Comparison of fan type and effect on dairy cow temperatures on a California dairy during summer conditions

S. Smith, DVM; P. Jardon, DVM, MPVM; K. Dhuyvetter, PhD
Elanco Animal Health 2500 Innovation Way Greenfield, IN 46140

Introduction
Heat stress in dairy cattle is an economically important factor on dairy farms. Annual economic losses due to heat stress on US dairies have been estimated at $1.2 billion (Key, 2014). Reproductive performance, especially pregnancies per AI, has been shown to be negatively impacted at body temperatures above 39.1°C (Periera 2013). Multiple factors affect cow cooling effectiveness, including shade/housing type, soakers and use of fans to aid in evaporative cooling. Fan type in a commercial setting has not been extensively evaluated as to effects on dairy cow heat abatement and was the objective of this study.

Materials and Methods
A cow-cooling evaluation was done on a commercial Holstein dairy in central California August 19-26, 2020. Cows (n = 9-10 per group) from 4 different freestall pens (615-679 head per pen) were selected for temperature monitoring. Group 1 consisted of primiparous cows and groups 2-4 were multiparous cows. Cows were selected to be similar for days in milk (DIM) (170-186), gestation (67-86 days carried calf [DCC]), and milk production within parity. Cow temperatures were monitored by attaching an iButton (Embedded Data Systems DS1921H-F5 for Lactation = 1 and DS1922L for Lactation>1) to a Controlled Internal Drug Release (CIDR) device inserted intravaginally with temperatures taken every 5 minutes. Cow-level temperatures were aggregated to 15-minute intervals for analyses. Temperature/humidity monitors (HOBO proV2) were placed in 3 of the 4 pens (no T/H monitor in Lactation = 1 pen) and in the milking parlor holding area to capture temperature and humidity at the same time and frequency of cow temperatures. During the evaluation, 92% of all pen-level THI readings were above the heat stress threshold THI of 68. Each freestall pen differed in fan type. Group 1 had no fans in the pen, group 2 had 84-inch diameter high-capacity fans spaced at 100-foot intervals, group 3 had 72-inch louvered fans spaced at 60-foot intervals, and group 4 had 52-inch panel fans spaced at 27-foot intervals. Each of the 4 pens was equipped with soaker lines mounted above the feed bunk, with identical settings for shower time and shower interval. Game camera footage indicated there was a difference in actual soaker on time among pens. Pens 1-3 had a 3-inch water supply line for soakers, while pen 4 had a 2-inch supply line. Nozzle spacing was identical in all pens at 6 feet apart.

Results
Mean cow temperatures averaged across days, in 15-minute increments (n = 96 per pen), were compared across pens using the Tukey-Kramer HSD test with a = 0.05. The mean for group 1 was statistically higher than the other groups (39.4 ± 0.03°C). The means of groups 2 and 4 were similar (39.1 ± 0.02°C and 39.0 ± 0.03°C). The mean of group 3 was statistically lower than the other groups (38.8 ± 0.02°C). Over the entire evaluation period (n = 667 15-minute increments), the frequency of temperatures over 39.17°C varied by group, with group 3 having only 10.3% readings above 39.17°C compared to group 1 (78.0%), group 2 (33.7%), and group 4 (35.1%). Based on a logistic model, differences in the frequency above threshold were significantly different between groups (P < 0.01) except for groups 2 and 4 (P = 0.60).

Significance
There was a clear difference between the body temperatures of cows in the pen with no fans and cow temperatures in pens with fans present. Additionally, fan type in group 3 (72-inch louvered fan) appears to have had a more significant impact in reducing cow body temperature versus the other fan types. More investigation is needed to determine if this is a repeatable effect.