
Separation of Concerns: a Web Application
Architecture Framework

Xiaoying Kong1 Li Liu2and David Lowe1

1Faculty of Engineering, University of Technology, Sydney,
P.O. Box 123 Broadway Sydney, NSW 2007, Australia

2Project Management Graduate Programme, Faculty of Engineering,
The University of Sydney, NSW 2006, Australia

Email: xiaoying.kong@uts.edu.au, l.liu@staff.usyd.edu.au, david.lowe@uts.edu.au

Abstract
Architecture frameworks have been extensively developed and described within the literature.
These frameworks typically support and guide organisations during system planning, design,
building, deployment and maintenance. Their main pupose is to provide clarity to the different
modelling perspectives, abstractions, and domains of consideration within system development.
In dpoing so they allow improved clarity with regard to the connections between the different
models, and the selection of models tht are most likely to capture salient features of the system.
In this paper we present an Architectural Framework which takes into account the specific
characteristics of web systems. The framework is based around a two dimensional matrix. One
dimension separates the concerns of different participants of the web system into perspectives.
The second dimension classifies each perspective into development abstractions: structure
(what), behaviour (how), location (where) and pattern. The framework is illustrated through
examples from the development of a commercial web application.

Keywords

Web architecture framework, architecture classification, web management, web modelling, web
engineering, web information system, web architecture, web development tools

1. Introduction

Developing web systems is a complex endeavour that often requires the coordination of efforts
across organizational and technical boundaries. People from different specializations and
organizational units typically use their own technical languages and have unique values and
norms. It is thus critical for organizations and people involved in a system development effort to
understand the architecture of the system, defined as “the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution” (IEEE 2000). An Enterprise Architecture (EA) is
often used to help with the understanding of the structure and functioning of the systems, and the
roles and expectations of various stakeholders in a complex endeavour such as developing a large
information system. It provides a map of the enterprise and is a route planner for business and
technology change (Platt 2002). Using an Architecture Framework will speed up and simplify
architecture development, ensure more complete coverage of the designed solution, and make
certain that the architecture selected allows for future growth in response to the changing needs
of the business (The Open Group 2003).

There are various existing Architecture Frameworks that establish terms and concepts pertaining
to the content and use of architectural descriptions. Among others, the Zachman framework
(Zachman 1987), 4+1 view model of architecture (Kruchten 1995) and Model Driven
Architecture (MDA) (Object Management Group 2001) have received significant attention.
Nevertheless, these Architecture Frameworks were developed for conventional enterprise
information systems that do not have major web components. As we shall discuss below, as the
complexity of web systems grows there is a need to develop an Architecture Framework to
support and guide organizations during web system planning, design, building, deployment and
maintenance.

This paper presents an Architecture Framework for web applications taking into account the
unique characteristics of web systems. This framework is based around a two dimensional
matrix. Each row of the matrix contains a set of architectures specific to a particular perspective
– i.e. the concerns of a particular class of participants. Each perspective is then classified into
different development abstractions: structure (what), behaviour (how), location (where) and
pattern.

An Architecture Framework such as this supports developers in understanding the range of
models and architectures which might be appropriate in developing Web applications or systems.
The relevance of different persectives and abstractions will vary depending upon the nature of
the system or application being built, and it is important to be able to select those which best aid
in supporting effective development. For example, a functionally rich Web-based work-flow
system might be best developed by emphasising a functional persepctive, whereas a content-rich
catalogue system would probably emphasise information architectures. It would be highly
unlikely to find a single system where it was appropriate to develop all perspectives and levels of
abstraction.

In section 2 we consider the literature on Architecture Frameworks. Section 3 presents our Web
Application Architecture Framework. Section 4 discusses findings and the implications of this
framework. Finally in Section 5, the conclusions are drawn and future research directions are
discussed.

2. Background
2.1 Existing Architecture Frameworks

Information technology related architectures for enterprise, information and data have evolved
over the past 20 years. Among many Architecture Frameworks, Zachman’s framework
(Zachman 1987, Sowa et al. 1992) is widely acknowledged as the most comprehensive and
sophisticated. Subsequently, the Zachman framework has become the basis for many variations
of Architecture Frameworks. These frameworks support the observation that a system does not
have a single architecture, but has a broad range of architectures representing different
perspectives and different developmental abstractions.

