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AN ADVANCED STATISTICAL EXTREME VALUE MODEL FOR EVALUATING STORM 
SURGE HEIGHTS CONSIDERING SYSTEMATIC RECORDS AND  

SEA LEVEL RISE SCENARIOS 

Christoph Mudersbach1 and Jürgen Jensen2 

In this paper, a non-stationary extreme value analysis approach is introduced in order to determine coastal design 
water levels for future time horizons. The non-stationary statistical approach is based on the Generalized Extreme 
Value (GEV) distribution and a L-Moment parameter estimation as well as a Maximum-Likelihood-estimation. An 
additional approach considers sea level rise scenarios in the non-stationary extreme value analysis. All the methods 
are applied to the annual maximum water levels from 1849-2007 at the German North Sea gauge at Cuxhaven. The 
results show, that the non-stationary GEV approach is suitable for determining coastal design water levels. 
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INTRODUCTION 
The design of coastal defence structures in Germany is based either on deterministic or statistical 

approaches (e.g. MLR 2001). For the statistical methods water levels with assigned return periods are 
needed. Considering an integrated coastal risk management approach, there is a growing demand for 
calculating exceedance probabilities of water levels, where the extremes are of particular importance. 
The calculation of exceedance probabilities or return periods is widely based on an extreme value 
analysis of observed sea level data.  

The theory of extreme value analysis of hydrological data (e.g. sea level data) has been studied 
very intensively in the past. (e.g. Gumbel 1958; Jensen 1985; Coles and Tawn 1990; Kotz and 
Nadarajah 2000; Katz et al. 2002; Hawkes et al. 2008). The extreme value analyses can be based both 
on block maxima (e.g. annual maxima) and peaks over threshold. In recent years, the Generalized 
Extreme Value distribution (GEV) has become the most widely used method for block maxima. In 
order to use peak over threshold data the Generalized Pareto distribution (GPD) is recommended (e.g. 
Hawkes et al. 2008).  

In the present paper, an approach is used based on annual maximum sea level data of the North 
Sea gauge at Cuxhaven, where high quality data records are available since 1849 (Jensen and 
Mudersbach 2007). The basic assumption of an extreme value approach is that the data are 
independent and identically distributed (iid, e.g. Coles 2001). While the demand for independency by 
using annual maximum sea level data may be justified due to the temporal resolution, the assumption 
of stationarity is unlikely in most cases due to existing trends in the mean and/or variability of the data 
(Khaliq et al. 2006). Before starting an extreme value analysis the time series needs to be tested against 
trends or changes/shifts in the mean and the variability in order to assess the stationarity or non-
stationarity of the data (Hawkes et al. 2008). If there are significant non-stationarities in the data, these 
effects are commonly removed to obtain a stationary time series (Salas 1993). This approach is 
practical, but contains a decisive weakness: the results of the extreme value analysis are only valid for 
the present state. From a coastal engineer’s point of view, not only is the present state is important, but 
also extreme value results for future time horizons. This is due to the design of coastal structures with a 
certain lifetime, e.g. 50-100 years. It has to be ensured that the design water level is valid up to the 
projected end of the lifetime. Assuming a coastal dike has to be designed with a 100-yr return level and 
has a projected lifetime up to 2100, then the 100-year return level for the year 2100 needs to be 
estimated (Fig. 1). For the determination of future design levels, the expected development of the water 
levels up to a future time horizon has to be considered. In many cases this may be achieved by adding 
an expected sea level rise (SLR) of, for example, 0.3 cm/yr. The latter does not provide the calculation 
of valid return periods for future design levels. Thus, an advanced statistical model is needed which 
eliminates this weakness.  
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Figure 1. Estimation of future design levels for coastal defence structures. 

 
However, in the light of climate change, it is likely that the assumption of stationarity in 

hydrologic time series becomes doubtful and, therefore, advanced methods in extreme value analysis 
have to be developed and applied (Khaliq et al. 2006). In recent years, the concept of non-stationary 
extreme value analysis has been improved and is nowadays used more often (e.g. Coles 2001; 
Strupczewski et al. 2001; Katz et al. 2002; Cunderlik and Burn 2003; Khaliq et al. 2006;  Butler et al. 
2007; Nogaj et al. 2007; Mendez et al. 2007; El Adlouni et al. 2007; Riberau et al. 2008; Hundecha et 
al. 2008). In the non-stationary approach, the parameters of the distribution functions are replaced by 
time-dependent parameters, so that the results of the extreme value analysis also vary with time. The 
benefit of this approach is that the original data no longer have to be detrended and can be used 
directly. The non-stationary extreme value analysis enables also the extrapolation of the results up to 
future time horizons.  

