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ABSTRACT 
 

Although fairness is central to society and to games that are 
taken seriously, the structural aspect of fairness has not been 
addressed as a problem of games. Structural fairness in a game 
of multiple episodes with multiple parties contending for limited 
opportunities can be assured by an appropriate rotational 
procedure over a sufficient number of episodes. For fixed 
number of parties, positional rotation assures complete position 
fairness. In contrast, order rotation assures both complete 
positional fairness and complete order fairness, but only when 
number-of-party and number-of-episode conditions are 
satisfied. For variable number of parties, arrival rotation 
assures fairness to parties added last. Order rotation may 
assure fairness better than proportional allocation when 
opportunities cannot be distributed exactly in the proportions 
required. The Gold and Pray (1990) model can be adapted to 
include rotation. Structural fairness as equality of realized, 
rather than expected, opportunity cannot be assured by random 
selection; rotation is necessary. 

 
INTRODUCTION 

 
Consider a business game in which all firms require the 

same opportunities (or resources) from a single modeled entity. 
The firms are each managed by a team of students, who submit 
decisions for processing on an episode-by-episode basis, a 
classical business-game design pioneered in the early 1950s 
(Wolfe, 1993) and still in common use today. Suppose the 
opportunities required are labeled building permits and the 
modeled entity is said to be the government. In this case, the 
game would simulate the building construction industry. For 
this business game, and the many other games with a limited-
opportunity element, the question of interest to game designers 
is how building permits (or opportunities) should be allocated to 
firms if the number of building permits is fewer than the total 
number sought by the firms. 

The question of how limited opportunities should be 
allocated is the fundamental question in the study of economics, 
which generally prefers that the allocation should be based on 
free-market processes. In the  case of building permits, the 
requirements of the firms might be addressed by asking the 
firms to bid for available permits. But if a free-market process is 
not built into the game, what allocation rule should be applied? 

In fact, the use of free-market processes wherein players 
trade with other players (Cannon, Yaprak, & Mokra, 1999; 
Thavikulwat, 1997) is relatively new in business games. The 
vast majority of business games in common use apply 
mathematics to model the market (Cannon, Cannon, & 
Schwaiger, 2009; Cannon & Schwaiger, 2005; Gold & Pray, 
2001; Goosen, 2009; Teach, 2007; Wolfe & Gold, 2007). Of the 
various models, the classic one is Gold and Pray’s (1983, 1984, 
1990), which models a market of sales opportunities in three-
steps. The first step is to compute the number of opportunities 
(e.g., quantity demanded by the market) at the industry level 
(e.g., for all firms combined), the second step is to allocate the 

opportunities to the firms, and the third step is to reallocate 
opportunities in excess of product availability (e.g., stock outs) 
to the firms with a shortage from the second step, but only when 
stock outs are extreme. The three-step approach allocates 
opportunities without regard to product availability in the first 
two steps. It accounts for product availability in the third step, 
but only to the extent that opportunities greatly exceed product 
availability for some of the firms. Substituting the more general 
term requirements for product availability, the three-step 
approach may be said to be insensitive to requirements.  

Requirements-insensitive allocation may be satisfactory for 
markets where opportunities are truly independent of 
requirements, so that fairness is not an issue. In the general case 
where opportunities depend upon requirements, however, 
fairness could be an issue. When fairness is an issue, fairness 
must rule, for as Rawls (1957, 2001) has argued, without 
fairness there can be no justice; without justice there can be no 
well-ordered society. Fairness may be especially important in a 
game, for although a game is an “activity standing quite 
consciously outside ‘ordinary’ life as being ‘not 
serious’” (Huizinga, 1950, p. 13), games are supposed to be 
fair, so the players may have less tolerance for unfairness in a 
game than they would have in everyday-world activities. 

 
WHAT IS FAIRNESS? 

 
Fairness may be defined as equality of opportunity, a 

philosophical definition understood to represent a political ideal 
in a society of necessarily unequal opportunities (Stanford 
Encyclopedia of Philosophy, 2015). The definition begs the 
question of what constitutes an opportunity in a game of 
competing parties, where a party may be an individual, team, or 
community, depending upon the particulars of the game. If the 
opportunity is to be first—first to make a move, as in chess, or 
first to receive building permits, as in the supposed building-
construction game—then only one party in a game can be first. 
If the toss of a coin should decide who is first, then that 
procedure may be acceptable to the players, but the fairness of 
the procedure depends on what happens later, for when things 
happen matters. In fact, fairness is about sequence, which 
together with synchronization and frequency constitutes the 
three elements of Moore’s (1963) sociological analysis of time. 
If you hit me, that may not be fair. But if I hit you in return, 
then that should be fair. 

