
Page 312 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

ABSTRACT

An event is a piece of information for providing details about the state change of the processes of a software system and controls
system behavior. Event-Driven Architecture (EDA) is a software architecture for promoting the production, detection, consumption,
and reaction to events. Events in EDA trigger autonomous human or automated processing. EDA complements Service-Oriented
Architecture (SOA) by employing events triggering services. EDA approach adds value to the enterprise by injecting value-added
information. Some games are based on strategies for teaching system behavior by using processes, events and architectures.
However, such games lack pedagogical strategies for teaching event functionality from EDA, which is necessary to the system
behavior. We propose a game for teaching event functionality and the elements included in EDA by using a pre-conceptual schema
(PS). Such schema is a computational modeling tool for representing a domain. PS includes structures for representing events,
processes, and their relationships. We use such structures as pedagogical strategies, because the PS is a training and learning tool
used in software engineering processes from academy and industry. The game is focused on teaching students and professionals in
software system areas about functionality of events in EDA.

INTRODUCTION

An event is a piece of information about anything significant that happens. An event can affect processes (Edwards et al.,

2011; Noreña et al., 2014; Zapata et al., 2013). Information related to events has an event header and event body. Event header
contains elements describing the event occurrence. Event body is used to describe what happened. The term event is used to refer the
state change of the processes in a software system and it usually means a problem, an opportunity, a threshold, or a deviation of the
system behavior (Michelson, 2006).

Event-Driven Architecture (EDA) is a software system architecture and a paradigm for event-based applications. Event

processing is the central architectural concept (Luckham, 2002; Dunkel et al., 2011). So, in EDA, the system is divided into a set of
so-called modules (Klusman et al., 2016). Each module may independently perform a particular task (Tragatschnig & Zdun, 2015).
Among such modules, the communication is achieved by using the production, detection, consumption, and reaction to events. Some
elements are used in such processes like: (i) event producer (or source); (ii) event consumer; (iii) event processing; (iv) scenario; (v)
services; and (vi) events (Edwards et al., 2011). Events in EDA happen inside or outside business and they are disseminated to
consumer subscripted for triggering autonomous human or automated processing (Klusman et al., 2016).

Service-Oriented Architecture (SOA) is an architecture with all services defined. Such services may be used to perform

simple functions or entire business processes. EDA is complemented by SOA because the occurrence of an event can trigger the
invocation of one or many services. The interaction between SOA and EDA is a business intelligence approach. Such approach
increases value to the enterprise as a neutral and independent manner of the hardware platform, the operating system, and the
programming language in which the service is implemented (Michelson, 2006). So, SOA and EDA have received attention in
academia and industry since they inject value-added information (Theorin et al., 2015).

Cagiltay et al. (2015), Chen (2014), Orojloo et al. (2017), Mulazzani et al. (2017), and Qin et al. (2016) present game

approaches for teaching the system behavior by using their process. Some of them include events in their definition and graphical
modeling. Anderson et al. (2017) present a game for defining events in behavior systems. Bartoletti et al. (2016) provide a game
approach for defining event structures by using formal notation. Zapata et al. (2014) propose a game for understanding the meaning
of the events and their interaction in the software development context. Herzig et al. (2012) and Matallaoui et al. (2015) expose
approaches based on the creation of architectures for games including process and events. However, their pedagogical strategies are
based on teaching processes, event definition and architecture development. So, the game approaches lack EDA elements, and
pedagogical strategies for teaching event functionality from the architecture. Such functionality is needed for allowing knowledge
system behavior from EDA, which is used for developing software products.

Accordingly, we propose Event-Driven Architecture Game (EDA Game) as an approach for teaching event functionality

A Game for Learning Event-Driven Architecture:
Pre-conceptual-Schema-based Pedagogical Strategy

Paola Andrea Noreña Cardona

Universidad Nacional de Colombia
panorenac@unal.edu.co

Carlos Mario Zapata Jaramillo

Universidad Nacional de Colombia
cmzapata@unal.edu.co

Page 313 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

and the elements included in EDA by using a pre-conceptual schema (PS). EDA Game contains events in a pandemic scenario, e.g.,
infection rate increases, infection outbreak emerges; producers who should create events, e.g., medic from a hospital; consumers who
subscribe and receive notifications from such events by using event messages, e.g., analyst from a laboratory. In order to win the
EDA Game, the players should treat disease hotspots and researching cures for plague before another team win.