The causes of a non-stationary behaviour of coastal water level data have been studied intensively 
(e.g. Coles 2001, Pugh 2004, Mendez et al. 2007). One of the main contributions to extreme sea level 
data is the mean sea level rise (e.g. Pugh 2004). Furthermore, not only sea level rise, but also changes 
in the intensity and frequency need to be considered. For example, Grossmann et al. (2006) found that, 
on basis of the IPCC scenario A2 for the time horizon 2085, an increase of the annual maximum water 
level at the Cuxhaven gauge of approximately 20 cm may be expected without any consideration of the 
mean sea level rise. By adding an expected sea level rise of 30 cm to the results, the total increase 
amounts to 50 cm.  

Time-dependent models of the Generalized Extreme Value distribution (GEV) for determining 
return periods and applications to hydro-meteorological data have been studied recently. Coles (2001) 
investigated annual maximum sea level data at Fremantle, where only the location parameter was set as 
time-dependent with a linear model. In addition, the location parameter was linearly related to the 
Southern Oscillation Index (SOI). Katz et al. (2002) introduced a non-stationary GEV model, and 
suggested a linear model for the location and a log-transformed model for the scale parameter, whereas 
the shape parameter was kept constant. Mendez et al. (2007) published a wide application of a time-
dependent GEV model to monthly extreme sea levels. They used nonlinear time-dependent models for 
all three parameters containing seasonal and long-term effects. Hundecha et al. (2008) analysed 
changes in extreme annual wind speeds in Canada with a non-stationary GEV, where location and 
scale parameters were time-dependent. Models have not yet been developed which would employ a 
non-stationary GEV distribution specifically to estimate future design levels on the German North Sea 
coastline. 

The aim of this paper is to give a brief introduction to non-stationary extreme value analysis 
methods. A pragmatic GEV approach is described in order to estimate future design water levels for 
coastal engineering tasks. The approach described provides an advanced method to extrapolate return 
levels up to future time horizons. With this, an assessment of common design levels in comparison to 
time-dependent design levels is feasible. The methods are applied to the annual maximum water level 
data at the German North Sea gauge Cuxhaven. 
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THEORY OF NON-STATIONARY EXTREME VALUE ANALYSIS 
In the present paper the non-stationary form of the GEV is used, which is well described by Coles 

(2001) and Cunderlik and Burn (2003) and is generally given in the form: 

    
1

k(t )x a(t)GEV(x, t) exp 1 k(t)
b(t)

−⎡ ⎤
⎛ ⎞−⎢ ⎥= − + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

 

where x is the independent value (e.g. water level), a(t) the time-dependent location parameter, b(t) the 
time-dependent scale parameter, and k(t) the time-dependent shape parameter.  

In general, non-parametric and parametric methods can be used to describe the time-dependent 
behaviour of the GEV parameters. In order to obtain return levels for future time horizons, the non-
parametric approach is not applicable, due to the fact that it can not be extrapolated (Strupczewski et 
al. 2001). Therefore, a parametric approach is needed. For the description of the time-dependent 
behaviour of the parameters, several functions can be used. It is better to use rather simple relations, 
e.g. linear or exponential functions, in order to avoid difficulties in extrapolating. Furthermore, it is 
also possible to consider physically based covariates in the functions (Coles 2001). Mudersbach and 
Jensen (2010) used two different time models for the location and scale parameters are used. For the 
location and scale parameters, linear and exponential models may be used for the sake of simplicity in 
extrapolation. Both the linear and exponential models are physically based. Many sea level data sets 
change linearly over the observation period, whereby it seems plausible that this trend will continue to 
exist in the near future. The exponential model is also physically based since all climate scenarios of 
the IPCC-Report 2007 state a slight change in sea level rise by the middle of the century, while the 
changes by the end of the century are expected to be greater (e.g. Meehl et al. 2007).  In this paper, we 
use a linear model for the first (location) and second (scale) parameters (α and β) respectively 
(GEV11). Thus, the following model result for the location parameter α(t): 

