 
depth around the structures, the mechanism of reducing the tsunami force was inadequately discussed 
because of the lack of enough experimental data.  Furthermore, little research has been undertaken to 
predict and investigate tsunami force in the presence of multiple structures with a three-dimensional 
numerical model. 
 In this study, run-up tsunami deformation and tsunami force in the presence of multiple structures 
(Simamora et al. 2007) are investigated with a three-dimensional two-way coupled fluid-sediment 
interaction model (hereinafter referred to as FSM; Nakamura and Yim 2010).  In the following section, 
brief explanation of the FSM is presented for completeness.  Next, the predictive capability of the FSM 
is verified through comparison between numerical results and experimental data.  Finally, run-up 
tsunami deformation in the presence of structures is discussed in terms of vortex structures to 
demonstrate the usefulness of the FSM in discussing run-up tsunami deformation and tsunami force. 

NUMERICAL MODEL DESCRIPTION 
 A three-dimensional two-way coupled fluid-sediment interaction model (FSM) developed by 
Nakamura and Yim (2010) is briefly described in this section.  The FSM is composed of a generalized 
Navier-Stokes solver (GNS) with a volume of fluid module (VFM) for air-water interface tracking and 
a sediment transport module (STM) for fluid-sediment interface tracking.  Figure 1 shows a schematic 
of a typical computational domain of the FSM.  As shown in Fig. 1, the GNS is a main solver of the 
STM to compute incompressible viscous air, water, pore-air, and pore-water multi-phase flow 
including porous flow in porous media.  The VFM is a module to track air-water interface motion.  The 
STM is another module to track fluid-sediment interface motion due to bed-load sediment transport.  In 
the FSM, a two-way coupling procedure is implemented at each time step to connect the GNS with the 
VFM and the STM to ensure fluid-sediment interaction.  In the previous work (Nakamura and Yim 
2010), the FSM was applied to hydraulic experiments on cross-shore profile change of a sloping beach 
due to breaking solitary waves, and the predictive capability of the FSM was verified in terms of water 
surface elevations and beach profile change.  Governing equations and computational schemes of the 
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Figure 1. Typical computational domain of the FSM. 

GNS and the VFM are briefly explained in the following sections.  Note that the STM is not explained 
below because sediment transport and resulting seabed change are not dealt with in this paper. 

Governing Equations of GNS and VFM 
 Assuming sufficiently small temporal variation in the porosity m  representing the volume fraction 
of void space in each cell ( 0 1m  ; 0m   for pure impermeable solids; 0 1m   for porous media; 
and 1m   for pure fluids), Nakamura and Yim (2010) derived a continuity equation, a generalized 
Navier-Stokes (NS) equation, and an advection equation of the volume of fluid (VOF) function as 
follows: 
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in which iv   fluid/seepage flow velocity vector; p   pressure; F   VOF function representing the 
volume fraction of water in each cell ( 0 1F  ; 0F   for air; 0 1F   for water surface; and 

1F   for water); ix   position vector; t   time; i izg g    gravitational acceleration vector ( g   
gravitational acceleration; and ij   Kronecker delta);  ˆ 1w aF F       density of fluid ( w  
and a   those of water and air, respectively);  ˆ 1w aF F       kinematic molecular viscosity of 
fluid ( w  and a   those of water and air, respectively); AC   added mass coefficient; s

if   surface 
tension force vector based on the continuum surface force (CSF) model (Brackbill et al. 1992); iR   
laminar and turbulent drag force vector due to porous media (Mizutani et al. 1996); a

ij   anisotropic 
part of the turbulent stress tensor; ij i j j iD v x v x        strain rate tensor; *q   intensity of wave 
generation source/sink per unit time (Kawasaki 1999); iQ   wave generation source/sink vector; and 