More generally, fairness has two aspects: a structural aspect 
and a behavioral aspect. Structural fairness means that the 
architecture of the game is proper. Yet, even when the game is 
structurally fair, players may cheat, the behavioral aspect. This 
investigation, confined to structural fairness, recognizes but 
does not address cheating. 

So, the problem of structural fairness may be rectified by 
rotating the sequence of play between the parties. In a game of 
two competing parties, rotation alternate the first-mover (or last
-mover) advantage between the two parties, which requires the 
game to have an even number of episodes. In this case, the 
recipe is simple. If you make the first move in the first episode, 
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I make the first move in the second episode, and so forth. For 
the building-construction game, if your building-permit 
requirements are satisfied first in the first episode, with permits 
remaining left for me; then my building-permit requirements 
should be satisfied first in the second episode, with permits 
remaining left for you. 

But the recipe for a game of many competing parties is not 
so simple, for the number of ways many parties can be 
sequenced for rotation becomes rapidly very large as the 
number of parties rise, and only a subset of those ways are 
optimal. Thus, the number of ways by which a 6-party game 
can be sequenced is 6! = 720, too many to consider rotating 
through all of them in a single gaming event. The problem then 
is to identify the subset that is optimal for a realistic number of 
episodes in a single gaming event. As will be shown, the 
optimal subset for complete fairness in a 6-party game consists 
of only 6 episodes. More generally, any N-party game requires 
no more than 2N episodes for complete fairness. 

 
KINDS OF STRUCTURAL FAIRNESS 

 
Structural fairness is about sequence, the fairness of which 

depends upon what each party requires, what is available, and 
when each party arrives at the point of contention. In my view, 
a game of many parties and many episodes requires three kinds 
of structural fairness: positional fairness, order fairness, and 
arrival fairness. 

Positional fairness is of concern when every party requires 
as much of the contested item as any other party. In this case, a 
party’s position in the sequence is important but the identity of 
the party ahead is unimportant, because a difference in identity 
will not give rise to a difference in opportunity. 

Order fairness is of concern when some party requires 
much more of the contested items than other parties. In this 
case, standing behind the high-requirements party is especially 
disadvantageous irrespective of one’s position in the line.  

Arrival fairness is of concern when different parties arrive 
at the distribution point at arbitrarily different times. In this 
case, giving early arrivals the advantage of earlier service would 
be capricious. 

All three kinds of fairness can be resolved by rotation over 
a sufficiently large number of episodes. The objective is to 
maximize fairness over the fewest number of episodes. 

The exposition that follows expands on each kind of 
fairness and explains how each is optimally addressed by a 
specific rotational procedure, or recipe. The exposition is 
technical, so those interested only in a conceptual understanding 
of how fairness might apply in a business game may skip the 
rest of this section and go directly to next section, Proportional 
Allocation, where the fairness-assuring methods are applied to 
the supposed building-construction game. 

To minimize tedium, the exposition that follows assumes 
that the number of positions equals the number of parties. The 
assumption preserves generality, because dummy positions or 
dummy parties can be added for a perfect match whenever the 
number of positions do not equal the number of parties.  
 
POSITIONAL FAIRNESS 
 

I define complete positional fairness to mean that every 
party occupies each position in a sequence as frequently as any 
other party. The necessary condition for complete positional 
fairness is that the number of episodes must be an integer 
multiple of the number of parties. In a six-party, six-episode 
game, complete positional fairness is achieved by rotating the 

assignment of parties between episodes, as illustrated in 
Table 1, where the six parties are identified by the letters A 
through F. The rotation proceeds as follows: 

 
1. Assign the parties by a convenient process, such as 

alphabetical order or drawing lots, to all the positions of the 
first episode. 

2. Let xi, j refer to the party assigned to episode i and position 
j. Assign ordered letter to the parties of the first episode, A 
to x1,1, B to x1,2, C to x1,3, and so on up to N, the number of 
parties, so the number of positions equals the number of 
parties. 

3. Transpose the assignments of the first episode to the first 
position of N episodes, so the number of episodes also 
equals the number of parties. 

