
Abstract
In the work reported here, we present a new way of performing
fault-tolerant fulltext retrieval on large text corpora, such as
scientific encyclopedias. The weighted pattern morphing
(WPM) technique introduced in this paper overcomes disad-
vantages of both the popular edit distance measure and the
Soundex code approaches, yet keeps their flexibility. This algo-
rithm handles phonetic similarities; common typing errors such
as omission or transposition of letters, and inconsistent usage
of abbreviations and hyphenation. After showing how WPM
can be implemented efficiently, we present a novel method of
how the weights of the internal penalty matrix can be auto-
matically adjusted for better results. Though the described
technique can be applied without prior knowledge of actual
user patterns, re-examination with a large number of online-
user's patterns proves the portability of this fine-tuning ap-
proach. We further show how shifting the penalty matrix from
one language to another can be accomplished.
The described WPM technique is integrated into a large com-
mercial pharmaceutic encyclopedia CDROM, an online derma-
tological encyclopedia, and an online-reference encyclopedia of
parasitology research, thus also proving its “road capability”.

Keywords
Fuzzy matching, approximate information retrieval,
fault-tolerant fulltext search, q-gram, n-gram, weighted
pattern morphing, WPM, multilingual retrieval

1. Introduction
Users of CD-based, or online-encyclopedias, often face
problems which arise from the fact these text corpora
are written by a vast number of contributing authors.
Although thoroughly edited, multiple (correct) spelling
variants of scientific terms in these electronic text cor-
pora remain in the final release. Some examples of these
variants are multiple language terms with Greek, Latin
or localized spelling; different application of hyphens,
and inconsistent usage of abbreviations. Typical typo-
graphical errors such as omissions, inserting, and swap-
ping of letters further complicate information recall from
these texts by means of a fulltext retrieval system. In
addition, many users of scientific texts often only know
the pronunciation of a specific term, but not necessarily
the correct spelling.

The first implementation of our fault-tolerant approach
was during the compilation of the annual electronic ver-
sion of Hagers Handbuch der Pharmazeutischen Praxis

(Hager's Handbook of Pharmaceutic Practice) – the
standard encyclopedia for German-speaking pharmacists
and pharmacologists – in collaboration with scientific
publisher Springer Verlag. The printed version of
“Hager's Handbook” consists of twelve volumes totaling
about 12,300 pages, and written by over 600 contribut-
ing authors. The current third electronic version, Hager-
ROM 2003 (Blaschek et al. 2003) was released in June
of 2003. In this CDROM-based version, an approximate
200 MB XHTML text led to a 61 MB raw text, after
layout tag removal.

To make this amount of information accessible to the
end-user, a q-gram based fulltext retrieval system was
built into the reading software. This q-gram search en-
gine served as a fast, non fault-tolerant back-end for the
WPM based front-end, where the front-end adds op-
tional fault-tolerance to the retrieval system. Because of
the WPM architecture, and the separation of front-end
and back-end, this approach may add fault-tolerance to
almost any non fault-tolerant text retrieval system like
databases, or web search engines.

Further applications of the fault-tolerant approach are:
fulltext retrieval systems of P. Altmeyer's “Springer En-
zyklopädie Dermatologie, Allergologie, Umweltmedizin”
(Springer's Encyclopedia of Dermatology, Allergology
and Environmental Medicine), where the online version
provides free access for physicians and medical students
on (Altmeyer & Bacharach-Buhles 2002). The adapta-
tion of WPM to an English text corpus was performed
while integrating the technique into the combined online
version of Springer's Encyclopedic Reference of Parasi-
tology and the Parasitology Reference Journal.

In section 2 of this paper an overview is given of related
work, and the different approaches based on phonetic
codes and edit distance measures by other research
groups. The disadvantages of these commonly used tech-
niques are discussed, and we show how these can be cir-
cumvented with our new method. In section 3 we intro-
duce our algorithm of weighted pattern morphing
(WPM), which is, essentially, a matrix-driven, recursive
replacement of substrings of the original user pattern.

Since the backbone of the WPM algorithm is the con-
tent of the so-called penalty weight matrices, we focus in
section 4 on the description of the means of defining

1

Fault-tolerant Fulltext Search for
Large Multilingual Scientific Text Corpora

Wolfram M. Esser
Chair of Computer Science II

University of Würzburg
Am Hubland, 97074 Würzburg, Germany

+49-(0)931-888-6601

eMail: esser@informatik.uni-wuerzburg.de

Published 2004-10-06 in JoDI,
Journal of Digital Information (ISSN: 1368-7506)

rules and weights for these matrices. Finally, in sec-
tion 5, we discuss some usage examples within the con-
text of a large scientific encyclopedia.