PS is a computational modeling tool for representing a domain. PS is close to the natural language by including

unambiguous syntax and easing stakeholder understanding. PS combines graphic and linguistic structures in order to include
structural and dynamic features of a software system i.e., nodes (concept, operator, conditional), links (connection, implication),
relationships (structural, dynamic, and eventual), and gatherers (event, specification). Analyst can represent process, events and
relationships in order to analyze the system behavior with such structures. PS-based events are used for triggering and dynamic
relationships, which can be translated to either processes or services (Zapata, 2012).

So, we integrate PS structures to game as pedagogical strategy in four phases for understanding EDA: (i) selecting roles and

tasks; (ii) knowing event functionality and processes related to events; (iii) attending services; and (iv) competing for the sake of
reaching goals defined by the EDA Game. We select PS because they are tools used for training and learning software engineering
processes from academy and industry. So, PS eases acquisition and retention of information and increment skills in order to achieve
goals.

EDA Game is developed for teaching students and professionals of software system areas the theoretical concepts about

EDA, their elements, and event functionality. The EDA Game experience is applied to student groups for validating the knowledge
acquired during game.

This paper is organized as follows: in Section 2 we present the conceptual framework related to EDA; in Section 3 we

present related work; in Section 4 we state the problem; in Section 5 we propose EDA Game for teaching EDA elements and event
functionality; in Section 6 we apply such pedagogical strategy with students in software system areas. Finally, we summarize
conclusions of the game and application, and establish some future work.

CONCEPTUAL FRAMEWORK

Event: piece of information emerging at a certain time and place (Edwards et al., 2011); events affect the processes and they

are used for designating the occurrence of something significant that happens (Noreña, 2013; Zapata et al., 2013). Software systems
are highly influenced by events during the development process, since an event provides relevant information about the behavior of
the software systems. Such information is used in the functional requirements during the software development life cycle (Edwards
et al., 2011; Noreña et al., 2014; Zapata et al., 2013). Events can be a problem, an opportunity, a threshold, and a change of state in
system behavior (Michelson, 2006).

Events contain an event header and an event body. Event header includes information about the events like id, event type,

event name, and, specification. Event body describes what happened. Events should be used in computational products, e.g., process
diagram, state machine diagram, activity diagram, elicitation requirements cards, etc. (Noreña, 2013). Trigger and result are event
types. Trigger event is used for indicating the starting of processes and their occurrences. Such event can be timer (based on time),
message (an alert), conditional (a restriction), and declaration or none (a sentence; OMG, 2009). Also, they can generate the
execution of other trigger events. Result event is used for indicating the end of processes (Zapata, 2012).

Event-Driven Architecture (EDA): paradigm of software system architecture for easing high flexibility, scalability, and

concurrency from event-based applications (Luckham, 2002; Dunkel et al., 2011). Communication between heterogeneous
components is integrated in EDA. Such components perform a particular task by using the production, detection, consumption, and
reaction to events (Klusman et al., 2016; Tragatschnig & Zdun, 2015).

EDA contains some elements with the following description—see the pre-conceptual schema base on Edwards et al. (2011)

in Exhibit 1—producer detects and notifies an event; producer type can be data base, application, business process, sensor, and
human process; consumer subscribes event; consumer type can be data base, application, business process, actuator, and human
process; producer and consumer process an event, such processing is represented in the PS as a frame including the dynamic
relationships producer detects and notifies event, consumer subscribes event, and event triggers service; scenario is a domain;
service is an action or process triggered by an event; event triggers a service and can be timer, message (alert), conditional, and a
declaration or none.

Service-Oriented Architecture (SOA): service architecture defined by using a description language and interfaces in a

network (Maréchaux, 2006). A business intelligence approach is the interaction between SOA and EDA. Such approach adds
exponential value to the enterprise by injecting value-added information (Michelson, 2006; Theorin et al., 2015). EDA and SOA are
combined for easy integration among business units and heterogeneous platforms and environments (Maréchaux, 2006). So, both
architectures receive attention in academia and industry (Michelson, 2006).

