ABSTRACT
This study examined the relationship between learning and simulation performance. It had two purposes; 1, to examine the degree to which learning and simulation performance co-vary; 2) to explore the performance-related correlates of learning. Using a researcher-developed learning measure, we found no positive correlation between learning and simulation performance. Additionally we believe the data suggest that learning is associated with the extent to which a team struggles to improve its performance standing.

BACKGROUND
There is a relatively extensive literature dealing with the topic of student learning in the simulation environment. In general, simulations are considered valid for use in a strategic management course, but the implication from these papers for the present study’s purposes is that learning and performance are unrelated. Previous papers have dealt with the specific kinds of learning goals accomplished in a simulation, including improving quantitative skills and the acquisition of applied or theoretical knowledge. There have also been papers on the development and acquisition of decision-making and interpersonal-communication skills and on general concerns applicable to development of learning validation models. The question remains about what specific types of learning are affected by the use of simulations.

METHOD
The formal hypotheses were’ 1) Students who acquire more learning over the period of simulation play attain superior performance in the simulation; 2) Students who struggle effectively with the dynamics of playing the simulation exhibit superior learning performance. Subjects were enrolled in three sections of the required undergraduate Administrative Policy course at the I University of Wisconsin-Whitewater during the spring, 1992 semester. All sections played Micromatic. We structured the players into teams in live industries, although the period of play ranged from 9-13 quarters we used identical decision factor weights and evaluative criteria for all industries. Game performance was worth 200 points of the course grade. At the fifth week of play, one researcher abandoned teams and each of his students continued as single-member firms using the team’s past performance as a historical basis. To measure learning the researchers developed two parallel forms of a multiple-choice and short-essay examination. Questions were constructed using issues and situations routinely confronted by companies competing in Micromatic and they tapped analytical, synthesis and application skills of Bloom’s Taxonomy. Form I was administered as a pre-test at the beginning of the semester. Form 2 was administered at the end of the semester. Learning over the period of play was defined as the difference in percentage score far Form 2 minus percentage score far Form 1.

RESULTS AND DISCUSSION
We found no direct, positive linear relationship between simulation performance and learning. Though not statistically significant, our data displayed a tendency for those who performed more poorly in the simulation to learn more. Additionally, our data also suggested that those who learned the least were members of tennis that dropped in ranking over the course of the simulation.