2. Related Work
The paper we present here is taking our previous work
presented in (Esser 2004) some important steps further:
While in our ECIR'04 paper we wanted to find out rea-
sonable base parameter settings for our algorithm (e.g.,
total number of alterations of the start pattern), in this
paper we focus on how to adjust the hundreds of rule
weights automatically – even without knowledge of ac-
tual future user search patterns. After improving the
rule weights in this way we prove the better quality of
these new weights with real user patterns. Further, in
this paper we have examined the usability of our ap-
proach on a large English text corpus.

In this section we will summarize different approaches
that lead to fault-tolerant – or fuzzy – search algo-
rithms. The first search algorithms generated a canonical
phonetic code for every word: if a searchpattern and a
target word have the same code, they are regarded as
phonetically similar. In contrast to this sound oriented
measure exists a class of approaches which is more spell-
ing oriented. These approaches are grouped around
V. Levenshtein's edit distance measure.

2.1 Phonetic Codes
The now famous Soundex algorithm, patented in 1918
by Robert Russel, was intended to “provide an index
wherein names are entered and grouped phonetically
rather than according to the alphabetical construction of
the names”((Russel 1918), and see (Zobel & Dart 1995)
for details). Although this relatively simple phonetic ap-
proach has been the subject of widespread criticism, it
has also triggered numerous improved successors, such
as: Gadd's Phonex (Gadd 1990), Philips' Metaphone and
Double Metaphone (Philips 2000), and Phonetex (Hodge
& Austin 2001b), to name but a few.

There exist, however, hybrid algorithms such as Editext,
and Idapist (Zobel & Dart 1996) that combine the edit
distance measure's excellent capacity to correct spelling
mistakes (see below), with the ability of phonetic codes
to group equal sounding word variants.

However, all these approaches work only for word lists
where codes for every single word are generated during
preprocessing. The code for the user pattern is generated
afterwards and then compared to the pre-calculated
word-codes. These techniques have been successful for
fuzzy surname matching, and for approximate search
word lists drawn from larger texts.

Yet with this class of algorithms, it is impossible to rank
strings that have the same code: strings are either simi-
lar (same code) or not (different code). The German
“sch”, for instance, sounds like the English “sh”, how-
ever, the Soundex algorithm cannot manage multi-char-
acter strings as its code groups consist only of single let-
ters.

Furthermore, phonetic codes are not applicable if one
wants to perform a fulltext search that can retrieve
every substring from a given text corpus. User patterns
do not necessarily start and end at word boundaries:
they can start near the end of a word, then span several
words, and end in the middle of another word.

So, if one wants to avoid a full-word-only search system,
one has to avoid phonetic codes. More flexible fulltext
search systems usually use string distance measures,
where in most cases, the edit distance measure is pre-
ferred.

2.2 Edit Distance Based
Approaches

In (Navarro et al. 2001), a taxonomy for approximate
fulltext searching is specified. This taxonomy also distin-
guishes three major classes of approaches: neighborhood
generation, partitioning into exact search and intermedi-
ate partitioning.

Neighborhood generation generates all patterns P'∈Uk(P)
that exist in the text, where editdistance(P, P')≤k for a
given k (edit distance see below). These neighbor pat-
terns are then searched with a normal, exact search algo-
rithm. This approach works best with suffix trees and
suffix arrays, however, Uk(P) can become quite large for
long patterns P and greater values of k, which can be
problematic.

Partitioning into exact search carefully selects parts of
the given pattern that must appear unaltered in the
text; then searches for these pattern parts with a nor-
mal, exact search algorithm, and finally, checks whether
the surrounding parts of the text are close enough to the
original pattern parts.

Intermediate partitioning, as the name implies, is located
between the above approach classes. Firstly, parts of the
pattern are extracted, and neighborhood generation is
applied to these small pieces. Because these pieces are
much smaller, and thus have fewer errors than the full
pattern, their neighborhood will be smaller. Secondly, an
exact search is performed on the generated pattern
pieces, which also checks if the surrounding text forms a
search hit.

Several approaches have been developed in order to com-
bine the speed, and flexibility, of q-gram indices with
fault-tolerance. Given the structure of q-gram indices, di-
rect neighborhood generation is not possible within rea-
sonable time. Assuming that the error is in the text it-
self, Jokinen and Ukkonen show in (Jokinen & Ukkonen
1991) how an approximate search with a q-gram index
structure can be achieved by partitioning into exact
search. Although using the same basic approach, a dif-
ferent algorithm was developed in (Navarro & Baeza-
Yates 1998) given that they assumed the error occurred
not in the text, but within the pattern. Myers demon-
strates in (Myers 1994), an intermediate partitioning ap-
proach to the approximate search problem on a q-gram
index.

