
TEACHING SOFTWARE DEVELOPMENT BY MEANS OF A CLASSROOM GAME:
THE SOFTWARE DEVELOPMENT GAME

Carlos Mario Zapata J.

Universidad Nacional de Colombia.
cmzapata@unalmed.edu.co

ABSTRACT

Software development is not only a matter of information
technology teams: business stakeholders can be involved in this
task at various stages. In addition, Software Engineering has
been traditionally taught to people, both technical and non-
technical, by means of regular and well-known methods, but
some other teaching strategies have been left out—games, case
studies, forums, and so forth—that could be applicable to
Software Engineering. There are some examples of these
alternative methods being employed in sciences like
management, medicine, and law. However, for teaching
Software Engineering, these strategies are still not applied. We
propose in this paper the software development game, a strategy
for teaching university students the dynamics of a software
project. Also, we summarize the results of the application of the
game to experimental subjects.

INTRODUCTION

Related to software development, business stakeholders are
people who have some interest in a software application. Almost
any subject or person can be recruited as a business stakeholder
continuously during a given work task. This fact reinforces the
need for teaching Software Engineering as a part of professional
training for business people.

Software Engineering is a special discipline. It is a mix of
three kinds of abilities: Engineering and Computer Sciences
Knowledge, Software Development Methods, and Management
and Communication Skills. The software industry requires
professionals with the three abilities mentioned above, but
Software Engineering has been taught by means of traditional
methods (for example Lectures and “Toy” Practical Projects)
with a small amount of changes in these methods (Baker,
Navarro, & van der Hoek, 2005). Practical projects are also
highlighted by Stiller and LeBlanc (2002), though some of the
skills required by Software Engineers are not completely
developed by using this method.

Wankat and Oreovicz (1993) proposed some methods for
teaching Engineering in a broad sense, including lectures and
practical projects; most of these proposed methods are rarely
used in Software Engineering teaching. They suggested that
traditional Engineering teaching must be complemented with
new alternative methods, and they recognized four kinds of
alternative methods for teaching Engineering:
• Technological Methods, for example computer or video

games for teaching software design and other topics.

• Non-Technological Methods, including Case Study, fun
activities without use of computers, and new strategies for
practical projects.

• Labs, similar to Physics and Chemistry laboratories, as
suggested by ACM and IEEE (2001) for Computer
Sciences.

• One-to-one Education, for example in Question Answering
and Tutoring.

Technological Methods are the most used alternative methods
for teaching Software Engineering. However, there are still
problems to be solved:

• They require a big amount of Hardware and Software
resources. A typical class of computer games requires one
computer for every student, and universities often have
problems with the availability of this kind of resources.

• The growing number of registered Software Engineering
students collides with the stable number of Software
Engineering professors. The big amount of students, again,
constrains the availability of human resources for teaching.
Software Engineering laboratories share with Technological

Methods the first problem, while one-to-one Education share the
second one with them.

Non-Technological methods are not constrained by the two
mentioned problems. Fun activities and Case Studies can be
hosted by only one professor, no matter how many students are
registered in such course. Also, this kind of activities does not
need Software and Hardware resources. However, non-
Technological Methods have still low usage in Software
Engineering teaching.

There are examples of educational games in sciences like
Management, Law, and Medicine:
• “The beer game” (Senge, 1994) has been played by many

generations of business managers, stock managers, supply
department employees, students, and so forth. This game is
a non-Technological stock management game.

• “Production of a maple leaf souvenir” (Wang, 2004) is a
game designed by Manitoba University for teaching Total
Quality Management concepts.

• “The Federal-mogul business game” (Petty, Hooker, &
Barber, 2001) and other simulators (Al-Jibouri, Mawdesley,
Scott, & Gribble, 2005) have been used for practicing
project planning and controlling.

• Dynamic simulators and educational games (Foss & Eikaas,
2006) have been used for teaching engineering concepts in a
broad sense.