The Zachman framework contains two dimensions. The first dimension describes the
perspectives of stakeholders of the system, and includes the following viewpoints: ballpark;
owner; designer; builder; subcontractor; functioning system; and description model. The second
dimension presents six questions: what (data); how (function); where (network); who (people);
when (time); and why (motivation). The two dimensions establish a matrix of 5x6 cells. Each
cell describes a unique model, an architecture or a description. Each row represents a distinct and
unique perspective (Zachman 1987).

Another popular framework is Kruchten’s “4+1 view model of architecture” (Kruchten 1995)
which consists of five views: logical; development; process; physical; and scenario. The logical
view describes the services which the system should provide to its users. The process view
concerns non-functional requirements such as performance and availability. The development
view focuses on the actual software module organization within the software development
environment. The physical view describes the mapping of the software onto the hardware. The
elements in these four views are shown to work together seamlessly by the use of a small set of
important scenarios. System engineers approach this “4+1” view model from the physical view,
then the process view. End-users, customers, data specialists see it from the logical view. Project
managers and software configuration staff use it from the development view. The five views are
not fully independent and not all the views are always needed in supporting the development of
specific software architectures (Kruchten 1995).

Similarly, Soni et al. (1995) classified software architectures for industrial applications into four
categories: conceptual architectures; module interconnection architectures; execution
architectures; and code architectures. Within each category the structure describes the system
from a different perspective. The conceptual architecture describes the system in terms of major
design elements and the relationship among them. The module interconnection architecture
encompasses functional decomposition and layers. The execution architecture describes the
dynamic structure of the system. The code architecture describes how the source code, binaries
and libraries are organized in the development environment. The four architectures address
different though inter-related engineering concerns.

The Object Management Group’s Model Driven Architecture (MDA) (Object Management
Group 2001) defines an approach to create models, refine models and generate code from
models. Participants in a development process might use one of the three types of models:
Computation Independent Models (CIM) that describes the business; Platform Independent
Models (PIM) for architects and designers to describe the system architecture; Platform Specific
Model (PSM) for developers and testers to generate code. Some aspects of the Zachman
framework can be mapped into MDA (Frankel et al. 2003). In MDA, the choice of viewpoints is
essentially a modelling choice.

Some other Architecture Frameworks such as the Federal Enterprise Architecture Framework
(FEAF) (Chief Information Officer Council 2001), Command, Control, Computers,
Communications, Intelligence, Surveillance, and Reconnaissance (C4ISR) (Department of
Defence 1997), and the Treasury Enterprise Architecture framework (TEAF) (Chief Information
Officer Council 2000) have been developed for government agencies. C4ISR claims to give
comprehensive architectural guidance for all Department of Defence related domains. FEAF
promotes shared development for US federal processes, interoperability, and shared information
among US federal agencies and other government entities. TEAF provides an Architectural
Framework that supports Treasury’s business process in terms of work products (The Open
Group 2003).

2.2 Web systems and Architectures

The nature of web systems is very different from the conventional software systems which the
above frameworks are intended to support. At a technical level web systems typically: have
tighter linkage between the business model and the technical architecture; have more pronounced
open and modularised architectures; use technologies that change rapidly; demand effective
information design and content management; place more emphasis on user interface; and place
increased importance on quality attributes in mission critical applications that are directly
accessed by external users (Lowe et al. 2001).

The existing Architecture Frameworks do not provide a clear pathway for addressing these
characteristics. For example, the Zachman Framework matches the concrete entities, processes,
locations, people, times, and purposes of the real world to the abstract bits in the computer, but is
not able to accommodate the later development of open and modularised architectures of the
web. Reusable information and components, and an increased emphasis on user interface -
characteristics of web architectures - are not mapped into the building metaphor of the Zachman
framework.

MDA separates models into the CIM, PIM and PSM. Web systems however contain strong
elements of creative design which is not handled by the MDA models. MDA is based on use of
the Unified Modeling Language (UML) which has become the industry standard notation. But
UML is insufficient to model aspects such as the user interfaces and some business aspects of
Web systems. UML and MDA are not fully understood by the IT community (Ambler 2004).
UML has generally been found lacking as a basis for overall IT architecture design (Spencer
2000).

We propose a Web Application Architecture Framework to fill in the identified gaps in the
existing Architecture Frameworks. The unique technical characteristics of web system (Lowe et
al. 2001) are fused into this framework.