2

All the above methods are based on the definition of
Levenshtein's edit distance (Levenshtein 1965). This
metric calculates the distance between two strings by
counting, and then adding, the minimal number of
atomic actions insert, delete and substitute of single sym-
bols (Stephen 1994).

Although the metric provides a mathematically well-de-
fined measure for string similarities, it cannot, from a
human point of view, satisfactorily model the similarity
between natural language fragments.

Given, for instance, the special characteristics of the
Hager text corpus, the use of the edit distance measure
did not seem appropriate. This is mainly due to the fact
that the edit distance processes letters individually (re-
gardless of any context information), and does not pro-
vide the means of preferential string substitution: A→B
versus A→C, where |A|≥1, |B|≥1, |C|≥1; and |A|, |B|
and |C| may be arbitrarily different. For example:
 editdistance(“kalzium”, “calcium”)=2 and
 editdistance(“kalzium”, “tallium”)=2, are the same –
despite the fact, that every human reader would rate the
first two strings much closer together than the second
pair of strings. (note: |X| denotes the length of string X
in characters).

Because the edit distance is more suited to modeling
random typing mistakes or transmission errors, we
needed a way to approximate patterns where the differ-
ences between text and pattern are less “random”. In-
stead, these differences arise from the fact that a great
number of authors may use different, but correct, spell-
ings of the same scientific term. We also wanted to ad-
dress cases where the scientific term has been spelt pho-
netically and, therefore, incorrectly. Our technique of
weighted pattern morphing is described in the following
section.

3. Weighted Pattern Morphing
In this section we present the structure and algorithms
of our fault-tolerant front-end, based on the weighted
pattern morphing (WPM) approach. The results of ex-
periments that led to reasonable parameter settings for
our fault-tolerant search engine are also discussed below.

Figure 1. Workflow of weighted pattern morphing

As observed in section 2.2, the edit distance metric, used
by most available approximate text retrieval algorithms,
is not appropriate when one is trying to model a more
human oriented string similarity. WPM overcomes these
disadvantages with a simple, but powerful idea described
in the following two steps:

1.) Examine searchpattern P for all substrings pi,j

(1≤i≤j≤|P|), which are part of a phoneme group G
(where G={g1,g2,...,gz} and pi,j=gk (1≤k≤z)).

2.) Attempt to replace all pi,j which are members of the
same phoneme group G, with all gl (l≠k).

More general as with the edit distance, here |pi,j|≥1,
|gl|≥1 (including |pi,j|≠|gl|) is possible. A pattern P', in
which at least one substitution took place is called a
morph of P, and a single substitution of pi,j to gl is called
submorph pi,j→gl.

As the interchangeability of members of the same pho-
neme group ought to be different, the concept of penalty
weights was introduced. These penalty weights were
stored in two-dimensional submorph matrices, where the
rows represent the source strings gk, and the columns the
destination strings gl (see examples in Table 1).

As the table demonstrates, not every possible submorph
is allowed, and the matrix may be asymmetric to the di-
agonal. There exist, however, submorph tables for every
common phoneme group such as “a/ah/aa/ar”,
“i/ie/y/ih/ii”, “g/j”, “c/g/k/cc/ck/kk/ch”, among oth-
ers. The possibilities of the edit distance can be approxi-
mated by submorphs: ε→”?” (insert any char);
c∈Σ→”?” (substitute a char c); c∈Σ→ε (delete), where
ε is the empty word, Σ the alphabet, and “?” is the one-
letter wildcard for our search engine. Also defined are
the more exotic submorphs: (e.g.) solution→sol.,
ac.→acid, 5→five, and special scientific characters (e.g.)
α→alpha. These are often helpful in a biochemical and
medical context, because abbreviations are used inconsis-
tently by different authors (e.g.) in HagerROM the
terms “5-petalled” and “five-petalled” occur).

3

Table 1. Two example penalty weight matrices: pho-
neme group “c/g/k...”(top) and numbers (bottom)

c g k ...

c – – 1 ...

g 10 – 10

k 1 15 –

... ...

1 one 2 ...

one 1 – – ...

1 – 1 –

two – – 1

... ...

