The general hypothesis of the study is that, if marketing strategy development in a simulated environment is an internally valid experience, then the cognitive decisions should be consistent with the environment with which the decision-maker must contend. Furthermore, based on the performance outcomes, the cognitive interpretation of the environment should evolve such that more effective decisions are made. Not understanding the structure of the environment should lead to ineffective decision-making (i.e., poorer performance outcomes).

With respect to the present study, a measure of cognitive understanding of the structural nature of the encountered environment can be determined by comparing the perceived importance of a given decision area to the corresponding pre-set parameter weights. The greater the absolute level of congruency between the perceived variable-importance and the actual variable importance, the greater is the degree of valid and reliable cognitive understanding of the encountered environment. Furthermore, greater variable-importance congruency is expected to be positively related to earnings per share, market share, and a performance measure based on equally weighted earnings-per-share and market share. A negative correlation between congruency and performance is expected.

RESULTS AND DISCUSSION

The results provide limited support for the expected relationships between valuable-importance congruency and performance. The paucity of significant, negative correlations clearly indicates that performance results are generally independent of the cognitive understanding of the structural nature of the environment with which a player had to contend. For all participants combined and for those in the "push" and the "pull" environments separately, the importance of low price (pull), high sales force size (push), the use of point-of-purchase sales promotion (push), the use of trade show sales promotion (push), price research (pull), and co-operative advertising research (push) are independent of the three performance measures [p>.05].

The six significant negative correlations obtained, together, offer only very limited support for the hypotheses of the study: r = -.36 (p < .05) between high broadcast advertising (pull) and the combined performance measure of earnings per share and market share [Pull group]; r = -.42 (p < .05) between high print advertising (pull) and earnings per share [Pull group]; r = -.45 (p < .01) between high trade advertising (push) and market share [Push group]; r = -.49 (p < .01) between high trade advertising and the combined performance measure of earnings per share and market share [Push group]; r = -.38 (p < .05) between high cooperative advertising allowance and market share [Push group]; and r = -.36 (p < .05) between high product quality and earnings per share [Pull group].

Thus, overall, the results of the study fail to provide sufficient support for the relationship between game performance and the structural understanding of the environment with which a game participant has to contend. Using game performance as a surrogate indicator of the cognitive understanding of a game environment therefore may be inappropriate. Without the proper structural understanding, appropriate behavioral and performance results should not be forthcoming. The limited number of significant negative correlations between the importance congruency values for the decision variables and the identified performance measures obtained in the study is consistent with this expectation.

REFERENCES