• Case Studies have been one of the most used methods
(especially in sciences like Law and Medicine) in some
universities (Harvard, for example).
Related to Software Engineering, there are few reported

experiences with this kind of games:

156 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

mailto:cmzapata@unalmed.edu.co

• Web-based games have been designed for promoting
tournaments and competitions among students in the field of
programming applications. The issues to be practiced are
data structures (Lawrence, 2006), construction education
(Kartam & Al-Reshaid, 2002), and general concepts about
engineering (O’Brien, Bernold, & Akroyd, 1998).

• “Problems and Programmers” (Baker, et al., 2005) is a card
game for teaching software development life cycle.

• “Requirements game” (Zapata & Awad, 2007) is a game for
writing documentation and building a little software piece in
a 120-minute class.
We propose in this paper “The software development

game”, a non-Technological educational game for contributing
to teaching some special topics related to software development.
This game tries to solve part of the remaining problems of
Software Engineering teaching.

This paper is organized as follows: in Section 2 we discuss
the role of games as they are used in teaching some disciplines.
“The software development game” is presented in Section 3. In
Section 4 we summarize and discuss some of the results
extracted from the application of the game. In Section 5 we
present some conclusions, and in Section 6 we present future
work related to this game and non-Technological Methods.

GAMES AS A LEARNING STRATEGY

Bohem (2006) suggests some strategies for future Software
Engineering teaching like “Helping students learn how to learn,
through state-of-the-art analyses, future-oriented educational
games and exercises, and participation in research”. This
suggestion is supported by Felder, Woods, Stice, & Rugarcia
(2000), who say that inwards-class learning must be active and
collaborative; in this way, students are prone to react to
knowledge process. In Lectures, students have a passive attitude,
and professors are responsible for spreading the concepts.

Some authors argue that strategies like inwards-class games
can help traditional Software Engineering teaching, despite their
low usage in teaching. The main reasons for this assertion are:
• Motivation. Games are fun, and games can generate

knowledge to their players. Lectures are not commonly fun,
but games are almost undoubtedly enjoyable. Inwards-class
games as a way to teach with motivation are discussed by
Jensen (2006), Lee, Luchini, Michael, Norris, & Soloway
(2004), and Dibona (2004).

• Representativity. We can simulate reality by means of
inwards-class games (Kasvi, 2000). Gee (2003) exemplifies
the kind of knowledge a child can acquire playing “Age of
Mythology®”; in this case, past or imaginary stories are
simulated in the game, and children can review similar
concepts in ancient history.

• Interactivity and dynamism. Games are not only for
representation purposes; we can interact with these
representations (Kasvi, 2000). We can re-create entire
battles or simulate desired behaviors in order to experience
them over and over again. Video or computer games, or

board games as “Monopoly®” or “Clue®”, can be played
uncountable times, and we can learn from them.

• Conflict. Challenges among players give interest to the
game until the end (Pivec, Dziabenko, & Schinner, 2003).

• Safety. Through games is possible to re-create reality in a
safely manner. No injuries or physical dangers are
experienced in a game (Kasvi, 2000). Battles in “Age of
Mythology®”, for example, have a completely controlled
environment, with no damages for players.
Klassen and Willoughby (2003) show other reasons for

using inwards-class games as learning strategies:
• The gained insight should be unknown until the game is

played. Players reach a meaningful learning stage, because
they experience the game. New and important notions are
deducted by students with this experience.

• Higher participation means higher learning. No matter if
they win or lose, players with more interaction with the
game have better chance to learn some lessons from the
game.

• Low level of stress for the players. Results of the game are
not important; participation in games is fun, and playfulness
reduces stress.

• Simple materials can be used. An inwards-class game can
be conducted with a board or a set of dices. With the
exception of video or computer games, no technology is
required for an inwards-class game.
For the above mentioned reasons, we propose an inwards-

class game for surpassing some of the constraints identified in
Software Engineering teaching. In the next section we explain
“The Software Development game”.