Start-
pattern

List of
produced
morphs

List of
filtered
morphs

Morph-
generation

Filter

Ascending sort
by penalty

points

Final
list of
hits

List of
„best N“
morphs

Exact, fast
(q-Gram)
search

exchangeable search backendfault-tolerant search frontend

Every morphed pattern P' is then recursively fed into
the same morph algorithm where more submorphs are
performed. To avoid recursion loops, the first index imin

where submorphs pi,j→gl start, is always increased for
deeper recursion levels. Otherwise loops may occur at
different submorph recursion levels as u→v, v→w, w→u.
On every recursion level, P is also fed unaltered into the
next recursion, with only imin increased. This is done to
only allow submorphs towards the end of the pattern for
some morphs. This leads to an upper bound for the com-
putational time complexity of O(|P|r) for generating all
morphs (if r is the total number of morph rules).

Because the recursion tree can become large, the total
penalty S (as a sum of the penalty weights for all ap-
plied submorphs), and M (the total number of applied
submorphs (=recursion depth)) are updated for every re-
cursion call. Recursion backtracking is performed when
either S or M pass configurable limits Smax, Mmax, or when
imin > |P|. As Smax, Mmax and imin increase with every re-
cursion level, the algorithm terminates within reasonable
time limits (see section 5).

Unsurprisingly, the above algorithm generates morphs
which do not belong to the text corpus. Pre-filtering of
“useless” morphs is achieved by the introduction of the
hexagram filter (see Filter in Figure 1). This was deemed
necessary despite the high speed of the q-gram algorithm
in finding out that a pattern has no hits in the text
(see (Grimm 2001)).

The hexagram filter is a trie structure with a maximum
depth of six. It does not store actual offsets of hexa-
grams, but simply indicates whether a specific q-gram
class (q≤6) exists in the text at all. The term trie was
first used by Fredkin (derived from 'information re-
trieval') in (Fredkin 1960).

So when a morph P' is generated, the hexagram trie is
traversed for every second overlapping hexagram which
belongs to P'. If any of the morph's hexagrams are not
part of the trie, P' as a whole cannot be part of text T,
and is discarded. However, if all the hexagrams of P' are
part of the trie, there is no guarantee that P' occurs
in T.

The trie depth of six and the selection of every second
hexagram was chosen after performing about 14,000 test
searches with patterns drawn from the text. We ob-
served a minimum running time at depth=6 and win-
dow-delta=2, hence the reason for choosing this value
for all subsequent experiments (Esser 2004).

In accordance with their penalty sum, the best B
morphs that passed the hexagram filter are then
searched by the non fault-tolerant q-gram fulltext re-
trieval back-end.

Figure 2 gives an exemplary overview of the steps in-
volved from turning the user pattern “diamphenethide”
into fault-tolerant search results: while WMP applies all
possible submorph rules to the start pattern, the hexa-
gram filter deletes those morphs that can't be part of the
text. The survivors are searched by the backend.

diamphenethide

diamphenethide
dyamphenethide
diamfenethide
diamfenetide
diamphenetiede
...

WPM submorph rules:
i→y, i→ie
m→mm
ph→f, ph→w,
ph→p
th→t, ...

User's startpattern:

Filtering out unknown
6-grams by trie:
dyamph
etiede
...

diamphenethide
diamphenetide
diamphenethid
diaphenethide
diamfenethide
diamfenetide

diamphenethide(20)
diamphenetide (1)
diamfenethide (4)
diamfenetide (4)

Searching with backend:
(number of hits in text
within parantheses)

Figure 2. Example of WPM at work on Parasitology

Regarding storage space needs, the core WPM algorithm
has only the need for storing the submorph rules with
their penalties. Each rule consists of a source and a des-
tination string (each with an average length of 3 chars)
and an integer value for the weight, which in total sums
up to a negligible amount of data.

Additionally the filter trie needs some storage space.
Theoretical examination of trie storage space can be
found for example in Knuth's standard work (Knuth
1998) where the trie data structure is covered in depth.
The storage space for the hexagram trie used in our sys-
tem is scalable from around 5% to 100% of |T| by ad-
justing precision of alphabet coverage. For larger texts
we group together infrequent alphabet characters to one
trie character to save storage space at a price of making
the trie filter less restrictive.

4. Automatic
Weight Adjustments

For German words combined with Greek and Latin
terms, we manually identified about 25 different pho-
neme groups that lead to 369 submorphs. We believe
that while machines do not have a real understanding of
complex texts, and therefore, of the semantic similarity
of certain words, it is impossible to automatically derive
the above mentioned submorph rules. However, the de-
sired weights can be obtained by a machine with the
procedure described in this section. For a first prototype,
the penalty weights for the above submorphs were ad-
justed manually by a native speaker.

For the generation of English morph matrices as re-
quired for the “Parasitology Encyclopedia”(see above)
we relied on linguistic research publications like such as
Mark Rosenfelder's “Hou tu pranownse Inglish” (Rosen-
felder 2000). Though Rosenfelder focuses on rules to get
from spelling to sound, we used this work to identify
about 35 English sound groups, and their possible spell-
ing which lead to morph matrices with about 900 sub-
morphs (e.g. ibleäable, zäs, eaäe). Additional sub-
morphs for numbers (100ähundred), and domain spe-
cific abbreviations were added afterwards.