4. Then for i = 2 through i = N and j =  2 through j = N, assign 
xi, j = xi,j-1 + 1, where xi,j-1 + 1 refers to the next letter after 
xi,j-1, wrapping from the Nth letter back to the first letter 
when that next letter would exceed the Nth party.   

 

TABLE 1 
Complete Positional Fairness to Six Parties  

(A through F) Over Six Episodes 
 

 
 

This positional rotation procedure has an additive character 
that can been seen clearly if the parties are assigned integers, 
conveniently starting with zero (0), rather than letters such that 
0 replaces A, 1 replaces B, 2 replaces C, and so on. Then the 
procedure reduces to Equation 1. 

 
The result is a Latin-square assignment that may be 

duplicated exactly in sets of Ns if additional episodes are 
desired. Equation 1 can be simplified by dropping the offsetting 
constant, in which case the formula becomes Equation 2. The 
effect of dropping the constant is to rotate all sequences by two 
positions, without losing positional fairness. 

 
ORDER FAIRNESS 
 

I define complete order fairness to mean that the relative 
place of a party to every other party occurs with the same 
frequency for all parties, where relative place refers to a party 
either preceding or following another party. In the case of the 
six-party, six-episode game arranged as shown in Table 1, A 
precedes B five time, in the first and third through sixth 

Episode 
Position 

1 2 3 4 5 6 

1 A B C D E F 

2 B C D E F A 

3 C D E F A B 

4 D E F A B C 

5 E F A B C D 

6 F A B C D E 

.xij = (i + j—2) mod N (1) 

.xij = (i + j) mod N (2) 
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episodes, whereas B precedes A only once, in the second 
episode, so order fairness is incomplete. 

In the case of the four-party, four-episode game arranged as 
shown in Table 2, order fairness is complete. To see this, note 
that the number of ordered pairs for any number (N) of parties 
is equal to N × (N – 1), so for 4 parties we have 4 × 3 = 12 
ordered pairs, namely, AB, AC, AD, BA, BC, BD, CA, CB, 
CD, DA, DB, and DC. The AB order occurs in episodes 1 (A-
B) and 3 (A-D-B), the AC order occurs in episodes 1 (A-B-C) 
and 2 (A-C), and so forth. Every ordered pair occurs twice. 
Similarly, order fairness is complete in the six-party, six-
episode game arranged as shown in Table 3, for every ordered 
pair occurs thrice.  

Positional fairness also is complete in both of these 
arrangements, as inspection verifies. To wit, consider any party, 
such as B. Notice that B appears once and only once in every 
position of both tables. The same is true for any other party, 
proving complete position fairness.  

The arrangements of Tables 2 and 3 were generated by 
adjusting rotational assignments. The procedure proceeds as 
follows: 

 
1. Take the first three steps of positional rotation. 
2. Add a dummy N + 1 party. 
3. Then for i = 2 through i = N and j =  2 through j = N, assign 

xi, j = xi,j-1 + i, where xi,j-1 + i refers to the ith letter after xi,j-1, 
wrapping from the (N + 1)th letter back to the first letter 
when that next letter would exceed the (N + 1)th party.   
 

 
 

 

 

This order rotation procedure has a multiplicative character 
that can be seen clearly if the parties again are assigned integers 
rather than letters such that, as before, 0 replaces A, 1 replaces 
B, 2 replaces C, and so on. Then order rotation for i < N +  1 
reduces to: 

 
More generally, order rotation for any i is: 

 
where 

 
Order rotation assures complete positional and order 

fairness under two conditions: (a) the numbers of episodes is an 
integer multiple of the number of parties and (b) N + 1 is a 
prime number. This assertion can be proven. To simplify the 
proof without losing generality, assume i < N +  1, enabling the 
proof to be based on Equation 3. 

To prove positional fairness, consider Table 4, derived 
from ij – 1, Equation 3 before the modulus. Notice that the 
items in every row of Table 3 are transposed into every column, 
thus the items of row 3 (2, 5, 8…) are the same as the items of 
column 3 (2, 5, 8…). This is so because swapping i and j in ij – 
1 leaves the results unchanged. Since every row is transposed 
into a column, proving that the N consecutive items of every 
row computed from Equation 3 are unique suffices to prove 
positional fairness. 