3. Web Application Architecture Framework
(WAAF)
The Web Application Architecture Framework proposed here classifies concerns related to the
development of web systems along two dimensions. As shown in Table 1, the horizontal
dimension (rows) concerns the perspectives of the different participants in the web application
development process. The perspectives are those of: business owners; web system users;
information architects; system architects; developers; and testers. The vertical dimension
(columns) classifies the architectures into four categories, namely: structure (what); behaviour
(how); location (where); and pattern. The first three categories (What, How, Where) mirror those
in the Zachman framework. The fourth category (Patterns) has been added based on the growing
recognitionof the the importance of patterns in software systems generally, and Web systems in
particular (Platt 2002, Montero, 2003). Each cell in the framework is a model, a description, or
an architecture as appropriate.

The classification in columns of the WAAF Matrix is described in the following abstractions:

Structure: The abstraction of the entities comprising the system and the inter-relationships
between these entities.

Behaviour: The description of the functional workflow processes of the system. The
“Behaviour” column specifies the nature of the interactions amongst the entities that are
described in the Structure column.

Location: The description of the physical or logical location of the system entities relative to
others. It builds the sense of neighbourhood awareness.

Pattern: This refers to the reuse of real-world experience harvested from best practices for
successful, rapid and cost-effective system development (Platt 2002). As existing patterns may
not be classified into “structure, behaviour and location”, this column will list and describe
patterns in their original way.

Table 1. WAAF Matrix - Web Application Architecture Framework

 Structure
(What)

Behaviour
(How)

Location
(Where)

Pattern

Planning
Architecture
(Planner’s
Perspective)

List of things
important to the
business

List of processes the
business performs

List of locations in
which the business
operates

Possible
business models
and patterns

Business
Architecture
(Business
Owner’s
Perspective)

e.g. Business Entity
Relationship Model

e.g. Business
Process Model

e.g. Business Entity
Location Model

e.g. Business
Model Patterns

User
Interface
Architecture
(User’s
Perspective)

e.g. User Interface
Structure Model

e.g. User Interface
Flow Model

e.g. User Site Map
Model

e.g. Interface
Templates,
Navigation
Patterns

Information
Architecture
(Information
Architect’s
Perspective)

e.g. Information
Dictionary

e.g. Information
Flow Model

e.g. Information Node
Location Model

e.g. Information
Scheme
Patterns

System
Architecture
(System
Architect’s
Perspective)

e.g. System
Functioning
Module/Sub-
Module/ Server
Page Structure

e.g. Workflow
Model of
Module/Sub-
Module/ Server
Page

e.g. Site Mapping
Model of Modules
/Sub-Modules/ Server
Pages

e.g. Design
Patterns,
Presentation
styles

Web Object
Architecture
(Developers’
Perspective)

e.g. Physical Object
Relationship

e.g. Algorithms in
Source Code

e.g. Network
Deployment Model

e.g. COTS,
Components,
Code Library

Test
Architecture
(Tester’s
Perspective)

e.g. Test
Configuration

e.g. Test Procedure e.g. Test Deployment

e.g. Templates,
Standards of
Test Document

In the following subsections we will present the framework – describing each of the rows
(perspectives). The framework is discussed using examples of a commercial web application; an
Australian company that specializes in matching investors to entrepreneurs who are seeking
investment capital. For confidentiality reasons, we use a fictitious name for the company - “XYZ-
Match”.

3.1 Planning Architecture (PA), Planner’s Perspective
This perspective is concerned with issues important to planning of the web system.

Cell (PA-Structure) lists the entities important to the business. Business entities may be a
person, a thing or a concept that is part of, or interacts with, the business (Proforma 2003). In
XYZ-Match, example business entities might include the following:

- Investors
- Entrepreneurs
- XYZ-Match web system

Cell (PA-Behaviour) lists the overarching business processes in which the business participates.
In the example of XYZ-Match, "Investor listing information to Venture Capital Directory" is an
example of one such business process.

Cell (PA-Location) lists the physical (e.g. specific cities) or logical (e.g. via the internet)
locations in which the business operates.

3.2 Business Architecture (BA), Business Owner’s Perspective

This perspective models the business structures, processes and locations, and patterns of the web
application system from the viewpoint of business owners. Not all parts of the business
architectures in an organisation will be transferred into web system architectures. Only relevant
structures, behaviours and locations in the Business Architecture (i.e. those parts which relate to
the web system) will be considered in this framework.

In some senses this perspective also forms the basis of the understanding of system scope and
ultimately enabled a clearer understanding of system requirements from the business perspective.