4

After changing an algorithm's parameters, the developer
needs some kind of measure to investigate whether the
parameter change had positive, negative or zero influ-
ence on the quality of the algorithm's results. Our per-
formance measure is explained in the following sub-sec-
tion.

4.1 Performance
Measuring Method

Because later desired user patterns remain an unpredict-
able factor at the time of the algorithm's design, measur-
ing the performance of an approximate search approach
is a difficult task. A sometimes used technique to find a
measure for the performance of a fuzzy search technique
is performing precision & recall tests.

So, for a given query term, someone chooses all R terms
of the studied text corpus that would be relevant hits for
the query. Since most approximation algorithms have
one or more parameters which control the degree of
fuzziness, two values are logged for the range of these
fuzziness levels:

1.) recall (“completeness of the retrieval”): the percent-
age of how many of the relevant terms have been
found.

2.) precision (“purity of the retrieval”): the proportion of
how many of the total retrieved results are relevant.

Usually, as recall rises to 100%, precision drops. This is
because of the increase of irrelevant terms that not only
populate, but blur, the retrieval results.

Precision and recall measurement has three obvious dis-
advantages: one, it needs a large amount of time of an
expert (or expert group) in the specific domain of the
studied text corpus. This expert must identify poten-
tially interesting queries; find and rank all (!) relevant
variants that should belong to a complete retrieval result
of this “hypothetical” query. This leads to problem two:
as large text corpora cannot be browsed manually, the
expert needs a retrieval tool to extract the set of rele-
vant terms. But this tool is, yet again, a fuzzy retrieval
system. So, every term that this fuzzy search cannot
find, will not ever appear in the set of relevant terms.

Disadvantage three lies in the fact that even if a group
of experts has deduced which retrieval results are rele-
vant to a query, the end-user of the retrieval system
might have a different opinion: “An information need
cannot be fully expressed as a search request that is inde-
pendent of innumerable presuppositions of context - con-
text that itself is impossible to describe fully, for it in-
cludes among other things the requester's own back-
ground of knowledge” (Swanson 1988). Therefore, preci-
sion and recall measurement is never unbiased, and is al-
ways in danger of optimizing the studied algorithm to-
wards the expert's opinion which might not necessarily
fulfill the user's wishes.

Due to the problems described above we relied on a dif-
ferent performance measure which consists of the follow-
ing steps:

1.) To obtain test patterns we extracted every word W
from the given text corpus with 9≤|W|≤30 (the lower
bound of nine characters was the median of the
length for about 20,000 searches users performed
through the online search interface of Altmeyer's en-
cyclopedia (Altmeyer & Bacharach-Buhles 2002)).
Nine characters provide sufficient context to retrieve
related words with one or two applied submorphs.
The resulting list of words for Altmeyer's text corpus
consisted of 62,395 unique test-words.

2.) These test-words where fed into the fault tolerant
search algorithm. We counted, how often WPM could
generate a different word that was part of the text
corpus – called a “valid morph target”. So it was re-
garded as “ground truth” that if a word of the text
corpus could be morphed into a different word of the
text corpus only by application of the morph rules,
that both source and destination word mean the
same thing and the version with more occurrences in
the text is the rectified word. Manual random sam-
ples showed that this is true for the vast majority of
word pairs.

For example:
biotinilated→biotinylated is counted as one valid
morph target. But,
biotinilated→iotinylated, does not count as valid tar-
get morph since iotinylated is an incomplete word.

The more valid morph targets our algorithm generated,
the better we rated its performance. Based on the above
measure, we performed tests to improve the performance
of WPM by fine-tuning the penalty matrices' weights.
The details of the experiments, and the significant per-
formance improvement we achieved are described in the
following sub-section.

4.2 Morph Feedback
for Weight Adjustment

To improve the penalty matrix weights, we fed all words
W, where 9≤|W|≤30, from the given text corpus into
the fault-tolerant WPM algorithm. Everytime we got a
valid morph target, we automatically logged which sub-
morphs were involved in generating the valid target
morph. After performing 62,395 unique searches, we ob-
served that some morph rules were consistently useful,
while others were used to a lesser degree, if at all. We
ranked the list of submorphs according to the frequency
of their successful application.

The new submorph weights were then derived from the
following ranking criteria: helpful submorphs received
smaller penalty weights, while unused submorphs got the
maximum penalty value. This procedure was called
morph feedback.