SOFTWARE DEVELOPMENT GAME

GOAL OF THE GAME
Players must build origami boxes with one of the following

four groups of letters, SO, FT, WA or RE. Every box represents
a software module (a part of a software piece that can be
exchangeable with others). One group of four modules forms
one software piece (a complete word, SOFTWARE, made of
four modules). Every module must accomplish a set of pre-
defined requirements which can be discussed—for the sake
clarity—with the director of the game. The goal, therefore, is
that the players must compete in groups to gain profits from an
imaginary software company that makes software modules. In
doing so, players are involved in the particularities of software
development: communication breakdown, isolated work, and
lack of planning.

GAME MATERIALS
• Specifications sheet. It has the origami instructions to form

a gift box. The design is extracted from Glynn (1999) and is
showed in Figure 1.

157 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

• Raw materials sheet (for modules). It has four groups of
letters (SO, FT, WA, and RE) arranged in a special way (see
Figure 2).

• Game control sheet. It has a table for compiling data from the
game, in order to determine the winner of the game (see
Table 1).

Figure 1. Specifications sheet.

158 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

PROCEDURE
• Players are distributed in teams. Every team has one

manager and a variable number of operative employees.
• Game director explains the rules of the game in a 10-minute

session. The costs and incomes from Table 1 and the

importance of following the requirements must be included
in this explanatory session.

Figure 2. Raw materials sheet.

TEAM REGISTER SHEET

Team number

Description Quantity
Unit
Value

Total
Value

Specification sheets 500
Raw material sheets for
modules 80
Manager 300
Workers 150
Cost sum
Software modules 150
"Software" complete word 200
Income sum
Profits or losses

Table 1. Game control sheet

• Game director “sells” to every team one specification sheet
and the first raw materials sheet. In addition, game director

159 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

notifies every team the cost of manager and operative
employees.

• Teams practice module building in a 5-minute session.
Managers must decide how many raw material sheets need
for a 50-minute session of the game. Simultaneously, game
director must explicit the following requirements for the
modules:

o Unripped
o Without wrinkles
o Without draws
o Invisible slashing
o Letters within the central square
o Cleanness
o Without additional folding
o Numbered in the right face

• Game director must “sell” the number of raw material sheets
and pencils required by every manager. This process must
be completed within 5 minutes. There is only one purchase
per team. Surplus material has no refound process.

Number Year/

semester
Course Number of

participants
Profile Answered

questions
1 2005_01 Introduction to

Systems
Engineering

59 First-semester students of
Systems Engineering and
Informatics

1, 2, and 3

2 2005_01 Requirements
Engineering

12 Sixth to Ninth semester
students of Systems
Engineering and
Informatics

1 and 2

3 2005_02 Introduction to
Systems
Engineering

43 First-semester students of
Systems Engineering and
Informatics

1 and 2

4 2005_02 Requirements
Engineering

5 Sixth to Ninth semester
students of Systems
Engineering and
Informatics

1 and 2

5 2005_02 English IV 10 Heterogeneous group of
students, teachers, and
university employees from
different universities

1 and 2

6 2006_01 Introduction to
Systems
Engineering

90 First-semester students of
Systems Engineering and
Informatics

None

7 2006_01 Software
Engineering and
Linguistics
Engineering

14 Mixed Group of students
and teachers from these
areas

1 and 2

8 2006_01 Advanced issues
on Software
Engineering

26 First-semester students
from Systems Engineering
Master course

1 and 3

9 2006_03 Introduction to
Systems
Engineering

60 First-semester students of
Systems Engineering and
Informatics

None

Table 2. Data of the participants

• Game director registers in a game control sheet data for
every group: number of specifications sheets, number of raw
material sheets, number of pencils, number of managers,
and number of operative employees.

• Game director registers, in a visible place, the starting time
for the 50-minute-game period.

• Teams build modules in the 50-minute period. Within this
period only managers can talk to game director when asking
questions. Game director must check the compiling of the
rules.

160 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

• Game director announces the end of the 50-minute period.
He must receive the elaborated modules matching the
established requirements. The received modules and the
number of software pieces are registered in the game control
sheet. The role of the game director at this stage must be
characterized by strictness in receiving the modules, in order
to guarantee the needed understanding of the requirements.