Cell (BA-Structure) describes the business structure including business entities and their
relationships. An example model within this cell could be a business entity-relationship diagram
(ERD) that models the business concepts, entities and business rules. In such a model, the
business rules capture the relationships between the business entities. Figure 1 is an example of a
business ERD of XYZ-Match.

Figure 1. Business structure model

Cell (BA-Behaviour) models the business workflows of the business entities interacting with the
business. Flowcharts, activity diagrams, and collaboration diagrams are common tools for
business process modelling. If object-oriented technology is applied, an example of a business
process model could be a UML use case diagram coupled with sequence diagrams or activity
diagrams that describe each business use case. Figure 2 is an example of an activity diagram to
model the business use case “Entrepreneurs search and contact investors in Venture Capital
Directory” of XYZ-Match.

Figure 2. Business process model

Cell (BA-Location) models the locations of business entities. Figure 3 shows the business
location model of the entrepreneurs of XYZ-Match.

Entrepreneurs

Asia Australia/
New Zealand Europe USA Canada Other

countries
Figure 3. Business entity location model

Cell (BA-Pattern) describes business patterns for the web system. Patterns can be described as
“a three-part rule, which expresses a relation between a certain context, a problem, and a
solution” (Alexander 1979). Business patterns generalize solutions to solve problems that are
common to different business situations. They can be reused repeatedly and can be combined and
adapted in many different ways (Eriksson 2000). Example business patterns which might be
considered as potentially relevant for XYZ-Match include: a brokerage model; an advertising
model; a merchant model; an affiliate model; and an application service provider model.

3.3 User Interface Architecture (UIA), User’s Perspective

This row describes the components of the system, their roles and relationships as they are
perceived by users of the system.

Cell (UIA-Structure) describes the structure and contents of user interfaces such as HTML
pages, user received emails and reports that users will see. There are two levels of user interface
structure: page level and site level. At page level, the layout and the contents of each page is
defined. Example models at page level include user interface prototypes and web page
fragments. At the site level, the composition of entire user experience with the web application
and their relationship are presented. Web page class diagrams, user interface prototypes and

presentation views for entire the user experience using IBM OVID (Robert et al. 1998) are
examples of user interface structure at site level.

Table 2 is an example of fragments of a web page “VC Firm Listing in VCDirectory” of XYZ-
Match at the page level.

Table 2. Web page fragment

Logo Page Title Venture Capital Firms

Introduction Of VCFirms Navigation
VC Firm Listing

Name of VC Firm Brief Description Location

 <<Prev 10 Page scroller Next 10>>

Advertisement
(Business Plan
Templates)

 Disclaimer
Footer

Figure 4 is an example of a possible user interface structure of XYZ-Match at the level of the
entire user experience.

Figure 4. Web page structure for XYZ-Match site

Cell(UIA-Behaviour) models how external and internal users access and utilise the web
application or system. An overview of user behavioural paths is presented in a user interface flow
diagram. Tools like UML state chart diagrams, UML activity diagrams, flowcharts, white site
prototypes, user stories, and storyboards can be used here to describe user interaction behaviour.

In many cases, functional prototypes are utilised rather than using formal diagrams. These
prototypes might be partial implementations (such as white site prototypes) or artificial examples
(such as storyboards or paper prototypes) but both are used to present the paths of user
behaviours. Figure 5 is an example of a User Interface Flow Diagram in the VCDirectory module
of XYZ-Match.

Cell (UIA-Location) describes the location of web pages in the users’ view. A site map is an
example which organizes pages taxonomically without showing the details of each page. Figure
6 is part of the site map of XYZ-Match web site.

Cell (UIA-Pattern) collects user interface patterns. The SAP INFO glossary (SAP 2004)
describes User Interface Patterns as “proven software components that can be used for recurring
tasks on the part of the user. In line with the Pattern concept, a User Interface Pattern is defined
at various levels on a non-technical basis, and then programmed as a cross-application Pattern”.
For web applications, example UI patterns could include UI presentation templates reused from
other projects or other modules and navigation patterns. Example web user navigation patterns
used in XYZ-Match include the directory pattern and the guided tour pattern.

Figure 5. User interface flow diagram

Figure 6. Site map of XYZ-Match

3.4 Information Architecture (IA), Information Architect’s
Perspective

An information architecture is “the result of the integrated approach to information design”. It is
the “blueprint for maximizing software usability via the integrated design of labels, messages,
online support elements, and printed support elements” (Henry 1998).