Table 2 shows an excerpt of the usage statistic for both
manual, and new weights, applied to submorphs after
counting the frequency that each submorph produced a
new valid target morph.

5

Table 2. Adjusting submorph weights by
morph feedback

Listpos.

#valid
target

morphs From To
Manual
Weight

New
Weight

1 497 k c 1 1
2 490 c k 1 1
3 161 z c 5 1
4 158 c z 5 1
5 95 ie y 10 1
6 94 ß ss 1 1
7 86 y ie 15 1
8 82 th t 1 1

43 16 f ph 5 5
79 4 ck c 20 13
97 2 zwanzig1) 20 10 15

134 1 tz c 10 16
369 0 w ph 25 30

1) 'zwanzig' (German) = 'twenty' (English)

If wi is the manually generated weight of rule ri, then the
new weight column of Table 2 is calculated as follows:
0.)Let µmax be the maximum number of valid morph tar-

gets the best rule had (in Table: Pos.#1, rule k→c).
Let Smax1=20 and Smax2=30 be the maximum allowed
penalty weights at tolerance level 1 and 2 (medium
and high).
Let φ=0.9 be the parameter to flatten the curve and
let µi be the valid target morphs of rule ri.

1.)Set δ=µmax

Smax1
−φ as the stepping delta for all rules.

2.)Then the new weight wi of rule ri is calculated as:

wi={Smax2 if µi=0

Smax1−
µi

δ else

We then compared the behavior of WPM through
morph feedback with different weight sets (see Figure 3):
1. Random weights; 2. Manually generated weights;
3. Automatically optimized weights (based on manual!).

With stricter maximum allowed penalty sum Smax the
manually generated weight set produces more valid tar-
get morphs than the set of random weights. The step
structure of the graph of manual weights is due to the
fact that not every arbitrary weight value was chosen at
weight definition. Figure 3 also reveals that the tech-
nique of morph feedback based on the words from the
text corpus, improved the performance of the algorithm
significantly. More valid target morphs could be gener-
ated with less tolerance (smaller Smax) at earlier stages of
the algorithm.

Up till now the complete process of adjusting and im-
proving the morph weights happened in some sort of
"clean room preprocessing" without any knowledge of
what patterns the users want to search with the algo-
rithm. Because the text corpus was source (for the test
patterns) and destination (for validating the morph tar-
gets) of the morph feedback technique, it was unclear if

the improved weights would also result in increased per-
formance for patterns of “real world” users. To verify
this we relied on the log-files we gained from the online
version of Altmeyer's Dermatology Encyclopedia.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Feedback Weights
Manual Weights
Random Weights

Maximum Penalty (S_max)

va

lid
 ta

rg
et

-m
or

ph
s

Patterns from text corpus

Figure 3. Altmeyer: Performance of different weight
sets on 62,385 words drawn from the text corpus

With the Altmeyer text corpus we had the possibility to
verify, if the "clean room optimized weights" would also
improve the productive efficiency of WPM for real que-
ries of real users. Over the past ten months, users of the
online version of Altmeyer's encyclopedia entered about
20,000 patterns to our fulltext search interface. As some
of these patterns occurred more than once, we collected
about 8,505 distinct queries from our web server's log
files. Of these queries only 5,424 words W satisfied the
length constraint 9≤|W|≤30.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

550

600

Feedback Weights
Manual Weights
Random Weights

Maximum Penalty (S_max)

va

lid
 ta

rg
et

-m
or

ph
s

Patterns from online users

Figure 4. User queries: Performance of different
weight sets on 5,424 different search terms collected

from the online logs of Altmeyer

Figure 4 shows that the same weights that had been
automatically adjusted in the preprocessing step - with-
out knowledge of real user queries - (see table 2 and fig-
ure 3) also improve the performance of the WPM re-
trieval algorithm on the patterns of the online users in a
similar way to the corpus-to-corpus experiments.

So, the experiments of figure 4 encourage us to future
application of the described automatic pre-processing
weight adjustment technique on search environments
where real user queries are unknown or not present in a

6

significant amount (e.g., HagerROM). Or, in other
words: the presence of real user search patterns is not
necessary to fine-tune the morph penalty weights when
the described technique is applied. This is a very inter-
esting result of this paper, as it frees the developer from
the usual vicious circle: If the programmer has no exist-
ing user feedback it is difficult to fine-tune the algorithm
for real-world scenarios. But if an algorithm performs
poorly due to missing fine-tuning, users might not use it
frequently.