• Game director summarizes the results and determines the
winner of the game.

• Game director hosts a 20-minute discussion about game
results and acquired learning. In this process, it is crucial
that players must build the knowledge. Game director only
assigns participation turns and registers opinions of the
players on the board.

• Game director presents conclusions for the game in a 5-
minute session.

OUTPUT OF THE GAME APPLICATION

Software development game has been played with nine

different groups of people with different profiles. Table 2
summarizes application dates, name of the courses, amount of
participants, and profiles of every group. Feedback has been
obtained through a survey, conducted by the director of the
game, in which participants must answer some of the three
following questions:

(1) What did you learn from the game?
(2) What do you think you need to win the game?
(3) What kind of modifications do you think the game

needs?
Table 2 also shows what question was answered by the

groups.

The reason why the survey had open questions was that we
wanted to know, avoiding biases in the answers, what the
learning issues supplied by the game were. The survey was
answered by 169 participants; question 3 was answered only by
the groups 4 and 8, and question 2 was not answered by group 8.
Due to the fact that group 8 was integrated by Magister students,
this group showed a special behavior related to the game: they
played the game with the purpose of improving the game itself.

Learning % Aspect
Speciality-task division 48 People
Previous planning of expenditures and limit time 45 Project
Team work 40 People
Communication among team members 28 People
Permanent analyst-stakeholder communication 21 Process
Final product must compile requirements 20 Product
Understanding the problem from the beginning 17 Process
Permanent monitoring of product quality 14 Process
“It is better low production with high quality than high
production with low quality”

11 Product

Work under pressure 8 Project
Origami training 8 People
Acknowledgement of different stages of the development
process

7 Process

“Training can be achieved through work practice” 6 People
“Previous experience is important in software development” 5 Project
A good strategy is hended 3 Project
External advising is important 1 Project

Table 3. Summary of answers for the first question.

Answers of the participants were tabulated for determining
what it could be learning issues, requirements for winning the
game, or improvements suggested by players of the game.
Responses were grouped by similarities. Tables 3, 4, and 5 show
the answers to the survey.

Due to the fact that Software Development Game is related
to software project management, we analyzed the results with 4
P’s model presented by Pressman (2004). The main aspects to be
concerned in this model were: People, Product, Process, and
Project. From this point of view, Pressman (2004) suggests that
efficacy in a software project is highly influenced by People.
This assertion was shared by the participants of the game, even
more, three of the five common answers to the survey were
related to People. These answers were:
• 48% of the participants learnt that the subdivision is very

important for a software project into specialized tasks. The
subdivision must be made by using the abilities of the
people involved in the project. Software Development
Game is a simulation of a real software project, and the
roles are completely defined and distinguished as analyst,
designer, programmer, project director, manager, and
stakeholder.

• 40% of the participants learnt that team work is important
for achieving the goals of the project.

• 28% of the participants learnt that good teams have good
internal communication. Communication is a basic aspect of

161 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

a qualified software development team, and it is one of the
most important elements in Software Engineering teaching.
Also, 45% of the participants learnt the importance of good

planning of expenditures and limit times before starting software
development. This assertion belongs to Project aspect of the 4
P’s model, and it is highly co-related to People dimension.
According to the participants, to make estimations of limit time
and expenditures, it is necessary to recognize the capabilities of
the team; this is crucial to define the real production capability
of a software enterprise.

The last of the five main answers, as referred by 21% of the
participants, was related to the Process aspect of the 4 P’s model.
People answer that the software projects need continuous
analyst-stakeholder communication, and this issue is focused
properly in the Requirements Engineering course; furthermore, it
must be known and practiced by good Software Engineers, and it
is crucial for determining stakeholders’ needs and expectations.

The sixth lesson learnt, proposed by 20% of the participants,
was related to the compiling of the requirements by the product

itself, a matter of enormous importance for the acceptance of
software by stakeholders. This is one of the final goals of
Software Engineering, even though, it is the source of
maintenance problems in the software, and it is the main cause
of stakeholder’s disagreement.