Pre-conceptual Schema (PS): A modeling tool close to natural language for graphically and computationally representing

the domain of a problem and translating it to conceptual schemas and source code. Analysts and stakeholders can easily understand

Page 314 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

and validate the information described in the PS. Consistence among structural and dynamic features of a software system is
guaranteed in PS by using the following structures (see Exhibit 1): nodes can be concepts (nouns and noun phrases, e.g., producer,
consumer, name); relationships can be structural relationships (verbs generating permanent connections between concepts, e.g.,
consumer has name), dynamic relationships (processes or services, e.g., producer detects event), and eventual relationships (verbs in
events, e.g., emerges, passes showed in Exhibit 3); links can be implications (arrows of cause and effect, e.g., if detected, modifies)
and connections (arrows between concepts, e.g., event triggers service); gatherers can be events (which triggers and ends dynamic
relationships e.g., message (alert) emerges showed in Exhibit 3) and frames (integrates other elements e.g., the dynamic
relationships: producer detects and notifies event; Zapata, 2012).

RELATED WORK

Some authors present approaches for teaching processes. Such games are based on a set of processes, but such approach

lacks pedagogical strategies for teaching event functionality and elements from EDA. Cagiltay et al. (2015) develop a game for
teaching processes by using entity-relationship diagrams for modeling data in relational databases, but excluding event functionality.
Chen (2014) presents a game for teaching process sequences by using state transition diagram. However, the game lacks pedagogical
strategies for teaching event functionality and elements from EDA. Orojloo et al. (2017) propose a game-theoretic approach for
modeling security of systems by using a state graph including events, but such approach is only used for teaching processes.
Mulazzani et al. (2017) present a directed acyclic graph as a Bayesian network of alternative models for understanding processes, but
excluding event functionality. Qin et al. (2016) expose a game from probabilistic machine learning model for representing processes
integrating events. However, such a game lacks pedagogical strategies for teaching event functionality and elements from EDA.

Other authors present approaches for teaching event definition. Anderson et al. (2017) propose a game for controlling event-

driven behavior. Such game allows for recognizing and responding to different events occurring in the game environment, but
excluding teaching elements from EDA. Bartoletti et al. (2016) provide a game from a formal definition of event structures with
some conditions and services. However, such a game lacks pedagogical strategies for teaching event functionality and elements from
EDA. Zapata et al. (2014) present an event interaction game for understanding events in the software development
context. However, such a game is oriented to explain the meaning of the events and their interaction, but such a game lacks
pedagogical strategies for teaching event functionality and elements from EDA.

Finally, some authors present approaches for teaching event functionality from the architecture. Matallaoui et al. (2015)

develop a model-driven serious game development by using the Gamification Modeling Language (GaML) and Herzig et al. (2012)
expose a generic platform for enterprise gamification. However, their pedagogical strategies lack event functionality and elements
from EDA.

PROBLEM STATEMENT

Academia and industry in software system areas lack a game with pedagogical strategies for teaching students and

professionals the event functionality and the elements from EDA. Such a problem is observed because the game approaches are

EXHIBIT 1.
PS ABOUT EDA ELEMENTS

PROCESSES
PRODUCER

EVENT

SERVICE

ID

NAME

TYPE

ID

NAME

TYPE
HAS

IDHAS

-DATA BASE
-APPLICATION
-PROCESS BUSINESS
-SENSOR
-HUMAN PROCESS

-DATA BASE
-APPLICATION
-SENSOR
-ACTUATOR
-HUMAN PROCESS

ID

NAME

HAS

CONSUMER

NOTIFIES

SCENARIO

TRIGGERS

HAS

DETECTS

NAME

SUSCRIBES HAS

ID

NAME

Page 315 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

generally used for explaining the behavior of software systems from processes and some include events, but their pedagogical
strategies are focused on teaching processes; other game approaches are focused on defining events and event functionality from the
architecture. Also, the games use some diagrams, but excluding elements from EDA and pedagogical strategies for teaching event
functionality and elements from EDA. Event functionality and elements from EDA are needed for allowing knowledge system the
behavior of software systems from EDA; So, students and professionals can use such architecture for developing software products.

EVENT DRIVEN ARCHITECTURE (EDA) GAME

Pedagogical Strategy

Game Objective: learning about event functionality and elements from EDA. EDA Game is developed in order to instruct
students and professionals in software system areas theoretical concepts about EDA.

Phases: (i) selecting roles and tasks, companies have resources for fulfilling the mission; (ii) knowing event functionality

and services related to events, infection can arrive to city; (iii) attending services, companies can use services for obtaining more
resources; and (iv) competing for the sake of reaching goals defined by the EDA Game, companies should cure epidemic infections
in most cities for winning.