0 1a(t) t= α +α                                                                                                                      (1) 
Accordingly, the time model for the scale parameter β(t) is given as: 

0 1b(t) t= β +β                                                                                                                   (2) 
As mentioned above, the shape parameter k is kept constant, so that  
k(t) k=                                                                                                                               (3) 
 
In these time models the parameters α0, α1, β0, β1 and k need to be estimated from the observed 

data. For the calculation of the parameters different methods are generally available, which are initially 
known from the stationary extreme value analysis approach. The most widely used estimation methods 
are the method of moments (MM, e.g. Rao and Hamed 2000), the method of probability weighted 
moments (PWM, Greenwood et al. 1979), the method of L-moments (LM, Hosking and Wallis 1997), 
and the maximum-likelihood estimation (MLE, e.g. Coles 2001). Over the past few years, especially 
the parameter estimation methods PWM, L-moments and MLE have been used and developed further. 
El Adlouni et al. (2007) developed a so-called generalized maximum-likelihood estimation for the 
time-dependent parameters of the GEV. Ribereau et al. (2008) published a new approach based on 
PWM, the so-called generalized probability weighted moment approach. Cunderlik and Burn (2003) 
calculated the parameters of the GEV by using time windows, where for each time window the 
parameters are estimated using L-moments (see also Mudersbach and Jensen 2010).  

DATA 
The hydrodynamic system of the German Bight is dominated by semi-diurnal tides with a tidal 

range of about 3 to 3.5 m. Storm surges at the German North Sea coast result mainly from a build-up 
of water masses along the coasts, which are superimposed on the astronomical tide. The most 
distinctive flooding events have been the storm surge on 16/17 February 1962, with over 300 fatalities 
in Hamburg and the extreme flood on 3 January 1976, where the highest water level occurred up to 
now (Müller-Navarra et al. 2006).  

The gauge at Cuxhaven is located at latitude 53° 52’ N and longitude 08° 43’ E in the central 
German Bight (Southern North Sea) at the mouth of the river Elbe estuary (Fig. 2). It is one of the most 
important gauges at the German North Sea coastline due to the long term records of water levels. The 
Cuxhaven gauge has an important role for designing flood defence structures both on the German 
coastline and in Hamburg.  



 
 
4 

The water level data used in this study are the annual maximum water levels (HThw) from 1849 to 
2007 (Fig. 3). Alongside the HThw data, the time series of annual mean tidal high water (MThw) is 
also shown in Fig. 3, which is important for normalising purposes. The HThw data show an increasing 
linear trend s, which amounts to sHThw = 0.40 cm/yr. The MThw data show also an increasing trend 
with sMThw = 0.26 cm/yr. The water level data used in this analysis have been converted to the German 
reference datum NN (normal zero).   
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Figure 2. Map of the North Sea and location of the gauge Cuxhaven. 
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Figure 3. Time series of annual maximum and mean tidal high water level at gauge Cuxhaven from 1849-2007. 

 

RESULTS 
The dataset of the tide gauge Cuxhaven was analysed by use of a non-stationary extreme value 

approach. In this paper, two parameter estimations methods were conducted and compared. The two 
models are one approach based on L-Moments with sliding windows (GEV11-LM) and one based on 
Maximum-Likelihood-estimation (GEV11-MLE). The results of the adopted models can be modified 
to a standardized version, thus, common model diagnostic tools can be used (Coles 2001). Therefore, 
the goodness of the estimation method is assessed by probability-probability plots (PP-plots), where 
the empirical probability is plotted against the theoretical probability. Figure 4 shows PP-plots for the 
parameter estimation method based on L-Moments (sliding window approach) and for a Maximum-
Likelihood approach, respectively. It can be stated, that both models lead to satisfying results, i.e., both 
models are appropriate to calculate the non-stationary parameters of the GEV11-model. 
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Figure 4. a) PP-plot of L-Moment approach. b) PP-plot of Maximum-Likelihood approach. 