An information node is a representation of an element of architecture to create, process or
consume information. Information nodes includes information source and information
destination. An information node could be a system, an organization or an external entity.

Information architects can be analogous to the librarians of web development. The concerns of
the information architects are to classify and construct the structure, relationship, flow and
location of information that is needed in the User Interface perspective to connect the external
and internal users to access and operate the content and the functionality of the web application.
This perspective is independent from the implementation of the system.

It is also worth noting that a major concern in website maintenance is that of maintaining the
nformation structures. The information architecture captures relevant information and – if
modelled appropriately – facilitate important tasks such as effective hypermedia authoring amd
link maintenance.

Cell (IA-Structure) structures, organizes and labels the information and its interrelationships.
Information is “the interpretation of data within a context set by a priori knowledge and the

current environment” (Lowe et al. 1999). A Web information dictionary is an example in this
cell. Information could be organized alphabetically, chronologically, geographically, or by
topics, tasks, users, metaphor or by hybrid categories. Examples of information labels include
contextual links, headings, navigation label, index terms and iconic labels (Rosenfeld et al.
2002). Figure 7 is an example of the information structure of “Information of Venture Capital
Directory”.

Figure 7. Example of information structure and labels

Cell (IA-behaviour) models the information creation, exchange, process and consumption flow
between the system, the organization and external entities, and the triggering events. This
information flow is derived from the user interface flow modelled in the User Interface
perspective. Example models are an Information Exchange Matrix (Chief Information Officer
Council 2000) and an information flow diagram such as WebML+ (Lowe et al. 2003a). We use
an information flow diagram with a modified data flow diagram and activity diagram as an
example in Figure 8 . In this diagram, the information flow is partitioned to swim lanes by
information nodes. Each lane holds the information process activities, information and
information repository that belong to that information node. The information flow starts from a
start point node and ends with an end point node. The labels of the exchanged information are
defined in Cell(IA-structure).

Figure 8. Information flow diagram

Cell (IA-Location) Information could be stored in Information Nodes such as a database, XML
files, file folders, or some other repository of external information entities. An Information Node
represents both information source and destination. In this cell, the location and the relationship
of the Information Nodes are modelled. As this perspective is free from the implementation of
detailed information repository, the information location model is only at the context level.
Figure 9 uses a deployment diagram to describe a location model.

Cell (IA-Pattern) describes patterns of constructing information structure and information flow.
For example, information structure pattern can be constructed from a layered classification
scheme for key web characteristics (Lowe et al. 2001).

Figure 9. Location model of information source and destination

3.5 System Architecture (SA), System Architect’s Perspective

System architects focus on the overall architecture of the system as a basis for integrating various
system perspectives. For example, a web system could be designed into layers. Major
functioning modules are grouped at the top layer. Each module is decomposed into a number of
sub-modules at a middle layer. Sub-modules comprise a set of server pages or server files on a
lower layer to fulfill the functionalities.

Cell (SA-Structure) specifies the structure, the responsibilities and the relationships of the
design elements of a web system. Take XYZ-Match as an example; there are three layers: module
layer; sub-module layer; and server page layer. Within each sub-module, the structure of a set of
low-level components to fulfill the functionalities of each sub-module is described. For each
component (such as a server page) we might typically specify inputs (either from other
components or from the user-interface), the responsibilities, and the outputs (to the user interface,
or to other components).

An example of the server page structure of “Sub-Module 1.1: VC Directory Listing” can be seen
in the bottom layer of Figure 10. Five major server pages are listed in this structure. In this
example, the responsibilities of each server page are described on the top of the server page as
comment lines. Source code for server pages should not be included in this perspective. If an
object orientated design is adopted, class diagrams and package diagrams of modules, sub-
modules and server pages can be used to specify the structure in this cell.

Figure 10. Three layers of system architecture of XYZ-Match

Cell (SA-Behaviour) specifies system workflows which implement business logic within the
modules and sub-modules. Figure 11 demonstrates the workflow within sub-module “VC
Directory” using a server page flow diagram.

Figure 11. Server page flow diagram

Cell (SA-Location) maps design elements such as modules, sub-modules and components (e.g.
server pages) to their physical locations. For example, modules may be located in parallel
directories. Sub-modules can be under the sub-directory of their parent modules. Server pages or
server files may be under their sub-module directories. Reusable server pages can be grouped
into a directory. For large web applications, if the rule of separation of business logic and
presentation is applied, server pages to deal with business logic, user interface views, and
customized workflow processes can be located in different directories. Figure 12 is an example
of directory mapping.