Need for winning the game % Aspect
Ability-based task division 57 People
Adecuate planning of expenditure and limit time 48 Project
Acknowledgement and respect for the stakeholder
requirements

34 Process

Good internal communication 27 People
Origami training and learning 25 People
A good director 22 People
Software development knowledge 21 Process
Permanent monitoring 15 Process
Quietness 10 Project
Motivation 8 People
Additional time 3 Process
Accurate tools (scissors, rulers, etc.) 3 Project
Trust in self capabilities 1 People

Table 4. Summary of answers for the second question.

Proposed modifications to the game %
None 55
Previous training in origami techniques 11
Additional time for playing 11
Freedom for team group selection 9
Role exchange between people 6
Less manual job 5
Increasing of module size 4
Permissions to use better tools (scissors, rulers, etc.) 2
Diminishing of material costs 2
Variable time for analyzing the problem 2
Allowing of operative work of the manager 2

Table 5. Summary of answers for the third question.

Other answers about Software Development Game learning
are classified as:
• People: Training of the involved people in software

development is important to achieve the goals of the project.
Also, training can be the result of the development of many
software projects. In addition, software process must be
rapidly learnt by the development team. This is a challenge
for Software Engineering teaching, and it is the justification
for teaching software development methods (like RUP or
XP) and the abilities required for the people to get adapted
to them.

• Product: The participants mentioned the need for respecting
software quality, no matter the required time for developing
software. The pressure exercised by the stakeholders on the

162 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

proximity of limit time can originate avoiding software
requirements, and this can be a source of problems after the
software is delivered.

• Process: In this aspect, participants discussed three other
issues. First, in software development, we must understand
the problem from the beginning; a big amount of the game
time must be expended in understanding software
requirements, and this is one of the main goals of
Requirements Engineering. Second, permanent monitoring
by managers is needed in software development. Third,
knowledge of development process is crucial in software
development. The second and third issues are related to
Implementation and Maintenance phases, and these phases
are needed for a good quality of the software.

• Project: In this aspect, participants mentioned something
about working under pressure, the need of previous
experience, the adequacy of a good strategy, and the help of
external advising, as supplementary issues to planning. In
this sense, playing the Software Development Game helped
the participants to identify some of the variables involved in
real software development projects.
For the second question (what do you think you need to win

the game?), participants answered consistently with the first
question. Task division based on people abilities was the most
common answer (57%), and limit time and expenditure planning
was the second one (48%). Two responses not directly
associated to the first question answers were:
• The need to have a good director for the project, expressed

by 22% of the participants. This issue can be a summary of
many capabilities previously mentioned, for example
planning, and people hiring.

• Training and learning origami, mentioned by 25% of the
participants. This issue can be compared with the required
people capabilities in software development. For Software
Engineering these capabilities are: analyzing, designing, and
programming.
Notwithstanding the last question, related to the proposed

modifications to the game, was answered only by 85 out of the
169 participants of the game, 55% of the answers suggested no
modifications to the game. None of the proposed modifications
was shared by a majority of the participants. With only 11% of
the participants, two of the most voted modifications were:
• More training in origami before starting the game, and
• More time for playing the game (especially for making the

boxes).

CONCLUSIONS

As a funny alternative to the traditional methods employed
for teaching Software Engineering, in this paper we proposed an
inwards-class game for teaching software development. This
game is a simulation of a real software development project, and
it does not need technological materials, making it easy to play
in every environment.

Furthermore, we assessed the results of the game application
with a survey to the participants. In this survey, we found that
many of the issues concerned to the 4 P’s model (People,
Product, Process, and Project—a model for software
management) were mentioned by the participants, mostly the
need for planning, the subdivision of the development tasks, the

team work, and the communication among participants in
software development (including stakeholders).