 
In Figure 5 some results of the non-stationary GEV11-models can be seen. The solid lines 

represent the 99%-, 98%-, and 95%-quantiles, respectively. The parameter estimation is based on the 
observed  dataset of annual maximum water levels at the gauge Cuxhaven from 1849 to 2007. In 
Figure 5 additionally an extrapolation of the calculated trends was performed by the year 2100. As 
expected, the results from both parameter estimation methods differ. E.g., the 99%-quantile in 2007 
(GEV11-LM) is about NN+508 cm and will be NN+540 cm by 2100, which is an increase of about 32 
cm (Figure 5a). Considering the GEV11-MLE model, the same value in 2007 is NN+515 cm and will 
be NN+557 cm by 2100, which is an increase of about 42 cm (Figure 5b). However, these 
uncertainties are common in statistical extreme value analyses an do not lead to a rejection of one of 
the methods.  

 

 
Figure 5. a) Extrapolation of non-stationary GEV-model (L-Moment approach) of 99%-, 98%-, and 95%-
quantiles by 2100. b) Extrapolation of non-stationary GEV-model (Maximum-Likelihood approach) of 99%-, 
98%-, and 95%-quantiles by 2100. 

 
Next to the possibility to extrapolate quantiles by use of the trends based on the observed data, sea 

level rise scenarios can be applied to calculate quantiles for future time horizons. Doing so, it is 
supposed, that the available sea level rise scenarios represent the development of the trend of the 
location parameter. As common sea level rise scenarios give estimates for the development of the mean 
sea level and not for higher quantiles, the replacement of the trend of the location parameter by the 
trend of a sea level rise scenario is not fully justified. However, the results will give a possible range of 
future changes in the quantiles. If available, more appropriate scenarios (e.g. scenarios for 99%-
quantiles) should be used.    

 
In recent years numerous sea level rise scenarios were published. In Table 1 some well known 

scenarios are listed. An assessment or discussion of sea level rise scenarios is not part of this paper. 
The given scenarios will rather used to incorporate them into the non-stationary extreme value 
approach and to compare these results with those mentioned above. For the purpose of simplification 
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the sea level rise scenarios listed in Table 1 are combined to a mean sea level rise scenario, which is 
from 0.61 to 1.47 m by 2100. 
 

Table 1. Sea Level Rise Scenarios (in Jevrejeva et al. 2010) 

Author sea level rise by 2100 
Meehl et al. (2007) 0.18 – 0.59 m 
Rahmstorf (2007) 0.50 – 1.40 m 
Pfeffer et al. (2008) 0.80 – 2.00 m 
Vermeer and Rahmstorf (2010) 0.75 – 1.90 m 
Grinsted et al. (2010) 0.80 – 1.30 m 
Jevrejeva et al. (2010) 0.60 – 1.60 m 
Mean 0.61 – 1.47 m 

 
Figure 6 shows the results by incorporate the mean sea level rise scenario for the gauge Cuxhaven 

(GEV11-LM). The solid lines represent the extrapolation of the quantiles by 2100 based on the trends 
calculated by use of the observed data (same as in Fig. 5a). The dashed lines show the development of 
the different quantiles considering the upper and lower boundary of the mean sea level rise scenario, 
respectively.  By incorporating the sea level rise scenarios only the location parameter of extreme value 
distribution is replaced. The scale and shape parameters are still the same as not using scenarios. The 
results show, e.g. that using the upper boundary of the mean sea level rise scenario (1.47 m) the 99%-
quantile in 2100 will increase of about 115 cm in comparison to using not the sea level rise scenario. 
Looking at the same value, but using the lower boundary of the mean sea level rise scenario (0.61 m) 
there will be an increase of about 29 cm. 

 

                                   
 
Figure 6. Extrapolation of non-stationary GEV-model (L-Moment approach) of 99%-, 98%-, and 95%-quantiles 
by 2100 considering different sea level rise scenarios. 

 

CONCLUSIONS 
Coastal engineers often are faced to non-stationary water level time series and are requested to 

determine design values for costal protection purposes. In principle, non-stationary extreme value 
analysis methods provide appropriate tools to achieve these tasks. There are some different methods 
available, where the most important differences exist in the time-models for the parameters of the 
extreme value distribution. Here, linear as well as higher order functions can be used to describe the 
future development of the parameters. The choice of the model should be based on physical findings. 
Since design values for future time horizons will be needed, sea level rise scenarios can be 
incorporated into the non-stationary extreme value analysis. Even if sea level rise scenarios have 
significant uncertainties, the use will give a possible range of future changes in the quantiles of 
extreme water levels. It should be mentioned, that all analyses should be evaluated critically, since the 
chosen time model and the range of extrapolation should lead to physical reasonable results.   
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