 

TABLE 4 
ORDER ROTATION BEFORE THE MODULUS 

 

 
 
If a row of Equation 3 should contain two items that are 

identical, then the difference between the dividends of both 
items must be (ij2 – 1) – (ij1 – 1) = i(j2 – j1) = k(N + 1), where j1 
and j2 refer to the positions of the two items and k can be any 
integer. The second equality is required for the modulus to yield 
the same item but the second equality is impossible when N + 1 
is a prime number, which cannot be factored, because both i and 
j are less than N + 1. 

Furthermore, the set of positive integers that can be 
residuals of any positive integer mod (N + 1) is bounded by 0 

TABLE 2 
Complete Positional and Order Fairness to  

Four Parties (A-D) Over Four Episodes 

Episode 
Position 

1 2 3 4 

1 A B C D 

2 B D A C 

3 C A D B 

4 D C B A 

TABLE 3 
Complete Positional and Order Fairness to  

Six Parties (A-F) Over Six Episodes 

Episode 
Position 

1 2 3 4 5 6 

1 A B C D E F 

2 B D F A C E 

3 C F B E A D 

4 D A E B F C 

5 E C A F D B 

6 F E D C B A 

.xij = (ij - 1) mod (N + 1) (3) 

xij = (i'j - 1) mod (N + 1) (4) 

i' = [(i - 1) mod N] + 1 (5) 

Episode 
Position 

1 2 3 4 5 6 7 8 

1 0 1 2 3 4 5 6 7 

2 1 3 5 7 9 11 13 15 

3 2 5 8 11 14 17 20 23 

4 3 7 11 15 19 23 27 31 

5 4 9 14 19 24 29 34 39 

6 5 11 17 23 29 35 41 47 

7 6 13 20 27 34 41 48 55 

8 7 15 23 31 39 47 55 63 
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and N, but the items (xi,j) themselves are bounded by 0 and N – 
1, so N must not fall within the bounds of i < N +  1 and j < N +  
1. In fact, N lies just outside of the bounds, as the residual of the 
modulus N + 1 when i = N +  1 or j = N + 1 or both. Thus, the N 
consecutive items of every position of an episode must be 
unique and bounded by 0 and N – 1, proving positional fairness. 

To prove order fairness, consider Table 5, derived from 
Equation 3 after applying modulus N + 1 = 7, thus N = 6. 
Notice that the items are inverted in positions 1 and 6, positions 
2 and 5, and positions 3 and 4. Likewise, the items are inverted 
in episodes 1 and 6, episodes 2 and 5, and episodes 3 and 4. The 
inversions are specific to N = 6. 

 

TABLE 5 
Order Rotation After Modulo 7 

 

 
 

The inversions mean that the dividend of the inverted items 
differ by k(N +  1), where k, as before, can be any integer. The 
inverse of episode i is episode N + 1 – i = i″ and the inverse of 
position j is N + 1 – j = j″, so the dividend-differences for 
inversion is as follows: 

 
Equation 6 is true because its left side reduces to (N – i – j)

(N +  1), so every position truly is inverted in another position. 
This implies that whenever an item precedes another item in an 
episode, that item follows the other item in another episode, 
proving order fairness for any N items.  

Accordingly, order rotation assures both complete 
positional fairness and complete order fairness when the 
number of episodes is an integer multiple of the number of 
parties and the number of parties is one less than any prime 
number, which covers Ns of 2, 4, 6, 10, and 12. By adding a 
step, both N = 3 and N = 8 also can be covered. 

For N = 3, complete positional and order fairness can be 
achieved for episodes that are multiples of six by stacking two 3 
× 3 Latin squares created by positional rotation such that the 
order of the parties of every episode is reversed between the 
two Latin squares. The result is a set of six sequences composed 
of all 3! = 6 possible sequences of 3 parties, so both positional 
and order fairness are assured. 

Table 6 shows two stacked 3 × 3 Latin squares so 
constructed. The formula for the second N × N Latin square of 
the stack, i > N, is given in Equation 7. As with Equations 1 and 
2, Equation 7 also can be simplified by dropping the offsetting 

N – 1, in which case the formula becomes Equation 8. 

 
TABLE 6 

Stacked Arithmetic Rotation for Complete Positional and 
Order Fairness to Three Parties Over Six Episodes 

 

 

 
The stacking procedure extends to Ns of any size. Stacking 

assures positional fairness because the first N × N Latin square 
is constructed by positional rotation and the second N × N Latin 
square merely inverts the order of the positions. Thus, in Table 
6, the parties in the first position of the second Latin square are 
the parties in the third position of the first Latin square, and vice 
versa. Stacking also assures order fairness because each 
sequence of the second N × N Latin square is constructed by 
reversing the corresponding sequence of the first Latin square. 
So, complete positional fairness and complete order fairness is 
obtained in any N-party game in 2N episodes by positional 
rotation over the first N episodes and reversing the sequential 
ordering of the parties over the second N episodes. 