Figure 12. Directory mapping

Cell(SA-Pattern) lists system design patterns and presentation style patterns. J2EE Blueprints
(Sun Microsystems Inc. 2001), Apache Struts (Apache Software Foundation 2003) and
Coldfusion Fusebox (Peters et al. 2002) provide example design patterns. For presentation
patterns, styles could be defined for each module or sub-module style sheets or templates. The
architectures of such style sheets or templates can be described in this cell.

3.6 Web Object Architecture (WOA), Developer’s Perspective

The system design is implemented via source code and other web objects. This row describes the
architecture of these implementation artefacts from the developer’s perspective. Examples of
web objects include ActiveX components, COTS (commercial-off-the-shelf) components,
objects like shopping carts, multimedia files such as video, plug-ins, data tables, server page files
(source code), Applets, agents, guards, graphics files, and scripts, etc. (Reifer 2000).

Cell (WOA-Structure) defines input/output data or information for each implementation object.
Web objects relationships used in the source code are also specified. Examples of such
input/output data definitions are on the top of each server page.

Web object dependency graphs are an example of how the relationship of web objects can be
captured. A change to one web object will require appropriate change in its dependent objects
identified in the graph. Figure 13 is part of a web object dependent graph of XYZ-Match.

Figure 13. Web object dependency graph

Cell (WOA-Behaviour) describes the algorithms within the source code. Detailed algorithms of
code flow are typically self-documented within the source code.

Cell (WOA-Location) physically allocates the web objects in the web network. A deployment
diagram is an example tool to model network location.

Cell (WOA-Pattern) Web systems are commonly built using open source code and components.
Source code could be reusable from one project to other projects and from one programmer to
other programmers. This cell utilizes the reusability of programmer’s work. Examples are COTS
components, internal components, open source code, code libraries, custom tags and code
snippets.

3.7 Test Architecture (TA), Tester’s Perspective

Testing web applications includes verification and validation of artefacts produced in the rows
above this perspective, and seeks to identify possible weak points in the system design. Testers
look at the web product in terms of both the web project participants’ perspective and possible
hackers’ perspective – i.e. valid system users and invalid system users.

Tests of the business architecture, user interface architecture, information architecture, and
system design architecture will most commonly be static tests (such as a review or walkthrough).
Tests of the web object architecture are more likely to be dynamic tests by execution of the web
product (as some combination of unit tests, integration tests, load tests or stress tests, system tests
which include alpha testing in the developer’s environment and beta testing in the client’s
environment).

The Tester’s perspective in this row includes the structure of test documents, test procedure,
location model and patterns in different types of tests. A test can be a black-box test from a
users’ view or a white-box test from viewpoints of internal participants or external hackers.

Cell (TA-Structure) defines and organizes test data and test documents. Example test
documents include a test plan, the items under test, test designs, test cases, test data, test
procedures, test logs, and test reporting (such as test item transmittal reports, test incident reports
and test summary report) (IEEE 1999). The relationships between the test documents and items
can be described in a test configuration file or diagram. Test item interfaces to other web objects,
sub-modules, modules or stubs are also defined here. An example of a test document relationship

diagram is shown in Figure 14. A Test Harness Graph can be used to define the interfaces and
relations of test system.

Figure 14. Test documents relationship diagram

Cell (TA-Behaviour) models the test execution process using test procedures that configure a set
of test data and test cases. Test Flow Graphs and UML interaction diagrams are common tools to
model the flow of test cases and test data in each test execution. User Interface Flow Diagrams
(defined in the UI architecture) could be used as a Test Flow Graph in a black-box test to validate
the behaviour of the user interface flow. In each test case we would typically specify: test
sequence; alternatives; loops and defaults of stimuli to and observations from the test items. Test
step flow inside each test case could be based on the algorithm in a server page file for white-box
testing.

Cell (TA-Location) maps the test execution to network components. To test web products, the
test configuration for a test described in test structure is deployed into the network. The
deployment of the test execution of a test on certain nodes in a test environment (such as on the
development server or in a network of client’s production servers) is described in this cell.

Cell (TA-Pattern) describes test patterns. Some of the test documents could be reused across
projects and organizations. For example, test documents for a particular test can be tailored from
standards or templates. Test cases and test data can be reused by other test designs. Other aspects
potentially included in this cell include templates or standards of test documents, reusable test
data, test cases, and test configurations.

