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Inventory systems exhibit behavior important in systems analysis. They lend themselves to 

“solution” both via simulation and formal analysis, and provide a basis for demonstrating varying 

levels of system sophistication. [7] Under conditions of certainty, inventory control is simple. With 

demand and lead time know-n, a new order would be placed when the number of items on hand plus 

the number of units on order will exactly satisfy demand over the time period required for the new 

order. The inventory level will fall to zero each day an order is received and demand can never exceed 

the inventory level. [3] Management under certainty is, of course, not realistic and the volatility of 

demand and the unreliability of lead time combined to exacerbate the inventory control problem. 

The cost of ignoring variable lead time [9] coupled with probabilistic and deterministic demand 

[4] invalidates most simplistic models. In fact the cost component it self can be rather complex. With 

lost demand resulting in lost revenues and potentially impacting the demand function for the firm 

measuring lost profits can become quite complex. In an effort to better model variable lead time and 

demand a variety of techniques have been employed. Several studies have investigated known 

distributions in an effort to describe these stochastic processes. [2] While in a few cases known 

distributions are representative of the actual distribution found in the real world environment, for the 

most part they are not good proxies of the actual process. Others have evaluated aggregate techniques 

versus single item models [8] in an effort to achieve better prediction at a more macro level. Though 

success in this area has often been good, the requirement for detailed inventory control is still present. 

This paper demonstrates a simulation approach to evaluating the cost of inventory control and 

suggests methods for seeking “optimum” solutions to the inventory cost function. The 
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model breaks no new ground in the field of inventory control, but in conjunction with the simulation 

allows students to manipulate the determinants of the inventory cost function and develop an 

appreciation for the sensitivity and impact of each on total cost. The program is written in ANS 

FORTRAN and is available from the author. 

 

The Model 

The simulation model assumes that: 

 
1. Unfilled demand can be backlogged and satisfied when items become available. An 

alternative assumption which can be readily implemented would have all or a portion of 
unfilled demand as lost demand. 

 
2. Unfilled demand does not impact the demand function. Thus, backlogged orders do not 

discourage customers. This assumption is not realistic with respect to real world behavior. 
The model can be readily adapted to accommodate a decay function with demand 
decreasing with increased backlog. 

 
3. The cost of a stockout is fixed and does not exhibit any compounding effect; it is additive 

and linear. Again this is not a realistic assumption. A more accurate model would 
incorporate a geometric increase in stockout cost as increased backlogs occur. This 
adaptation can be readily implemented given a user defined cost function. 

 
4. The cost of an inventory item is constant during the entire simulation. During periods of 

high inflation this could be a costly assumption. An inflationary factor can be added to 
increase the cost of an inventory item by a prescribed amount from period to period to 
reflect inflationary impact. 

 
5. The annual interest rate used in the holding cost function is constant during the entire 

simulation. Though a tenuous assumption the annual interest rate is not an easy 
component to forecast. As such an assumption of stability is probably no less valid than 
rather uncertain estimates of changing annual interest rates. 

 
6. There are no constraints on crossing orders. Thus goods ordered in period two could in 

fact arrive later than goods ordered in period three. 
 

7. The user provides lead time and demand information in the form of decrete probability 
distributions. Alternative approaches include built in distributions from which the user 
might select. 
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This feature has not been implemented and thus the model always requires historical data. 
 

8. The model reflects a single channel dealing only with one item and one source of supply. 
 

The model is composed of user defined constants (see the appendix for user documentation), 

random (probabilistic) variables, and deterministic variables. They are constants: 

RC Receiving cost 

OC Ordering cost 

SOC Stockout cost 

VII Value of an inventory item 

AIR Annual interest rate 

RP Reorderpoint 

RQ Reorder quantity 

 

deterministic variables: 

BBLi Beginning backlog in period i 

BLi. Backlog in period i 

BIi Beginning inventory in period i 

EIi Ending inventory in period i 

UOOi Units on order in period I 

Oi Units to be received in period I 

NOi Number of orders to be received in period I 

OCCi Ordering cost in period i 

 

and the probabilistic variables: 

IDi Demand in period I 

LTi Lead time for order placed in period i 
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The random variables demand and lead time are input as discrete probability distributions and 

are assumed to represent historical experience. 
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Future extensions to the program could include forecasting demand using various types of naive or 

more complex multiple regression models, The user defined constants reflect the item and 

environment being modeled. The reorder point, RP, and reorder quantity, RQ are set by the user who 

can then in subsequent runs manipulate these variables and observe their impact on the total cost 

function. While Earl and Chapman [3] used a gradient search technique to try to optimize RP and RQ, 

INSIM does not seek an optimum. The student is normally provided with several search strategies and 

both the batch and interactive versions of INSIM allow for easy experimentation with RP and RQ; in 

fact, all user defined variables can be easily altered and the simulation repeated. 