The development of non-technological inwards-class games
can be an opportunity for complementing the way that Software
Engineering is traditionally taught. In this way, it is important to
note that software development game does not try to replace
traditional methods for teaching Software Engineering. Instead
of this, we highlight the fact that software development game is
only a complement for reinforcing what we can learn in
Software Engineering courses. However, the practical way in
what software development game is played makes it a good first
activity for motivating the participation of business stakeholders
in software development processes. A special course of Software
Engineering for non-technical people can involve this kind of
activities, especially in order to present, by means of a
simulation activity, the consequences of bad performing
stakeholder-tasks related to software development.

FUTURE WORK

Some work is still to be done about this topic:
• Development of non-technological inwards-class games

about other issues like software development methods,
consistency between diagrams, and modeling languages.

• Development of this type of games, trying to review the
most important issues covered by this game, but trying to
review them in-deep; these issues are planning,
communication and people management.

• Improvement of the game by analyzing the suggestions
made by the participants.

• Playing the game with people of a real enterprise, in other to
validate the behavior adopted by the players against the
roles of real software development projects.

• Development of an introductory course of Software
Engineering directed to business stakeholders. The contents
and the methodology must be adapted to the knowledge and
skills related to non-technical people involved in software
development processes.

AKNOWLEDGMENT

This work has been developed under the research Project

“Un modelo de diálogo para la generación automática de
especificaciones en UN-Lencep”, funded by DIME.

REFERENCES

ACM & IEEE. (2001). Computing Curricula 2001 Computer

Science. ACM Journal of Educational Resources in
Computing, 1(3), 1–240.

Al-Jibouri, S., Mawdesley, M., Scott, D., & Gribble, S. (2005).
The Use of a Simulation Model as a Game for Teaching
Management of Projects in Construction. International
Journal of Engineering Education, 21(6), 1195–1202.

Baker, A., Navarro, E., & van der Hoek, A. (2005). An
experimental card game for teaching software engineering
processes. The Journal of Systems and Software, 75, 3–16.

163 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

Boehm, B. (2006). A View of 20th and 21st Century Software
Engineering. Proceedings of the 28th international
conference on Software engineering, Shanghai, 12–29.

Dibona, Ch. (2004, February). A conversation with Will Harvey.
ACM Queue, 21–27.

Felder, R., Woods, D., Stice, J., & Rugarcia, A. (2000). The
future of Engineering Education II: Teaching methods that
work. Chemical Engineering Education, 34(1), 26–39.

Foss, B. & Eikaas, T. (2006). Game play in Engineering
Education—Concept and Experimental Results.
International Journal of Engineering Education, 22(5),
1043–1052.

Gee, J. (2003). What Video Games Have to Teach Us About
Learning and Literacy. ACM Computers in Entertainment,
1(1), 1–4.

Glynn, R. (1999). Origami Gift box. Retrieved December 15,
2008, from http://dev.origami.com/images_pdf/giftbox.pdf.

Jensen, B. (2006). Responding to the enrollment crisis—
Alternative strategies to increasing students interest in
Computer Science. Journal of Computing Sciences in
Colleges, 21(4), 8–8.

Kartam, N. & Al-Reshaid, K. (2002). Design and
Implementation of Web-based Multimedia Techniques for
Construction Education. International Journal of
Engineering Education, 18(6), 682–696.

Kasvi, J. (2000). Not Just Fun and Games—Internet Games as a
Training Medium. In P. Kymäläinen & L. C. Seppänen
(Eds.), Cosiga—Learning With Computerised Simulation
Games (pp. 22–33). Helsinki, Skidoo.

Klassen, K. & Willoughby, K. (2003). In-Class Simulation
Games: Assessing Student Learning. Journal of Information
Technology Education, 2, 1–13.

Lawrence, R. (2006). Teaching data structures using competitive
games. IEEE Transactions on Education, 49(1), 459–466.

Lee, J., Luchini, K., Michael, B., Norris, C. & Soloway, E.
(2004). More than just fun and games: assessing the value
of educational video games in the classroom. Proceedings
of CHI '04 extended abstracts on Human factors in
computing systems, Vienna, 1375–1378.

O’Brien, T., Bernold, L. & Akroyd, D. (1998). Myers-Briggs
Type Indicator and Academic Achievement in Engineering
Education. International Journal of Engineering Education,
14(5), 311–315.