Tools: EDA Game platform can be seen by all players (see Exhibit 2). Such platform contains the following elements:

scenario determines the place when are detected and notified events i.e., world cities, where can be built research centers, can be
produced epidemic infections, and can be cured cities and researchers; event producer detects and notifies event, and an event will
emerge; event consumer selects services amount and services according to the amount generated. In consumer zone the number of
researcher infections is included, which can be three; the epidemic samples quantity of every company, the cure, and doses of the
cure of researchers, event producer and consumer zones integrate the event processing; event triggers service i.e., time passes,
epidemic arrives to city (with research center), epidemic arrives to city (without research center); such events are displayed in a
window from the platform (see Exhibit 3), the event epidemic arrives to city is presented with event message alert emerges for
notifying the event occurrence; service should be used by researchers i.e., travel to city, build research center, explore epidemic
sample, discover epidemic cure, treat epidemic city and treat researcher; such services are displayed in other window from the

EXHIBIT 2
EDA GAME PLATFORM

Page 316 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

platform (see Exhibit 4).

Events and services are represented by using PS structures i.e., eventual relationship with one or two concepts in a circle for

events and dynamic relationship for services. We use such structures as pedagogical strategy because PS a is software engineering
tool for training and learning processes for developing software systems from academia and industry. So, professional and student
analysts acquire and retain information by using PS and increment skills in order to achieve goals from the game.

Game Instructions

Initial conditions: (i) selecting from two to six teams, such teams will be pharmaceutical companies; (ii) each team should

select a color of the pharmaceutical company; (iii) each team should select a city without epidemic for building their first research
center; (iv) each team will have three researchers for investigating and curing the epidemic.

Mission: Company should cure most cities.

Event processing: (i) event producer detects event; (ii) researcher notifies event and an event will emerge: epidemic arrives

to city (with research center), should occur in one city with research center away to the position of a pharmaceutical research center
by using event processing; event information in software systems is notified by using event message (alert) emerges (see Exhibit
3.a.); epidemic arrives to city (without research center) should occur in one city with research center away to the position of a
pharmaceutical research center by using event processing; event information in software systems is notified by using event message

EXHIBIT 3
EDA GAME EVENTS IN PS NOTATION

STARTS

MESSAGE
(ALERT)

EMERGES

EPIDEMIC

ARRIVES TO

COUNTRY (with
Research Center)

STARTS

MESSAGE
(ALERT)

EMERGES

EPIDEMIC

ARRIVES TO

COUNTRY (without
Research Center)

PASSES

TIMEa)

b)

c)

EXHIBIT 4
EDA GAME SERVICES IN PS NOTATION

TRAVELS TO

RESEARCHER

CITY

BUILDS
RESEARCH

CENTER

TREATS
EPIDEMIC

CITY

DISCOVERS
EPIDEMIC

CURE

EXPLORES
EPIDEMIC

SAMPLE

TREATS RESEARCHER

Page 317 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

(alert) emerges (see Exhibit 3.b.); time passes triggers services with no infection of a city (see Exhibit 3.c.); iii) events trigger
services, event consumer selects services amount and select services according to the amount generated. Also, the services are used
by the researchers from pharmaceutical company and they should be always different. The company should say the services they will
use before using them.

Services are: travel to city is mandatory as a first service, in each event processing should be used, in order to travel to

another city, one researcher should pass throughout two connected cities without repeating the road; build research center can be
used when all researchers from pharmaceutical company arrive to the same city; explore epidemic sample can be used when a
researcher arrives to an infected city and then returns to the nearest research; discover epidemic cure can be used after collecting five
epidemic samples, a researcher should go to his research center and take two doses of the cure; treat epidemic city can be used after
finding epidemic cure, in an event processing can be used one to two doses of cure by a researcher; treat researcher can be used after
finding epidemic cure, one to two doses of cure can be used by a researcher in an event processing; whether a researcher is in a city
at his research center and has three epidemic infections cannot move from place. Then, another researcher should go to such city for
curing him (see Exhibit 4).

APPLICATION OF THE PEDAGOGICAL STRATEGY

The EDA Game experience is applied to two groups for validating the knowledge acquired during games: group 1, 25

students of requirements engineering in the system engineering program at Universidad Nacional de Colombia and group 2, 15
practitioners in a software company from Medellin, Colombia. Validation is achieved in two phases (i) poll before game and (ii) poll
after game. In the poll before game we included two questions: Do you know you about EDA? What is event functionality? in
which, both groups knew event functionality and services, but in other architectures and they do not knew EDA. The results in the
poll after game are explained in Exhibit 5.

