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In order to simulate the wave motion and, in turn, the flow, within the nearshore region, in the last decades the derivation and the application of 

depth-integrated type of models have been widely investigated and developed. However, in such models, the problems of facing wave breaking 

and the moving shoreline are not trivial and therefore several approaches have been proposed. About wave breaking, approaches both based on 

the adoption of an artificial eddy viscosity Zelt (1991) and on the concept of roller Veeramony (2000), Karambas (2003), Musumeci (2005) 

have been implemented. As regards the shoreline boundary condition, a couple of numerical techniques have been mainly adopted, namely the 

porous beach method, also known as slot method Kennedy (2000), and the extrapolating method proposed by Lynett (2002). Such methods 

seems to be not very fiscally based.  

In the present work an effort toward a more physically based model of the surf and the swash zone (see Figure 1) has been accomplished. In 

particularly, a new version of the fixed grid 

shoreline model introduced by Prasad (2003) 

is proposed here and implemented in a Boussi-

nesq type model for breaking waves 

Musumeci (2005). Moreover, in order to get 

over the numerical instabilities generated at 

the time of rapid variation of the flow, the 

aforementioned shoreline model has been cou-

pled with the extrapolation method presented 

by Lynett, (2002) and a bottom friction term 

has been also included. To validate the model 

a classical test which adopts monochromatic 

waves along with other application with non 

breaking and breaking solitary waves have 

been performed. 

1. Introduction 

The dynamics of the wave propagation within the surf zone is here represented through the weakly dispersive fully nonlinear Boussinesq-type 

of model developed by (Musumeci, 2005). The flow is assumed rotational after breaking and the governing equations are derived with no as-

sumptions on the order of magnitude of the non-linear effects. In the present work the bottom friction effects have been considered by adopting 

the following quadratic model: 

where f is the friction factor, u is the mean horizontal velocity,  is the wave surface elevation and h is the local depth.  

The proposed shoreline boundary condition is developed with a fixed grid method with a wet-dry interface. In order to solve the problems due 

to the numerical scheme during the onshore movement of the shoreline, a linear extrapolation (Lynett, 2002) near the wet-dry boundary has 

been used and coupled with the shoreline equations.( in Figure 2 the logical algorithm of the proposed strategy is showed and compared with 

the previous approach).  

It is known that to develop a moving boundary algorithm the velocity 

and the position of the shoreline at each time step must be known; 

however, at the shoreline, where the water depth goes to zero, the vol-

ume fluxes also become zero, but the velocity of the fluid particles 

may not be null. Therefore following the approach introduced by 

(Prasad, 2003) for the non-linear shallow water inviscid case, the equa-

tions for the shoreline motion for the 1DH problem have been here 

adopted. Moreover the effects of bottom friction has been introduced 

here in the shoreline momentum equation as well.  

The shoreline equations state for the kinematic condition at the shore-

line that the fluid particles at the shoreline remains at the shoreline; thus named (t) the x coordinate of the shoreline it follows that: 

where the velocity of the shoreline us is obtained from the momentum equation written as follows: 

with s being the surface elevation of the shoreline. It should be noticed that the shoreline position is spatially continuously resolved (i.e. the 

shoreline may not stay on the numerical grid). The numerical scheme adopted for the shoreline equations solution is the same adopted for the 

solution of the governing equations. Indeed, an Adam-Bashfort-Moulton 

scheme of 3th order in time for the predictor step and of 4th order in 

time for the corrector step. In such a scheme problems arise in the nu-

merical solution during the run-up stage. Indeed, when a new dry point 

is included in the computational domain, at that point information on ve-

locity at the time steps are required by the ABM scheme, but they are 

actually undefined (see Figure 3). To overcome such a problem a linear 

extrapolation of the last two wet point as proposed by (Lynett, 2002) 

was implemented as well. It is worth pointing out that the linear ex-

trapolation method allows for the same finite difference scheme to be 

used also at the last wet point.  

2. Derivation and numerical solution  

(2) 

(3) 

To validate the model a classical test which adopts a monochromatic wave train over a plane beach has been performed. In particular, the ana-

lytical solution derived by (Carrier ,1958) which makes use of the Airy’s approximation of NLSW equations has been used for comparison. As 

a test, a wave train with an height of 0.006 m and a period of 10 s which travels in a one dimensional channel with a depth of 0.5 m and a slope 

of 1:25 has been considered. The comparison between the analytical and numerical horizontal shoreline movements provides a very good 

agreement (see Figures 4, 5, 6).  

Solitary breaking and non-breaking wave run-up and run-down was also investigated and the numerical results have been compared with the 

experimental data by (Synolakis, 1986) using also the bottom friction. In the Figure 7 the numerical results of the run-up of a non-breaking 

solitary wave with H/h0 = 0.0185 as shown. The mentioned Figure shows the surface elevation versus time at different position in the flume. 

These results are in good agreement with the experimental data. A further comparison was performed in the case of a solitary breaking waves. 

In particular it was studied the run-up and run-down of a solitary wave characterized by a ratio H/h0 = 0.30. As reported in Figure 8 the model 

reproduces quite well, at different time steps, the free surface elevations, the dissipation produced by breaking along with the process of run-up 

and rundown at the beach. The comparison with other numerical models (Lynett et al. 2002) is very satisfactory, indeed, in the case of f = 0, 

the results are virtually identical, as it is shown in Figure 9. According to the obtained results, the use of the proposed shoreline model seems to 

be suitable to support risk analyses in potentially flooded coastal areas. 
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Figure 7 - Run up of non-breaking solitary wave, on a 1:19.85 beach, 
with H/h0 = 0.0185 at (a) x/h0 = 0.0; (b) x/h0 = 0.69; (c) x/h0 = 9.96 for 
different    t* = t √gd. The red crosses are the experimental results, the 
blue continue line is the numerical results of the proposed model. 

Figure 8 - Breaking solitary wave run-up and run-down on a 1:19.85 beach at 
different time steps (a) t* = t√g/h = 15, (b) t*= 20, (c) t*= 25, (d) t*= 45. The so-
lid line represents the numerical results and the points indicate the experimental 
data from (Synolakis, 1986). 

Figure 5 - Sine wave runup on a planar beach, comparison between a-
nalytical (- -) and numerical(-). The shoreline horizontal s motion. 

Figure 6 -Sine wave runup on a planar beach, comparison between a-
nalytical (- -) and numerical (-). The shoreline velocity. 

Figure 1 -  A sketch of waves propagation and swash zone. 

Figure 2- Sketch of the adopted strategy for the shoreline model. (Lynett, 2002). 

Figure 9 - Nondimensional maximum run-up of solitary waves on a 1 : 19.85 slo-
ping beach versus nondimensional wave height. The points are the experimental 
data of from Synolakis (1986), the dotted line is the numerical result from Lynett 
et al. (2002) with no bottom friction, the solid linewith a bottom friction coeffi-
cient f of 10−3, and the dashed line with f = 10−2 

Figure 4 - Envelope of free surface, analytical (- -) and numerical (-) so-
lution. Extrapolated nodes are shown by the dots. 

Figure 3 - The predictor corrector scheme at the shoreline. The dashed line after 
shoreline represent the extrapolated values. At time t the point i becomes wet. The-
refore the ABM scheme needs the values of velocity at the two previous time steps, 
ui

t−2 and ui
t−1, which are physically undefined (dark circle). Such values are here de-

termined by using the linear extrapolation method (see whitecircle). 
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