Petty, D. J., Hooker, S. J., & Barber, K. D. (2001). The Federal-
Mogul Business Game: The Development and Application
of an Educational Aid for Planning and Control.
International Journal of Engineering Education, 17(6),
546–557.

Pivec, M., Dziabenko, O. & Schinner, I. (2003). Aspects of
Game-Based Learning. Proceedings of I-KNOW 03, the
Third International Conference on Knowledge Management,
Graz.

Pressman, R. (2004). S. Software Engineering: A Practitioner's
Approach, sixth edition. New York:McGraw-Hill.

Senge, P. (1994). The Fifth Discipline: The Art and Practice of
the Learning Organization. New York:Currency Doubleday.

Stiller, E. & LeBlanc, C. (2002). Effective Software Engineering
Pedagogy. Journal of Computing Sciences in Colleges,
17(6), 124–134.

Wang, G. G. (2004). Bringing Games into the Classroom in
Teaching Quality Control. International Journal of
Engineering Education, 20(5), 678–689.

Wankat, P. C. & Oreovicz, F. S. (1993). Teaching Engineering.
New York:McGraw-Hill.

Zapata, C. M. & Awad, G. (2007). Requirements Game:
Teaching Software Project Management. CLEI Electronic
Journal, 10(1). Retrieved from
http://www.clei.cl/cleiej/paper.php?id=133

164 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

SERIOUS PLAY:
SOFTWARE DEVELOPMENT GAME

Carlos Mario Zapata J.

Universidad Nacional de Colombia.
cmzapata@unalmed.edu.co

ABSTRACT

“Software Development Game” is a non-technological game for
reinforcing some concepts about software development and
project management. The game employs origami boxes for
simulating these processes. The target audience is composed of
any kind of professionals, who can be involved in any software
development process along their professional activity.

DESCRIPTION OF THE GAME

People elsewhere can be involved anytime into a complex
software development process. In fact, the development of
software applications can be a common activity for any kind of
enterprises. In particular, business organizations must deal with
a dilemma: software applications are to be developed or bought?
In either case, business stakeholders need some guidelines for
acting in a proper way.

Traditionally, software development teaching has been an
activity reserved for technical people, and business
stakeholders—related to this activity—can be considered as non-
technical people. Software development game is a funny way to
simulate the environment of a software development process.
With this game, technical and non-technical people can gain
conscious about the importance of communication, requirements
elicitation, and planning in software development process.

Players of software development game must “build”
software modules (origami boxes) matching a set of previously
stated requirements. In this process, communication plays a
crucial role: requirements must be completely understood by
managers in order to adequately transmit them to co-workers.
Then, planning and internal communication can achieve success
for one team.

Players are distributed in teams. Every team has one
manager and a variable number of operative employees. The
game director, who is also in charge of checking the compiling
of the rules, gives every team one specification sheet (a map for
cutting and folding sheets) and the first raw material sheet (a
simple sheet with four drawn syllables: “SO”, “FT”, “WA” and
“RE”) and then, explains, in a 10-minute session, the rules of the
game as follows.

First, teams practice module building in a 5-minute session.
Managers must decide how many raw material sheets are needed
for a 50-minute session of the game. Simultaneously, game
director must write down on the board the following conditions
of the modules at the moment of being hand-in: unripped,
without wrinkles, without draws, with invisible slashing, with
letters within the central square, clean, without additional
folding, numbered on the right face.

Second, the game director should conduct logistic actions
like “selling” the number of raw material sheets and pencils
required by every manager in just one purchase moment in a 5-
minute period, registering the costs presented in one form, and
writing down, in a visible place, the game starting time. In third
place, the teams build modules in the 50-minute period, in which
only managers can receive insights about the game from the
game director. After that, in order to determine the winner of the
game, the director announces the end of the 50-minute period,
receives the elaborated modules matching the established
requirements, and fills out the incomes of the same previous
form. Surplus material has no refund process.

Finally, the game director, assigning participation turns and
registering the opinions of the players on the board, hosts a 20-
minute discussion about game results and acquired learning, and
presents conclusions about the game in a 5-minute session.