We should observe from poll before game, pedagogical strategy by using PS structures improves knowledge about event

functionality and elements EDA. Most students from group 1 and practitioners from group 2 achieved to describe elements from
EDA as follows: events, producer, consumer, scenario, services, and event processing; and the most remembered elements were
events and services for their graphical modeling in pre-conceptual schemas. Such answers indicated pedagogical strategy used in
EDA Game allowed for learning about elements from EDA. Also, all students from group 1 and practitioners from group 2 defined
correctly event functionality from EDA as follows: events trigger, produce, call, and enable services; and events change states and
system behavior. Such answers demonstrated the ease of learning event functionality from EDA by using EDA Game. During the
game we analyzed how the different teams had a good time and enjoyed playing EDA Game e.g., when epidemic infected cities and
researchers, and when researchers cured cities and other researchers. So, the most students from group 1 and practitioners from
group 2 evaluated fun factor of EDA Game with the highest score (5). The fun factor is a main feature of the games for teaching
scientific and technologic knowledge (Vázquez & Manassero, 2017).

EXHIBIT 5
RESULTS OF EDA GAME APPLICATION

1. Defining 3 elements from EDA

Answers Group 1 Group 2

3 right elements 14 13
2 right elements 9 2
1 right elements 2 0
2. What is event functionality from EDA?

Answers Group 1 Group 2

Events trigger services 9 4
Events produce services 4 0
Events enable services 7 5
Events change system behavior 3 1
Events change system states 2 1
Events call services 0 1
Events start services 0 3
3. What is fun factor of EDA game? (from 1 to 5)

Fun factor Group 1 Group 2
5 12 11
4 8 2
3 3 2
2 2 0
1 0 0

Page 318 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

Anderson, P. R., Friedman, R. M., Gagner, M. B., Gronkowski,
T. T., Michael, J. I. I., Shi, V. T., & Walsh, J. L.
(2017). Controlling event-driven behavior of wagering
game objects. U.S. Patent No. 9,542,807. Washington,
DC: U.S. Patent and Trademark Office. https://
www.google.com/patents/US20110021263

Bartoletti, M., Cimoli, T., Pinna, G. M., & Zunino, R. (2016).
Contracts as games on event structures. Journal of
Logical and Algebraic Methods in Programming, 85
(3), 399-424. http://www.sciencedirect.com/science/
article/pii/S235222081500036X

Cagiltay, N. E., Ozcelik, E., & Ozcelik, N. S. (2015). The effect
of competition on learning in games. Computers &
Education, 87, 35-41. http://www.sciencedirect.com/
science/article/pii/S0360131515001001

Chen, Z. H. (2014). Exploring students’ behaviors in a
competition-driven educational game. Computers in
Human Behavior, 35, 68-74. http://
www.sciencedirect.com/science/article/pii/
S0747563214000818

Dunkel, J., Fernández, A., Ortiz, R., & Ossowski, S. (2011).
Event-driven architecture for decision support in traffic
management systems. Expert Systems with
Applications, 38(6), 6530-6539. http://
www.sciencedirect.com/science/article/pii/
S0957417410013254

Herzig, P., Ameling, M., & Schill, A. (2012, August). A
Generic Platform for Enterprise Gamification. In
Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012
Joint Working IEEE/IFIP Conference on. IEEE.

Klusman, M., Plasmeijer, R., & Wolter, R. (2016). Event-
Driven Architecture in software development projects.
Master Thesis Computing Science, Radboud
University, Nijmegen.

Edwards, M., Etzion, O., Ibrahim, M. Iyer, S. Lalanne, H.,
Monze, M., Moxey, C., Peters, M., Rabinovich, Y., &
Sharon, G. (2011). Un modelo conceptual para los
sistemas de procesamiento de eventos. IBM Technical
document. https://www.ibm.com/developerworks/ssa/
webservices/library/ws-eventprocessing/index.html

Luckham, D. (2002). The power of events: An Introduction to
Complex Event Processing in Distributed Enterprise
Systems. Boston: Addison-Wesley.

Qin, Z., Khawar, F., & Wan, T. (2016). Collective game
behavior learning with probabilistic graphical
models. Neurocomputing, 194, 74-86.

Maréchaux, J.L. (2006). Combining Service-Oriented
Architecture and Event-Driven Architecture using an
Enterprise Service Bus. IBM Technical document.