4. Discussion
4.1 Key Attributes Of The Proposed Framework

Each column has a unique model. Each row presents a unique perspective.
The classifications of structure, behaviour, location and pattern are unique and should be
independent from other columns in the WAAF Matrix. Similarly, each participant looks at the
system from a unique viewpoint. The web application system architecture is represented by the
integration of the rows and the columns. The framework reduces the system complexity by

decomposition of the system architectures to level of cells that are orthogonally allocated by
column and row.

The framework does not imply the order of the perspective.
The order of the perspectives presented above does not imply a sequence for the development
process. Nor does it define a development process. Developers could apply a traditional waterfall
development, or equally they could adopt an iterative process to fit their projects. For small and
medium web projects, some experienced developers could jump directly to the Web Object
Architecture, ignoring other perspectives as they may use mental architectures and document
other perspectives later (Kong et al. 2004). Each perspective could be applied to both
development of new web systems and maintenance of existing systems.

Allowing existing development paradigms.
This framework is not affixed to any of the existing development paradigms (e.g. object-oriented
vs structured design) and thus allows the adoption of any paradigm. Illustration of examples used
in each cell does not imply using one method in the entire framework. For example, in
Cell(structure) of each perspective, if an object-oriented paradigm is used, a sample architecture
could be modelled by UML class diagrams. If another paradigm is adopted, models and
notations of the paradigm could be used.

It is not necessary to provide models or documentation for all cells.
This framework classifies the architectural constructs according to different perspectives. It does
not require heavyweight documentation. Not all cells, columns or rows are needed for a specific
web project. Organizations can tailor the framework to fit the needs of their systems. For
example, the information architecture and the system architecture in this framework could be
merged into one perspective (Lowe et al. 2003c). For small and medium web applications,
experienced developers could work with business owners to merge cells in this framework to fit
the project need. Work on a Critical Feature Matrix (Kong et al. 2004) is an example where all
cells of this framework have been integrated into a lightweight matrix.

4.2 Additional Comments

It is also worth noting that we have focused on the particular design perspectives which exist
with Web systems. We have not considered the process by which these designs or architectures
are constructed. We believe that they are just as applicable whether a conventional waterfall
approach is adopted, or a more comtemporary agile methodology.

Similarly, approaches such as participatory design or user centred design will still have outcomes
which map into the perspectives and layers of abstraction which we have defined. Different
approaches will, however, place a stronger emphasis on different perspectives. For example,
user-centred design would be likely to emphasise the User Interface Architecture
(User’s Perspective). Our framework however support understanding with regard to the related
perspectives and how they might connect to those which are preferenced.

5. Conclusion and Future Directions
Web systems have characteristics which distinguish them from other systems. Web systems
typically face high levels of client uncertainty of their needs and also in understanding whether a
design will satisfy their needs. They have high levels of requirements volatility and project scope
change due to the evolution of business models. They have shorter delivery times, and demand
fine-grained evolution and maintenance with an ongoing process of content updating, editorial
changes and interface tuning (Lowe et al. 2001).

This paper presents an Architecture Framework for web application which is based on the
separation of concerns and takes into account these unique characteristics of web systems. The
framework has two dimensions in a matrix structure. One dimension concerns domain of
consideration (structure, behaviour, location, and pattern) of the web system. The other
orthogonal dimension concerns the perspectives of various participants of the system.
This framework can serve as a strategic guide to the development of web systems. It can also be
used as a tool for analysis and re-engineering of existing web systems.

Future research will focus on modelling the organizational characteristics of web application
systems into “why (motivation model), who (role model), when (scheduling model), how much
(cost model)” for each perspective. The framework in this paper assumes the target is the web
application. Future research direction could be establishing an architecture framework for web
services in the similar perspectives and classification focus on the unique characteristics of web
services.

References
Alexander, C. (1979) Timeless way of building. New York, Oxford University Press.
Ambler, S. W. (2004) Agile modeling, http://www.agilemodeling.com/
Apache Software Foundation. (2003) Struts, Version 1.1, http://jakarta.apache.org/struts/
Chief Information Officer Council. (2000) TEAF, Treasury Enterprise, Architecture Framework,

Version 1.
Chief Information Officer Council. (2001) FEAF, The federal government enterprise framework.
Department of Defence. (1997) C4ISR Architecture Framework, Version 2.0.
Eriksson, H.-E. (2000) Business modeling with UML: business patterns at work. New York, John

Wiley & Sons.
Frankel, D., Harmon, P., Mukerji, J., Odell, J., Owne M., Rivitt, P., Rosen, M., and Soley, R.