The assumptions implemented in the current version of INSIM are not necessarily the most 

appropriate in each instance but in total are intended to provide a “reasonably” realistic simulation. It 

is the author’s intent to let INSIM serve as a “breadboard” and thus provide a starting point for other 

enhancements or alternative assumptions. Given the modular design of INSIM other considerations 

could be implemented as options or different versions of the model. Future extensions will evaluate 

these alternative formulations as well as the following optimization routines. 

 

Future Development 

Given that the demand and lead time probability density functions are seldom known (though 

often assumed to approximate known distributions [2]), an analytical solution is not realistically 

attainable. Therefore, a highly reliable nonderivative search method is probably the best available 

alternative for identifying “optimum” values for inventory control. This, coupled with accurate 

demand and lead time estimates could produce a very realistic model for teaching and setting 

inventory policy. 
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As indicated Earl and Chapman used a gradient search technique to locate the optimum values 

for RP and RQ. They point out however, that their gradient method algorithm will sometimes yield 

values of RP and RQ that are not near optimal. Himmelblau [5] references a generalized gradient 

search program developed by K. E. Cross and W. L. Kephart of Union Carbide Corporation, 

Oakridge, Tennessee. Their algorithm can accommodate both linear and nonlinear equality and 

inequality constraints and is available as share release SDA3541. The program incorporates several 

special strategies to handle such problems as ridges and trivial constraints as well as the ability to 

accelerate the optimization. A projection technique is also incorporated to reach a feasible point from 

a nonfeasible starting point. 

Using INSIM, this author has investigated several search techniques in addition to the 

generalized gradient search. Though no definitive results are yet available, several methods look 

good. Among those showing early promise are the flexible polyhedron search, Powell’s method, and 

Hooke-Jeeves. For a detailed explanation of these and other derivative and nonderivative methods the 

reader is referred to Applied Nonlinear Programming. 

Because of the major impact of inventory policy on the firms total cost function, realistic 

models and optimization methods can be of great value to the decision maker. However, the author 

would urge caution at this point in the modeling of the firms inventory system. Often in an attempt to 

rigorously quantify inventory activity many other interrelated variables are totally disregarded; for 

example transportation and other channel costs. It is essential that the model builder be acutely aware 

of the inherent limitation of the model formulation in order to not generalize beyond these built in 

limitations. It is the author’s hope that 
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with the work of Earl and Chapman, the other authors cited, and all those interested in realistic 

real-world approximations, meaningful decision models will be developed for use by educators and 

practitioners. 
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APPENDIX 

 

INSIM is available in both the batch and interactive environment. The following outlines the 

setup and execution procedure for running INSIM interactively. 
 

INSIM will ask the user for starting values. The variables and their abbreviations are listed 
below. 

 
Description  Abbreviation 

The number of periods to be simulated NP 

Value of an inventory item VI 
Beginning inventory level BI 
Reorder point RP 

Reorder quantity RQ 
Order cost OC 

Receiving cost RC 

Stock out cost SO 

Annual interest rate IR 
Number of lead times LT 

Number of demand quantities DQ 

Given the following demand and lead time distributions: 

Weekly 

Demand 
(units) Frequency 

Lead time 

Length 

(weeks) Frequency 

121 40 1 7 

131 62 2 10 

141 70 3 30 

151 60  47 

161 28   

 260   

compute the cumulative probability for each occurrence in each distribution. 

Demand Lead Time 

121 .15 1   .15 

131 .39 2   .36 

141 .66 3 1.00 

151 .89   

161 1.00   
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INSIM will now ask for LT lead times, and then LT lead time cumulative probabilities. INSIM 
will then ask for DQ demand quantities and then DQ demand quantity cumulative probabilities. Once 
this information has been entered, INSIM will perform the simulation and display the simulation 
results. 
 

After displaying the results, INSIM will ask if the simulation is to be run again. A YES 
response causes INSIM to ask if the value of any of the simulation control variables are to be changed. 
Using the abbreviation form the user can selectively change the values and then by saying RUN 
execute the simulation again. Future enhancements call for printing comparative statistics, plotting 
total cost against selected variables, and implementation of an optimization routine to locate optimum 
values for RP and RQ. 