AKNOWLEDGMENT

This work has been developed under the research Project

“Un modelo de diálogo para la generación automática de
especificaciones en UN-Lencep”, funded by DIME.

155 | Developments in Business Simulation and Experiential Learning, Volume 36, 2009

mailto:cmzapata@unalmed.edu.co

	Table of Contents
	Volume 36, 2009
	Protecting Academic Integrity: Student Assessment In The Online Environment
	Pedagogical Shift: Teaching Report Writing For Accountants Online
	Increasing Student Learning In An Investment Management Course Through The Innovative Use Of Experiential Learning Pedagogy
	A Moral Development Unit For Business Courses
	Dividing Up Grandma’s Things: A Multifaceted Exercise In Critical Thinking
	Application Of Haekel’s Thesis To ABSEL Development
	Linking Stories With On-Line Threaded Discussions For Critical Thinking In Management Curriculum
	Why Have We Neglected Vicarious Experiential Learning?
	A Triadic Multi-Disciplinary Approach To Enhancing The Efficacy Of Experiential Learning
	Movement Toward Increased Student Roles In The Design Of Experiential Exercises
	Ready-Mix Concrete Company: An Experiential Exercise In Management Theory
	Using Portfolio Theory In A General Management Simulation
	An Experimental Analysis Of Advertising Strategies And Advertising
	The Relationship Between Goal Orientation And Simulation Performance With Attitude Change And Perceived Learning
	Beyond The Profitable-Product Death Spiral: Managing Product Mix In An Environment Of Constrained Resources
	Online Marketing Control With The Strategic Business Unit Analysis Package
	Beat The Market Game
	Creating Decision Support Systems In Business Simulation Games
	The Use Of Computer-Assisted, Interactive Role-Play Simulation In China
	Asia Marketing: An International Business Game
	An Empirical Test Of “Behavioral Immersion” In Experiential Learning
	Existing And Emerging Business Simulation-Game Design Movements
	Computerized Business Simulations: A Systems Dynamics Process
	Service Launch
	Evaluating Business Plans In A Simulation Environment
	Teaching Software Development By Means Of A Classroom Game: The Software Development Game
	Group Decision Experiments Using Business Game - Problem Solving With Conflict
	Luna: A Role Play Game For Learning Incoterms 2000
	Entrepreneurship: A Game Of Risk And Reward Phase I -- The Search For Opportunity
	The Wee Game: A Pre-Game
	Learning Inhibitors In Business Simulations And Games
	New Version Of An Old Simulation Helps Build A Perfect Capstone Course
	Project Competitor: A Simulation Game For Project Management With 2 Models And 2 Modes
	Mitigating The Winner’s Curse In The Auction Market Of A Computer-Assisted Business Gaming Simulation
	Evaluation Of Collaborative Filtering By Agent-Based Simulation Considering Market Environment
	Marketing Simulation Game Decision Making Experience And Its Impact On Indecisiveness Among Introductory Marketing Students
	Individual And Organizational Learning In A Top Management Game
	In Pursuit Of Stockholder Value: Reinforcing Core Concepts In A Business Strategy Simulation With A “Shadow” Stock Market Competition
	The Simplicity Paradox: Another Look At Complexity In Design Of Simulations And Experiential Exercises
	In Search Of The Ethnocentric Consumer: Experiencing “Laddering” Research In International Advertising
	The Paradise Islands Revisited: Trouble In Paradise
	Developing And Assessing Student Information Literacy Competency
	Do First Mover Advantages Exist In Competitive Board Games: The Importance Of Zugzwang
	The Natural Debriefing Approach: A Case In A Simple Business Game Pursued For Perfect Communications
	New Product Development Simulation
	Dominance In On Line Business Games Competitions
	Cooperative Business Game With Framing Effect
	Experiential Exercises In The Online Environment
	Enhancing Web-Based Simulations With Game Elements For Increased Engagement
	The Ginseng Game
	Experience Business Using a Simple Business Simulation