(2003) The Zachman Framework and the OMG's Model Driven Architecture, Business
process Trends.

Henry, P. (1998) User-centered information design for improved software usability. Boston,
Artech House.

IEEE. (1991) 829-1983 (R1991) IEEE Standard for Software Test Documentation.
IEEE. (2000) IEEE Recommended practice for architectural description of software-intensive

systems. 1471-2000.
Kong, X., Liu, L. and Lowe, D. (2004) Critical Feature Method - A Lightweight Web

Maintenance Methodology for SMEs. Journal of Digital Information, Volume 5, Issue 2.
Kruchten, P. (1995) "The 4+1 view model of architecture." IEEE Software: 42-50.
Lowe, D., and Hall, W. (1999) Hypermedia and the Web: An Engineering Approach. New York,

John Willey & Sons Ltd.
Lowe, D., and Henderson-Sellers, B. (2001) Impacts on the development process of differences

between web systems and conventional software systems. SSGRR 2001: International
Conference on Advances in Infrastructure for Electronic Business, Science, and
Education on the Internet, L'Aquila, Italy.

Lowe, D., and Tongrungrojana, R. (2003a) WebML+ in a nutshell: Modelling Architectural-
Level Information Flows. WWW2003: 12th International World Wide Web Conference,
Budapest, Hungary.

Lowe, D., and Henderson-Sellers, B. (2003b) Characterising Web Systems: Merging Information
and Functional Architectures. Architectural Issues of Web-Enabled Electronic Business.
V. K. S. Murthy, N. Hershey, PA, USA, Idea Group Publishing.

Montero, S., Díaz, P., and Aedo, I, (2003) Formalization of Web Design Patterns Using
Ontologies. AWIC 2003: 179-188

Object Management Group. (2001) Model Driven Architecture, http://www.omg.org/mda/

Peters, J., and Papovich, N. (2002) Fusebox: developing ColdFusion applications. Indianapolis,
Ind, New Riders.

Platt, M. (2002) Microsoft Architecture Overview.
Proforma Corporation. (2003) Enterprise application modelling,

http://www.proformacorp.com/downloads/whitepapers.asp
Reifer, D. J. (2000) Web development: estimating quick-to-market software. IEEE Software

17(6): 57 - 64.
Robert, D., Berry, D., Isensee, S., and Mullaly, J. (1998) Designing for the User with OVID. New

Riders.
Rosenfeld, L., and Peter, M. (2002) Information architecture for the World Wide Web.

Cambridge, Mass, O'Reilly.
SAP. (2004) SAP INFO glossary, http://www.sap.info/public/en/glossary.php4/list/
Soni, D., Nord, R.L. and Hofmeister, C. (1995) Software architecture in industrial applications.

Proceedings of the 17th International Conference on Software Engineering, Seattle,
Washington, USA, ACM Press.

Sowa, J. F., and Zachman, J. A. (1992) Extending and Formalizing the Framework for
Information Systems Architecture. IBM Systems Journal 31 (3).

Spencer, J. (2000) Architecture Description Markup Language (ADML), Creating an Open
Market for IT Architecture Tools,
http://www.opengroup.org/architecture/adml/background.htm

Sun Microsystems Inc. (2001) J2EE Blueprints. http://java.sun.com/blueprints/
The Open Group. (2003) TOGAF, The Open Group Architecture Framework, Version 8.1.
Zachman, J. A. 1987. A Framework for Information Systems Architecture. IBM Systems Journal

26,(3).

	1. Introduction
	2. Background
	2.1 Existing Architecture Frameworks
	2.2 Web systems and Architectures

	3. Web Application Architecture Framework (WAAF)
	3.1 Planning Architecture (PA), Planner’s Perspective
	3.2 Business Architecture (BA), Business Owner’s Perspective
	3.3 User Interface Architecture (UIA), User’s Perspective
	3.4 Information Architecture (IA), Information Architect’s P
	3.5 System Architecture (SA), System Architect’s Perspective
	3.6 Web Object Architecture (WOA), Developer’s Perspective
	3.7 Test Architecture (TA), Tester’s Perspective

	4. Discussion
	4.1 Key Attributes Of The Proposed Framework
	4.2 Additional Comments

	5. Conclusion and Future Directions
	References