Matallaoui, A., Herzig, P., & Zarnekow, R. (2015, January).
Model-Driven Serious Game Development Integration
of the Gamification Modeling Language GaML with
unity. In System Sciences (HICSS), 2015 48th Hawaii
International Conference on. IEEE.

Michelson, B. M. (2006). Event-Driven Architecture
overview. IBM, Patricia Seybold Group Technical
document, 2. http://www.cioindex.com/nm/
articlefiles/66181-EventDrivenArchitectureSOA.pdf

Mulazzani, L., Manrique, R., & Malorgio, G. (2017). The Role
of Strategic Behaviour in Ecosystem Service
Modelling: Integrating Bayesian Networks with Game
Theory. Ecological Economics, 141, 234-244.

Noreña, P.A. (2013). Un mecanismo de consistencia en los
eventos disparador y de resultado para los artefactos de
UNC-Method. Tesis de maestría. Universidad
Nacional de Colombia, Medellín, Colombia.

Noreña, P.A, Vargas, F. & Soto, D. (2014). Tipificación de
eventos a partir del modelo BPMN en artefactos de
ingeniería de software. Cuaderno Activa, 6, pp 49-61.
http://ojs.tdea.edu.co/index.php/cuadernoactiva/article/
view/200

OMG. Object Management Group (2009). Business Process
Model and Notation BPMN. Standard Document.
http://www.omg.org/spec/BPMN/1.2

Orojloo, H., & Azgomi, M. A. (2017). A game-theoretic
approach to model and quantify the security of cyber-
physical systems. Computers in Industry, 88, 44-57.

Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson,
C., Lundholm, T., & Lennartson, B. (2015). An event-
driven manufacturing information system
architecture. IFAC-PapersOnLine, 48(3), 547-554.

REFERENCES

CONCLUSIONS

Games improve traditional pedagogical strategies for teaching students and professionals in software system areas,
complementing the practices and the theory activities.

EDA Game is a funny game, which was focused on teaching students and professionals in software system areas about
event functionality and elements from EDA. Such event functionality and elements are used for developing software products; so,
such game was needed for allowing knowledge system behavior from EDA.

PS structures were used as pedagogical strategy in EDA Game, because the PS allows for training and learning in software
engineering processes from academy and industry.

Experiential learning about event functionality and elements from EDA by using EDA Game improved knowledge
professionals in software system areas.

We suggest as future work the application of the EDA Game in professional environments for analyzing reactions and
knowledge among participants. Also, other games can be created for teaching other topics in software engineering.

AKNOWLEDGMENTS

This paper is product of the Ph.D. research project an extension to pre-conceptual schemas for refining event representation

and mathematical notation with Hermes code 39886 at Universidad Nacional de Colombia. This work is sponsored by Colciencias
(Administrative Department of Science, Technology and Innovation) from Colombia in the program Ph.D. students in Colombia, bid
727 of 2015.

Page 319 - Developments in Business Simulation and Experiential Learning, Volume 45, 2018

Tragatschnig, S., & Zdun, U. (2015, June). Modeling Change
Patterns for Impact and Conflict Analysis in Event-
Driven Architectures. In Enabling Technologies:
Infrastructure for Collaborative Enterprises
(WETICE), 2015 IEEE 24th International Conference
on. IEEE.

Tran, H. & Zdun, U. (2013). Event Actors Based Approach for
Supporting Analysis and Verification of Event-Driven
Architectures. 17th IEEE International Enterprise
Distributed Object Computing Conference. Vancouver,
BC.

Vázquez-Alonso, Á., & Manassero-Mas, M. A. (2017). Juegos
para enseñar la naturaleza del conocimiento científico
y tecnológico. Educar, 53(1), 149-170.

Zapata, C.M. (2012). The UNC-Method revisited: elements of
the new approach. Eliciting software requirements in a
complete, consistent, and correct way. Saarbrucken:
Lambert.

Zapata, C. M., Noreña, P. A., & González, N. E. (2013).
Representación de eventos disparadores y de resultado
en el grafo de interacción de eventos. Ingenierías
USBmed, 4(2), 23-32. http://revistas.usb.edu.co/
index.php/IngUSBmed/article/view/288

Zapata, C. M., Noreña, P. A., & Vargas, F. A. (2014). The
Event Interaction Game: Understanding Events in the
Software Development Context. Developments in
Business Simulation and Experiential Learning, 41.
https://journals.tdl.org/absel/index.php/absel/article/
view/2123