For N = 8, eight is twice four, so an 8 × 8 Latin square can 
be constructed by tiling two 4 × 4 Latin squares on an 
alternating basis, each 4 × 4 Latin square constructed by 
including only four parties excluded from the other 4 × 4 Latin 
square. Table 7 shows the result of tiling that starts with the 4 × 
4 Latin square of Table 2. So, for an eight-party game, tiling 
gives rise to complete positional fairness and complete order 
fairness in eight episodes, less than half the number of episodes 
that stacking requires. 

Other cases generally require a choice between complete 
positional fairness and complete order fairness. Positional 
rotation assures complete positional fairness whenever the 
number of episodes is an integer multiple of the number of 
parties, because rotation causes each position to be occupied by 
the next party in the next episode. Order rotation by adding 
dummy parties, and positions, until the number of parties is one 
less than the next prime number assures complete order fairness 
when the number of episodes is an integer multiple of the 
number of parties, dummies included. Applying this last 
procedure to seven parties using Equation 3 and modulo 11 
gives rise to Table 8, where the dummy parties appear as blanks 
in the table. Tightening the table by shifting parties to the left to 
occupy blanks, essentially skipping over dummies, gives rise to 
Table 9. Notice that the order of the parties in Table 9 is 
reversed between episodes 1 and 10, 2 and 9, 3 and 8, 4 and 7, 

Episode 
Position 

1 2 3 4 5 6 7 8 

1 0 1 2 3 4 5 6 0 

2 1 3 5 0 2 4 6 1 

3 2 5 1 4 0 3 6 2 

4 3 0 4 1 5 2 6 3 

5 4 2 0 5 3 1 6 4 

6 5 4 3 2 1 0 6 5 

7 6 6 6 6 6 6 6 6 

8 0 1 2 3 4 5 6 0 

(i"j" - 1) - (ij - 1) = (N + 1 - i) - (ij - 1) = k(N + 1) (6) 

Episode 
Position 

1 2 3 

1 A B C 

2 B C A 

3 C A B 

4 C B A 

5 A C B 

6 B A C 

.xi,j = (i - j + N - 1) mod N (7) 

.xi,j = (i - j) mod N (8) 
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and 5 and 6, so order fairness is complete. 
 

TABLE 7 
Tiled Order Rotation for Complete Positional and Order 

Fairness toEight Parties Over Eight Episodes  
 

 
 

TABLE 8 
Order Rotation for 7 Parties over 10 Episodes Using 
Modulo 11 and Showing Dummy Parties as Blanks 

 

 
 
ARRIVAL FAIRNESS 
 

I define complete arrival fairness to mean that every party 
added to a sequence is inserted into a position with the same 
frequency as any other position in the sequence. For example, if 
party D is added to the XXX sequence, where each X represents 
a party of the existing sequence, D should appear in the first 
through fourth position with equal frequency. Thus, the 
sequence of four parties over four continuous episodes that 
yield complete arrival fairness could be DXXX, XDXX, 
XXDX, and XXXD, but it would not be DXXX, DXXX, 
XXDX, and XXXD. In the former case, party D appears once in 
the first through fourth position over the four episodes; in the 
latter case, party D appears twice in the first position and does 
not appear at all in the second position over the four episodes. 

To construct the arrival-fair sequence for each episode, my 
formula, applied successively to each party from the first party 
(n = 1) to the last party (n = N) as that party is added to the 
sequence, is as given in Equation 9. 

 
 

TABLE 9 
Order Rotation for 7 Parties over 10 Episodes Using 

Modulo 11 and Shifting Parties to Occupy Blanks 
 

 
 

For example, if the first episode (i = 1) involves three 
parties, the first party (n = 1) is assigned to position 1 – (1 mod 
1) = 1 – 0 = 1. The second party (n = 2) is assigned to position 2 
– (1 mod 2) = 2 – 1 = 1, which pushes the first party to the 
second position, so the two-party sequence is 10, or BA, where, 
as before, A = 0 and B = 1. The third party (n = 3) is assigned to 
position 3 – (1 mod 3) = 3 – 1 = 2, which pushes the first party 
from the second position to the third position, so the three-party 
sequence is 120, or BCA. Applying this procedure to six 
episodes gives rise to the set of sequences shown in Table 10.  