ij   artificial damping factor matrix.  In the FSM, the x  axis is the cross-shore direction, the y  axis 
is the long-shore direction, and the z  axis is the upward direction.  In deriving Eq. (2), the spatial 
variation in the porosity is taken into account because of possible sharp change in the porosity around 
the surface of porous media.  However, based on the formulation of CADMAS-SURF (CDIT 2001), 
the spatial variation in the porosity is assumed to be negligible only in deriving the pressure gradient 
term of Eq. (2) (the first term of the right hand side of Eq. (2)).  This is to ensure the equilibrium 
between the pressure gradient term and the gravitational acceleration term (the second term of the right 
hand side of Eq. (2)) in still water regardless of the spatial change in the porosity.  In Eq. (2), the 
formulation of s

if , iR , iQ , and ij  are respectively expressed as 
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in which    surface tension coefficient;    local surface curvature;   2w a      density of 
fluid at the air-water interface; 2DC   laminar drag coefficient; 1DC   turbulent drag coefficient; 

50d   median grain size of sand particles; ˆ ˆ̂    molecular viscosity of fluid; and ( , , )x y z   
artificial damping factor.  As expressed in Eq. (7), the artificial damping factor matrix ij  is 
introduced to dissipate outgoing waves in an artificial damping zone.  Based on the formulation of 

( , , )x y z  used in Hinatsu (1992) and Cruz et al. (1993), ( , , )x y z in Eq. (7) is given as 
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in which C   artificial damping factor coefficient; h   still water depth;   length of the damping 
zone; x   horizontal distance from the inside boundary of the damping zone; z   vertical distance 
from the bottom of the computational domain; and    water surface elevation at x  (see Fig. 2).  
Based on the dynamic two-parameter mixed model (DTM; Salvetti and Banerjee 1995), the anisotropic 
part of the turbulent stress tensor a

ij  in Eq. (2) is given as (Morinishi and Vasilyev 2001) 
 a ma
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in which m
ij i j i jL v v v v    modified Leonard tensor; D   absolute value of the strain rate tensor 

ijD ;  
ij i j i jv v v v  L  Germano identity;  
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and    filter size).  The superscripts   and ~ represent the values in the grid scale and the test scale, 
respectively.  In the FSM, a box filter in physical space is adopted as the grid-scale filter and the test-
scale filter.  The grid-scale filter size in each direction   is set at the size of numerical cells in the 
corresponding direction.  Once the value of   is determined, the value of a

ij  is computed from Eqs. 
(9) to (11) with only iv .  In this study, the value of   is set at 2.0 (Germano et al. 1991). 
 The values of all parameters used in the FSM are listed in Table 1.  As explained later, neither 
porous media nor artificial damping zones are set in a computational domain in this study.  
Accordingly, the values of AC , 1DC , 2DC , and C  are not required to be set.  However, 0.04AC   , 

 
Figure 2. Artificial damping zone in a typical computational domain of the FSM. 

Table 1. Parameters in the FSM. 

Gravitational acceleration g  29.81m/s  

Density of water w  2 39.97 10 kg/m
Density of air w  31.18kg/m  

Molecular viscosity of water w  7 28.93 10 m /s
Molecular viscosity of air a  5 21.54 10 m /s
Surface tension coefficient   27.20 10 N/m
Added mass coefficient AC  -0.04 

Turbulent drag coefficient 1DC  0.45 

Laminar drag coefficient 2DC  25.0 

Damping factor coefficient C  3.0 
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1 0.45DC  , and 2 25.0DC   are adopted based on experimental results measured in Mizutani et al. 
(1996), and the value of C  is determined at 3.0 through trial and error in preliminary runs. 

Computational Schemes of GNS and VFM 
 In the FSM, the simplified marker and cell (MAC) method (Amsden and Harlow 1970) is used to 
discretize the time derivative of the continuity equation (Eq. (1)) and the generalized NS equation (Eq. 
(2)).  Based on Kajishima (1999), the pressure gradient term and the gravitational acceleration term 
(the first and second terms of the right hand side of Eq. (2)) are discretized with the first-order Euler 
forward-difference scheme.  To ensure the stable calculation, the laminar drag force term (the first term 
of the right hand side of Eq. (5)) is discretized with the second-order Crank-Nicolson scheme.  The 
other terms are discretized with the third-order Adams-Bashforth scheme for the accurate calculation.  
As for the space derivative, the central-difference scheme is used for Eqs. (1) and (2) except that the 
convective term of Eq. (2) (the last term of the left hand side of Eq. (2)) is discretized with the third-
order total variation diminishing (TVD) scheme (Osher and Chakravarthy 1984).  Accordingly, the 
difference equations at the prediction step and the correction step are respectively expressed as 
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in which p
iv   predicted flow/seepage velocity vector; the superscript n   time step number; 