5. Experiments on Filter
Efficiency and Speed

In this section we discuss experiments regarding the fil-
ter efficiency and the speed of the presented fault-toler-
ant approach. To increase understanding of an interna-

tional readership, we manually chose examples from the
Parasitology Research text corpus, an English language
publication. Parasitology consists of 50MB of XHTML
text in about 3,500 articles which results in about 28MB
of raw text (after deleting layout tags).

Table 3 shows the results of some fault-tolerant WPM
search experiments. The number of actual morph hits is
shown in parentheses. Column 3 to 5 reflect the effi-
ciency of the trie filter (compare column 7). To show the
efficiency of the hexagram filter trie, filtering was
switched off temporarily (every string passes “O.K.”)
and, therefore, many more “useless” morphs had to be
examined (this is clearly seen in the last column). Col-
umn 2 shows that the average time a user has to wait

7

Table 3. Examples of WPM results on the English text corpus of “Parasitology Research”

Search Pattern Usertime #Morphs #Filtered out
#Morphs
with Hits Morphs with Hits

#Morphs w/o
Filter

3-dimensional 93 ms 1504 1502 2 3-dimensional (4)
three-dimensional (29)

8154

acknowledgements 156 ms 10147 10143 3 acknowledgements (359)
acknowledgments (4)
acknowlegements (1)

25688

anthelminthic 109 ms 2830 2823 3 anthelminthic (12)
anthelminthik (3)
anthelmintic (394)

4706

antibacterial 125 ms 5347 5342 2 antibacterial (34)
anti-bacterial (2)

10600

bielorussia 109 ms 3965 3961 4 bielorussia (2)
byelorussia (1)
belorussia (48)
belarussia (9)

9437

bromosulfophthalein 140 ms 5772 5764 3 bromosulfophthalein (3)
bromosulphophtalein (1)
bromosulfophthlein (2)

20562

cacodilate 109 ms 4497 4495 3 cacodilate (1)
cacodylate (105)
cocodylate (1)

6952

cesbron-delauw 125 ms 5442 5439 2 cesbron-delauw (12)
cesbron-delaw (3)

12828

cholodkawsky 156 ms 6725 6722 3 cholodkawsky (1)
cholodkowsky (2)
cholodkovsky (3)

12521

diamphenetide 125 ms 3491 3488 4 diamphenetide (1)
diamphenethide (17)
diamfenethide (4)
diamfenetide (4)

8448

neighbour 125 ms 4599 4598 2 neighbour (38)
neighbor (61)

7845

tübingen 73 ms 613 611 3 tübingen (55)
tubingen(56)
tuebingen (15)

2418

zerkarien 93 ms 3298 3296 2 zerkarien (7)
cercarien (10)

6722

for fault tolerant search results is approximately 120 mil-
liseconds, thus falling within a tolerable range.

Column 6 of Table 3 (labeled Morphs with Hits) shows
the broad range of word variants which important infor-
mation carrying terms may have. Despite terms with dif-
ferent legal spellings (for example, zerkarien is the
German variant of the Latin and English spelling of
cercarien), we have word differences resulting from
special language char entities such as the German
umlauts which are absent in non-German keyboards. So
the German town "Tübingen" has two additional
morphs: tubingen (diaresis ommited) and tuebingen ('ü'
correctly expanded to 'ue').

In addition the problem of spelling mistakes becomes
apparent – in this case probably due to the case that an
international journal like "Parasitology Research" has
many contributing authors that are not native English
speakers. So words like "acknowledgements" and
"bielorussia" have various incorrect variants.

All experiments were performed on a standard PC with
AMD Athlon® 2.66GHz CPU and 512 MB RAM on local
ATA-66 hard disk under Windows XP®. The compressed
q-gram index q = {1,2,3,4} needs about 200MB storage-
space (this is 7 times |T|) and can be generated on a
state-of-the-art Linux computeserver in about half an
hour. The filter trie index needs 1.2 MB and thus can be
kept in RAM during morph generation for speedup rea-
sons.

6. Conclusion
We demonstrated that nowadays average end-user PCs
are capable of performing multiple, iterated, exact text
retrievals over a set of morphed patterns and thus simu-
late a fault-tolerant search. Morph matrices with penalty
weights seem much more suitable and flexible to model
phonetic similarities and spelling variants in multilin-
gual, multi-author texts than the edit distance metric or
phonetic codes like Soundex and its successors.

Automatic definition of allowed submorphs seems impos-
sible without deep understanding of the specific linguis-
tic characteristics of the text corpus' language, and thus
needs manual work. But, defining useful weights for the
identified submorphs is a tedious task, which can be ac-
complished automatically with our technique of morph
feedback weight adjustment. We have shown that the
generated submorph weights accordingly improve the
performance of the WPM algorithm significantly when
operating on real user queries.