 

TABLE 10 
Arrival Rotation for Three Parties Over Six Episodes 

 

 
 

Arrival rotation applies particularly to multi-player games 
when players cycle through the game in waves, so that the first-

Episode Position 

1 2 3 4 5 6 7 8 

1 A B C D E F G H 

2 B D A C F H E G 

3 C A D B G E H F 

4 D C B A H G F E 

5 E F G H A B C D 

6 F H E G B D A C 

7 G E H F C A D B 

8 H G F E D C B A 

Episode 
Position 

1 2 3 4 5 6 7 8 9 10 

1 0 1 2 3 4 5 6       

2 1 3 5     0 2 4 6   

3 2 5   0 3 6   1 4   

4 3   0 4   1 5   2 6 

5 4   3   2   1 6 0 5 

6 5 0 6 1   2   3   4 

7 6 2   5 1   4 0   3 

8   4 1   6 3 0   5 2 

9   6 4 2 0     5 3 1 

10       6 5 4 3 2 1 0 

j = n - (i mod n) (9) 

Episode 
Position 

1 2 3 4 5 6 7 8 9 10 

1 0 1 2 3 4 5 6       

2 1 3 5 0 2 4 6       

3 2 5 0 3 6 1 4       

4 3 0 4 1 5 2 6       

5 4 3 2 1 6 0 5       

6 5 0 6 1 2 3 4       

7 6 2 5 1 4 0 3       

8 4 1 6 3 0 5 2       

9 6 4 2 0 5 3 1       

10 6 5 4 3 2 1 0       

Episode 
Position 

1 2 3 

1 B C A 

2 C A B 

3 B A C 

4 A C B 

5 C B A 

6 A B C 
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arrival-first-served rule would be an unsuitable basis for adding 
players to a sequence constructed from the earlier wave, such as 
a multi-player game jointly played by classes that meet at 
different times. In this case, if first-arrival-first-served is used to 
sequence players for contested items, classes meeting earlier 
would be advantaged over classes meeting later, because the 
players of the earlier classes would, ceteris paribus, generally 
submit their decisions sooner and therefore be ahead in the 
queue than players of the later classes. 

 
PROPORTIONAL ALLOCATION 

 
Proportional allocation, wherein opportunities are allocated 

in proportion to requirements, may appear to be a simpler 
means of assuring fairness than rotation, but this is not so when 
opportunities cannot be allocated exactly in the proportions 
desired. To see why, consider again the building-construction 
game of the introduction. Suppose in every episode of the game, 
10 building permits are available when the six firms of the 
game require a total of 21 building permits, distributed such that 
Firm A requires 1 permit; Firm B, 2 permits; Firm C, 3 permits; 
and so forth, as shown in Table 11. The objective is to fairly 
allocate the building permits to the firms over six episodes, 
given that the firms are the same in all other respects. This 
objective means that at the end of six episodes, the firms should 
have as many building permits in proportion to the total the 
number of building permits issued, as the firms require in 
proportion to the sum of the requirements of all firms. Thus, the 
proportion of permits distributed across the six firms after six 

episodes should be as close as possible to the proportion of 
requirements shown in Table 11. 

Table 12 shows the distribution of permits resulting from 
positional rotation, applying the sequences of Table 1. In this 
case, for episode 1, the distribution begins with Firm A, which 
gets 1 permit; followed by Firm B, 2 permits; Firm C, 3 
permits; and Firm D, 4 permits. The 10 available permits having 
been distributed, no permit remains for Firm E and Firm F. In 
episode 2, the distribution begins with Firm B, which gets 2 
permits; followed by Firm C, 4 permits; and so forth as shown 
in Table 12.  

Table 13 shows the distribution of permits resulting from 
order rotation, applying the sequences of Table 3. Table 14 
shows the distribution of permits resulting from arrival rotation, 
extending the sequences of Table 10 from three parties over 
three episodes to six parties over six episodes. After 6 episodes, 
60 permits will have been distributed in the proportions shown 
in Tables 12 through 14 for the three rotational methods. 