1/ 2nt    time increment between the n th time step and the  1n  th time step; and 
1/2 1n n np p      pressure increment at the  1/ 2n  th time step.  The value of 1/2n   is computed 

from the following Poisson equation, which is derived by differentiating Eq. (13) with respect to ix . 
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In Eq. (12) to (14), the values of 0
n
iA , 1

n
iA , 2

n
iA , and nB  are respectively given as 
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 To track air-water interface motion, the advection equation of the VOF function (Eq. (3)) is solved 
with the multi-interface advection and reconstruction solver (MARS; Kunugi 2000).  The MARS is 
one of the piecewise linear interface calculations (PLICs), in which the air-water interface in each cell 
is expressed as an inclined plane.  Detailed explanation of the MARS can be found in Kunugi (2000). 

NUMERICAL CONDITIONS 
 Run-up tsunami deformation and tsunami force in the presence of multiple cubic structures 
(Simamora et al. 2007) are analyzed with the FSM.  Figure 3 shows a schematic of a computational 
domain.  The domain has the same dimensions as the experimental setup except that only a half side of 
the domain ( 0y  ) is computed to reduce the computational effort because the experimental setup is 
practically symmetric with respect to 0y  .  As shown in Fig. 3, a 3700 mm long, 1925 mm wide, and 
620 mm high impermeable horizontal land is set at the landward end of the domain, and an 1810 mm 
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long, 2925 mm wide, and 570 mm high impermeable horizontal bed and an inclined impermeable flat 
bed with a slope of approximately 1/3 are set in front of the land. 
 The size of numerical cells is determined to ensure an appropriate balance between the predictive 
accuracy and the computational effort.  Figure 4 shows the numerical cells adopted in this study.  The 
domain of 0 700mmx  , 0 150mmy  , and 50 100 mmz   is discretized with uniform cells 
of 20 12.5 10mm  .  The remainder of the entire domain is discretized with non-uniform cells whose 
width increases by approximately 5 to 20% with the distance from the domain discretized with the 
uniform cells.  The non-slip condition is used for the impermeable beds and the side walls.  The 
gradient-free condition is used for the landward boundary and 0y  .  To generate a tsunami, the flow 
velocity at the seaward boundary is specified to be the speed of a wave paddle recorded in the 
hydraulic experiments.  As for the VOF function, all boundaries are exposed to the gradient-free 
condition. 
 A total of seven numerical runs are carried out.  In Case 1, no structure is set on the land.  In Cases 
2 to 7, one or two cubic structures with the dimensions of 100 100 100mm   are set on the land.  The 
arrangement of the structures is shown in Fig. 5.  Among Cases 2 to 7, the landward structure is 
shielded from a run-up tsunami by the seaward structure in Cases 4 to 7, while no shielding structure 
exists in Cases 2 and 3.  In all cases, the still water depth is set at the constant value of 600 mm. 
 To verify the validity of the FSM, numerical results are analyzed and compared with experimental 
data measured in Simamora et al. (2007).  In the hydraulic experiments, water surface elevation ( x   -
4300, -3800, -3300, -2800, -2300, -1750, -1250, -750, and -250 mm on y   0 mm) and inundation 
depth ( x   200, 300, 400, 500, 600, 700, and 800 mm on y   0 mm) were measured in Case 1.  The 
measurement of inundation depth in front of the landward structure ( x   200 mm, y   0 mm in Cases 
2 and 4, and x   600 mm, y   0 mm in Cases 3, 5, 6, and 7) and tsunami force acting on it were 
carried out in the other cases.  The comparison of the water surface elevation, the inundation depth, 
and the tsunami force is discussed in the following sections. 