A further interesting aspect of WPM is that the fault-
tolerant part of the algorithm is completely independent
of the actual search algorithm and its index. This makes
WPM an ideal add-on to existing search engines like da-
tabases or web retrieval systems.

Future research will define submorphs and weights for a
medieval German text as WPM will drive the fault-tol-
erant retrieval of the electronic version of Magister Lo-
renz Fries' (1489 – 1550) handwritten 1,000 pages

“Chronicle of the Bishops of Würzburg from 742 to 1495”
which will be released in 2004, the 1300-year foundation
anniversary of Würzburg.

7. References
Altmeyer P., Bacharach-Buhles M. (2002) Springer

Enzyklopädie Dermatologie, Allergologie,
Umweltmedizin, Springer-Verlag Berlin Heidelberg,
ISBN:3-540-41361-8
http://www.galderma.de/anmeldung.enz.html

Blaschek W., Ebel S., Hackenthal E., Holzgrabe
U., Keller K.,Reichling J. (Hrg.) (2003)
HagerROM 2003 - Hagers Handbuch der Drogen
und Arzneistoffe. CD-ROM, Springer Verlag,
Heidelberg, ISBN:3-540-14951-1
http://www.hagerrom.de

Esser W. (2004) Fault-tolerant Fulltext Information
Retrieval in Digital Multilingual Encyclopedias with
Weighted Pattern Morphing, McDonald S, Tait J.:
Advances in Information Retrieval, Procedings of
the 26th ECIR, LNCS 2997, Springer, pp.338-351.
http://www.derwok.de/papers/esser_wpm_ecir04.
pdf

Fredkin E. (1960) Trie Memory, Communications of
the ACM Vol. 3 (9), pp.490-499.
http://portal.acm.org/citation.cfm?doid=367390.
367400

Gadd T. (1990) PHONIX: The algorithm, Program:
automated library and information system 24(3),
pp.363-366.

Grimm M. (2001) Random Access und Caching für q-
Gramm-Suchverfahren, Diplomarbeit Lehrstuhl für
Informatik II, Universität Würzburg

Hodge V., Austin J. (2001) An Evaluation of
Phonetic Spell Checkers, Tech.Report YCS338 Dept.
of CS, University of York, U.K.
http://citeseer.ist.psu.edu/463597.html

Jokinen P., Ukkonen E. (1991) Two algorithms for
approximate string matching in static texts, LNCS
520, Springer Verlag, pp.240-248.

Knuth D. (1998) The Art of Computer Programming,
Second Ed., Volume 3: Sorting and Searching,
Addison Wesley, ISBN:0-201-89685-0

Levenshtein V. (1965) Binary codes capable of
correcting deletions, insertions, and reversals,
Problems in Information Transmission 1, pp.8-17.

Myers E. (1994) A sublinear algorithm for approximate
keyword searching, Algorithmica, 12(4/5), pp.345–
374.

Navarro G., Baeza-Yates R. (1998) A Practical q-
Gram Index for Text Retrieval Allowing Errors,
CLEI (Centro Latinoamericano de Estudios en
Informatica) Electronic Journal, Vol. 1, No. 2, pp.1.
http://www.clei.cl/cleiej/paper.php?id=32

8

Navarro G., Baeza-Yates R., Sutinen E., Tarhio
J. (2001) Indexing Methods for Approximate String
Matching, IEEE Bulletin of the Technical
Committee on Data Engineering, Vol. 24, No. 4,
pp.19-27.
http://doi.acm.org/10.1145/375360.375365

Philips L. (2000) The Double Metaphone Search
Algorithm, C/C++ Users Journal, pp.1.
http://www.cuj.com/documents/s=8038/cuj0006
philips/

Rosenfelder M. (2003) Hou tu pranownse Inglish.
http://www.zompist.com/spell.html

Russell R. (1918) INDEX (Soundex Patent), U.S.
Patent No. 1,261,167, pp.1-4.
http://patimg2.uspto.gov/.piw?Docid=01261167
&idkey=E7455D7DADEF

Stephen G. (1994) String Searching Algorithms,
Lecture Notes Series on Computing, Vol. 3, World
Scientific Publishing, ISBN:981-02-1829-X

Swanson D. (1988) Historical note: Information
retrieval and the future of an illusion, Journal of the
American Society for Information Science, 39(2),
pp.92-98.

Zobel J., Dart Ph. (1996) Phonetic String Matching:
Lessons from Information Retrieval, ACM Press:
SIGIR96, pp.166-172.
http://doi.acm.org/10.1145/243199.243258

Zobel J., Dart Ph. (1995) Finding Approximate
Matches in Large Lexicons, Software - Practice and
Experience, pp.331-345.

9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