As to proportional allocation, allocating the 10 building 
permits in proportion to requirements means that the permits 
should be allocated as shown in the last two rows of Table 11, 
depending on the divisibility of permits. Considering that 
building permits should be indivisible, the allocation could be 
adjusted to give Firm A one permit instead of zero, so that the 
sum of all permits proportionally allocated equals the 10 
available. The adjustment resolves a problem of proportional 
allocation: When the opportunities are in indivisible units, the 
sum of opportunities allocated may not equal the number of 
opportunities available. The result of applying adjusted 

TABLE 11 
Distribution of Permits Required and Available 

  A B C D E F Sum 
Permits required 1 2 3 4 5 6 21 

Proportion of required 0.048 0.095 0.143 0.190 0.238 0.286 1.000 
Permits available, raw 0.476 0.952 1.429 1.905 2.381 2.857 10 

Permits available, rounded 0 1 1 2 2 3 9 

TABLE 12 
Distribution of Permits by Positional Rotation 

Episode Sequence A B C D E F Sum 
1 A-B-C-D-E-F 1 2 3 4 0 0 10 
2 B-C-D-E-F-A 0 2 3 4 1 0 10 
3 C-D-E-F-A-B 0 0 3 4 3 0 10 
4 D-E-F-A-B-C 0 0 0 4 5 1 10 
5 E-F-A-B-C-D 0 0 0 0 5 5 10 
6 F-A-B-C-D-E 1 2 1 0 0 6 10 

  Sum 2 6 10 16 14 12 60 
  Proportion of Total 0.033 0.100 0.167 0.267 0.233 0.200 1.000 

TABLE 13 
Distribution of Permits by Order Rotation 

Episode Sequence A B C D E F Sum 

1 A-B-C-D-E-F 1 2 3 4 0 0 10 
2 B-D-F-A-C-E 0 2 0 4 0 4 10 

3 C-F-B-E-A-D 0 1 3 0 0 6 10 

4 D-A-E-B-F-C 1 0 0 4 5 0 10 

5 E-C-A-F-D-B 1 0 3 0 5 1 10 

6 F-E-D-C-B-A 0 0 0 0 4 6 10 

  Sum 3 5 9 12 14 17 60 

  Proportion of Total 0.050 0.083 0.150 0.200 0.233 0.283 1.000 
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proportional allocation to six episodes is shown in Table 15. 
The root-mean-squared difference between the proportion 

of permits required (Table 11) and the proportion of total 
permits distributed over six episodes applying positional 
rotation (Table 12), order rotation (Table 13), arrival rotation 
(Table 14), and adjusted proportional allocation (Table 15) is 
shown in Table 16. Order rotation gives rise to a difference 
of .007 that is less than a quarter of the difference of the next 
smallest difference of .033, the result of adjusted proportional 
allocation. A graph of the differences is shown in Figure 1. 
Clearly, order rotation is the method that most closely matches 
requirements, so it is the fairest of the four allocation methods 
for the building-construction game. The superior performance 
of order rotation over proportional allocation does not extend to 
all cases of indivisible limited opportunities, but the fact that 
order rotation can sometimes be better should deter game 
designer from uncritically relying on proportional allocation. 

 

TABLE 16 
Root-Mean-Squared Difference of Allocation Methods 

 

 
 

ADAPTING THE GOLD AND PRAY MODEL 
 

Returning to the Gold and Pray (1983, 1984, 1990) model, 
the model applies proportional allocation as its second step and 
is based on a log-linear demand function that assumes that 
demand is independent of supply, which is to say, more 
generally, that opportunities are independent of requirements. 

The supply-independence assumption may be less generally 
valid than it appears, considering the common observation that 
street-fair stalls displaying more items of the same product sell 
more items than stalls displaying fewer items. The greater 
demand for the products of the stalls with more items may be 
attributed to greater visibility of the items displayed and more 
confidence among shoppers that the product is worth the price, 
because the vendor has evidently committed more resources to 
the product. 

So, if opportunities should depend upon requirements, the 
question of interest to game designers is how Gold and Pray’s 
(1983, 1984, 1990) requirements-insensitive approach might be 
modified to include requirements more directly within the 
model, ergo, to allow demand to depend on supply. One way to 
do this is to add supply as an independent variable of the 
demand function. In this case, Gold and Pray’s (1990, p. 123) 
log-linear demand function becomes Equation 10, where Q is 
the quantity demanded; P, price; M, marketing expenditure; R, 
research and development expenditure; S, supply; and a, b, c, e, 
and g are parameters. This method treats supply as simply 
another independent variable, without recognizing supply’s 
unique role in sales.  