NUMERICAL RESULTS AND DISCUSSION 

Predictive Capability of FSM 
 To demonstrate the predictive capability of the FSM, numerical results computed with FSM are 
compared with experimental data measured in the hydraulic experiments (Simamora et al. 2007). 

 
Figure 5. Structure arrangement in 
Cases 2 to 7. 

 
Figure 3. Schematic of the computational domain. 

Figure 4. Numerical cells in the computational domain. 
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 Figures 6 and 7 show the comparison of the water surface elevation and the inundation depth in 
the absence of structures (Case 1).  In the figures, the solid lines represent numerical results, and the 
circles represent experimental data (Simamora et al. 2007).  As shown in Fig. 6, the propagation of an 
incident tsunami and subsequent reflected waves is predicted well.  Note that the FSM overestimates 
the backwash on the uniform shallow water area ( x   -1750 to -250 mm).  The experimental data in 
Fig. 6 show that the backwash and its landward propagation are observed in the offshore side of x   -
2300 mm, while the backwash less than -4 mm is not observed in the onshore side of x   -1750 mm.  
This is probably because a decrease in the water level was not measured in the hydraulic experiments 
because of the very shallow water depth of 30 mm and the limitation of measurement devices.  As for 
the inundation depth, Fig. 7 shows that the numerical results also agree with the experimental data 
except that the maximum inundation depth in the offshore side of x   400 mm is slightly 
underestimated.  As explained later, no vortex is formed on the onshore side of the land, while strong 
vortices with air bubble entrainment are formed around the seaward edge of the land.  Because of the 
disturbed flow, the increase in the inundation depth is not tracked near the sea. 
 Figures 8 to 12 show the comparison of the inundation depth and the tsunami force in the presence 
of structures (Cases 2 to 7).  In Cases 2 and 3 for the absence of shielding structures, Figs. 8 and 9 
show that the numerical results reasonably agree with the experimental data.  Specifically, the rise time 
of the inundation depth and the tsunami force is predicted well, while the maximum tsunami force is 

 
Figure 6. Comparison of the water surface elevation 
in the water area (Case 1; no structure). 

 
Figure 7. Comparison of the inundation depth on the 
land (Case 1; no structure). 
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slightly overestimated in both cases.  As indicated in Figs. 10 to 13, both the inundation depth and the 
tsunami force are in agreement between the numerical results and the experimental data in Cases 4 to 7 
for the presence of the shielding structures.  Figures 10 and 11 also show that the tsunami force is 
slightly underestimated for the presence of the shielding structure located 100 mm offshore from the 
onshore structure.  In addition, there is a slight difference in the rise time of the inundation depth in Fig. 
10(a).  However, Fig. 13 shows that the FMS gives the good predicted values of both the inundation 
depth and the tsunami force in spite of the complicated arrangement of the structures. 
 As a result, the predictive capability of the FSM is verified in terms of the water surface elevation, 
the inundation depth, and the tsunami force regardless of the presence of the structures. 

Run-Up Tsunami Deformation and Vortex Structure 
 Figure 14 shows the process of tsunami run-up in the presence of the structure located 600 mm 
onshore from the sea (Cases 3, 5, and 7).  Among three cases, no shielding structure exists in Case 3, 

(a) 

(b) 
Figure 8. Comparison for Case 2 (without shielding 
structure): (a) inundation depth; and (b) tsunami 
force. 

(a) 

(b) 
Figure 9. Comparison for Case 3 (without shielding 
structure): (a) inundation depth; and (b) tsunami 
force. 

(a) 

(b) 
Figure 10. Comparison for Case 4 (with shielding 
structure): (a) inundation depth; and (b) tsunami 
force. 

(a) 

(b) 
Figure 11. Comparison for Case 5 (with shielding 
structure): (a) inundation depth; and (b) tsunami 
force. 

(a) 

(b) 
Figure 12. Comparison for Case 6 (with shielding 
structure): (a) inundation depth; and (b) tsunami 
force. 

