Most of the simulations which are used in academia or industry have a purpose. That purpose is to teach or illustrate something to a group of people. In other words, to communicate information to a group of people in a way that they will retain and use it. Properly used, a simulation is a wonderful device for demonstrating pedagogical points. Retention is high and the lessons learned are easily applied to the “real world.” Improperly used, a simulation creates confusion and can even disorient what the teacher is trying to communicate. Much of the improper usage of simulations comes about from oversights in the marketing or in the design of the simulation.

Recognize the Customer: The marketing concept is a wonderful idea with one of its central tenets being to satisfy the customer. This raises the question of who the customer is for a simulation / experiential exercise.

Is the customer the teacher? If the goal of using a simulation is to communicate something to a group then the customer cannot be the teacher, because the teacher should already know what the simulation is trying to teach. Therefore the teacher is not the primary person that the simulation designer is to satisfy. The role of the teacher is that of decision-maker in a buying center. They do not use the product, but they do decide which product to buy.

Are the participants the customers? I would argue that they are. These are the people you are trying to communicate to. Even more importantly, the participants are the people who will be used to measure the benefits the simulation brings to the learning experience. Gentry, Stoltman and Mehloff (1992) quite rightfully point out that more emphasis is needed in delineating just what the student should be learning, and bring out their concern for the measurement of that learning.

This is a key concept for the simulation designer. The teacher is NOT the person doing the learning nor is the person to be satisfied. Satisfaction on the part of the participants can be tied to their perceived performance (Cabaniss 1992.) Because of this, the criteria for good performance should be clearly delineated to the participants, and the designer needs to ensure that they can handle the mechanics of the exercise. While a program / booklet that starts slowly at a low level will be viewed by the more advanced members of a class as demeaning, it is often the only way to prevent losing the people who are lacking some information / capabilities. This results in the third rule of simulation design:

Have the initial portions of the simulation and its accompanying instructions designed / written for the lowest common denominator.

Improper Selection of a Target Market: The design of a simulation / experiential exercise is an organic process. By this I mean that the seed of an idea is planted in the mind of the designer and grows into something that is not quite what was initially envisioned. The closeness between the designer and their product results in simulations being marketed to the wrong markets. The forth guideline for simulation design then becomes to let a third party give guidance as to the fit between the simulation and your proposed target market.

Conclusion: This partial listing of simulation design problems is not presented with the purpose of saying that all programs encountered suffer from these faults. Rather, the hope is that the people who write/design simulations and experiential exercises will be cognizant of these problems to make their products better. The ability to communicate and teach via a simulation can then be even more effective than it already is.

Bibliography

Cabaniss, Roy F. Differences Between International and Domestic Organizational Selling Relationships Utilizing the Satisfaction Construct, 1992, unpublished dissertation; Oklahoma State University, Stillwater, Okla.