 
Another way is to keep the original demand function, but to 

substitute order rotation for the third step, when stock outs are 
reallocated. Thus, the sum of quantities demanded in excess of 
quantities available would be distributed by order rotation to 
firms wherever quantities available exceed quantities 
demanded, forgoing Gold and Pray’s (1990, p. 135) checks for 
extreme values. The modified model can be tuned to put more 
weight on supply by including only a fraction of industry-level 
demand in the second step, when industry-level demand is 
allocated to firms, leaving the balance for distribution by order 

Method Difference 

Positional rotation .048 

Order rotation .007 

Arrival rotation .052 

Proportional allocation .033 

Q = aP-bMcReSg (10) 

TABLE 14 
Distribution of Permits by Arrival Rotation 

Episode Sequence A B C D E F Sum 

1 B-C-D-E-F-A 0 2 3 4 1 0 10 

2 C-D-E-F-A-B 0 0 3 4 3 0 10 

3 D-E-F-B-A-C 0 0 0 4 5 1 10 

4 E-F-A-C-B-D 0 0 0 0 5 5 10 

5 F-C-B-D-A-E 0 1 3 0 0 6 10 

6 A-D-B-E-C-F 1 2 0 4 3 0 10 

  Sum 1 5 9 16 17 12 60 
  Proportion of Total 0.017 0.083 0.150 0.267 0.283 0.200 1.000 

TABLE 15 
Distribution of Permits by Adjusted Proportional Allocation 

Episode A B C D E F Sum 

1 1 1 1 2 2 3 10 

2 1 1 1 2 2 3 10 

3 1 1 1 2 2 3 10 

4 1 1 1 2 2 3 10 

5 1 1 1 2 2 3 10 

6 1 1 1 2 2 3 10 

Sum 6 6 6 12 12 18 60 

Proportion of Total 0.100 0.100 0.100 0.200 0.200 0.300 1.000 



Page 165 - Developments in Business Simulation and Experiential Learning, Volume 44, 2017 

 

rotation. This second method ties demand to stock outs, so it is 
consistent with the view that customers preferentially shop at 
firms with high supply because high-supply firms are less likely 
to have stock outs. 

 
CONCLUSION 

 
Fairness, as equality of realized opportunity, cannot be 

achieved by random selection, for random selection equalizes 
expected opportunity. True fairness requires that opportunities 
be realized, not merely expected. The way to true fairness is 
through recipes that assure that realized opportunities are as 
equal as they can be within the constraints of any particular 
game. Positional rotation, order rotation, and arrival rotation are 
three new recipes for fairness in games of more than a single 
episode. Order rotation is the fairest rotational method of all 
when two conditions are satisfied. First, the number of episodes 
should be an integer multiple of the number of parties. Second, 
the number of parties should be 3, 8, or one less than a prime 
number. 

The number of episodes in a game is generally set by the 
game’s administrator rather than fixed by its designer, but the 
design of the game limits what is possible. Typically, business 
games are administered for 4 to 12 episodes (Anderson & 
Lawton, 1992; Rollier, 1992). One might argue that if a game is 
administered for many more episodes, the law of large numbers 

will assure a fair outcome with random allocation, which would 
be simpler to administer than rotation. The argument is 
fallacious, because large numbers do not eliminate runs, which 
is why, as Styer (2000) has observed, stars are not uniformly 
distributed in the sky even though stars are born of a random 
process. Moreover, the relative performance of competing 
parties tends to be correlated across the episodes of business 
games, which is why early dominance has been shown to be a 
notable problem (Bernard & de Souza, 2009; Patz, 1992, 1999, 
2000; Peach and Platt, 2000; Rollier, 1992; Teach & Patel, 
2007), even if the problem is not always found (Wolfe, Biggs, 
& Gold, 2013). Random selection gives rise to runs that 
accentuate any advantage, and proportional distribution fixes 
any advantage in place. Rotation forestalls runs, ameliorating 
advantage.  

Further research on fairness in games might proceed 
towards clarifying the conditions under which each method 
yields the smallest root-mean-squared difference between the 
proportion of opportunities required and the proportion of 
opportunities distributed. For now, the conclusion is that games 
can be structurally fair, but the game that is structurally fair 
must be a multi-episodic game that incorporates fairness into its 
design. 

FIGURE 1 
Proportional Differences of Allocation Methods by Required Building Permits 
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