(a) 

(b) 
Figure 13. Comparison for Case 7 (with shielding 
structure): (a) inundation depth; and (b) tsunami 
force. 
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while the shielding structures are set in front of the landward structure in Cases 5 and 7.  In Fig. 14, 
vortex structures are visualized with the 2  definition (Jeong and Hussain 1995), in which vortices are 
defined as 2  0.  As pointed out in Miura and Kida (1998), it is difficult to identify vortex structures 
with 2  0 because a wide area of the computational domain is possibly covered by isosurfaces of 

2  0.  To identify vortex structures more clearly, isosurfaces of 2   -30 are presented in Fig. 14.  
Note that the tsunami begins to be generated at t   0.0 s. 
 As shown in Fig. 14(a), the bore-like tsunami propagates close to the land at t   8.90 s.  At the 
same time, vortex cores are formed under the crown of the tsunami.  Note that the wave field including 
the vortex cores is not uniform in the cross-shore direction because the water area slightly narrows near 
the toe of the slope (see Figs. 3 and 4).  In addition, it is also observed from Fig. 14(a) that there is a 
slight difference in the wave field among three cases because the air flow over the wave is affected by 
the arrangement of the structures.  Figures 14(b) and (c) show that large vortex cores are formed 
around the seaward edge of the land early in the tsunami run-up.  In Case 7, the tip of the run-up 
tsunami reaches the seaward structure at t   9.35 s.  After that, the run-up tsunami subsequently 
propagates in between and around the structures in Case 7 (Fig. 14(d)).  At this time, vortex cores 
appear around the seaward edges of the structures, probably resulting in the dissipation of the tsunami 
energy.  As shown in Fig. 14(e), the propagating tsunami also reaches the landward structure at t   
9.75 s.  Note that the tsunami propagating between the seaward structures hits the seaward surface of 
the landward structure in Case 7, while the tsunami propagating around the seaward structure hits the 
seaward edges of the landward structure in Case 5.  Consequently, the maximum tsunami force acting 
on the landward structure in Case 5 is smaller than that in Case 7 (see Figs. 11(b) and 13(b)).  After 
that, the tsunami propagates farther around the structure (Figs. 14(f) and (g)).  At this time, the 
inundation depth in front of the landward structure remains high in Case 3, while the inundation depth 
gradually decreases in Cases 5 and 7 because the shielding structures prevent the subsequent run-up 
tsunami from hitting the landward structure directly.  As shown in Figs. 9, 11, and 13, the inundation 
depth and the tsunami force are therefore reduced in Cases 5 and 7 because of the presence of the 
shielding structures.  Finally, the run-up tsunami begins to be subsided, as shown in Fig. 14(h). 
 From the results explained above, it is found that the FSM is a useful tool providing detailed 
information including vortex structures in discussing run-up tsunami deformation and tsunami force. 
 

(a)  

(b)  

(c)  
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(d)  

(e)  

(f)  

(g)  

(h)  
Case 3 Case 5 Case 7 

Figure 14. Snapshots of run-up tsunami deformation and vortex cores.

CONCLUDING REMARKS 
 A three-dimensional two-way coupled fluid-sediment interaction model (FSM; Nakamura and 
Yim 2010) is applied to predict hydraulic experiments on run-up tsunami deformation and tsunami 
force in the presence of multiple cubic structures on the land (Simamora et al. 2007).  The comparison 
between numerical results computed with the FSM and experimental data measured in the hydraulic 
experiments demonstrates the predictive capability of the FSM in terms of water surface elevation, 
inundation depth, and tsunami force.  The process of tsunami run-up in the presence of the structures is 
investigated in terms of vortex structures visualized with the 2  definition, and it is found that the 
FSM is a useful tool in discussing run-up tsunami deformation and tsunami force.  However, there is a 
slight difference in inundation depth and tsunami force depending on the arrangement of structures.  
To address the issues, further studies are required to be conducted to improve the predictive accuracy 
of the FSM. 
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