
Managing content with automatic document

classification

Rafael A. Calvo(1), Jae-Moon Lee (1,2) and Xiaobo Li (1)
(1) School of Electrical and Information Engineering -

University of Sydney, Australia -
(2) School of Computer Engineering - Hansung University, Korea

http://www.weg.ee.usyd.edu.au
rafa@ee.usyd.edu.au, jmlee@hansung.ac.kr, xiaobo@ee.usyd.edu.au

Abstract

News articles and web directories represent some of the most popular and com-
monly accessed content on the web. Information designers normally define cat-
egories that model these knowledge domains (i.e. news topics or web categories)
and domain experts assign documents to these categories. This paper describes
how machine learning and automatic document classification techniques can be
used for managing large numbers of news articles, or web page descriptions,
lightening the load on domain experts. In this paper we use two datasets, one
with with more than 800,000 Reuters news stories and another with over 41,000
web sites, and classify them using a Naive Bayes algorithm, into predefined
categories. We discuss the different parameters and design decisions that nor-
mally appear when building automatic classifiers, including, stemming, stop-
words, thresholding, amount of data and approaches for improving performance
using the structure in XML documents. The methodology developed would enable
web based applications or workflow systems to manage information more effi-
ciently, i.e. by assigning documents to topics automatically or assisting humans
in the process of doing so.

1 Introduction

Information overload (in which individuals are faced with an oversupply of con-
tent) could become the road rage in this new millennium. In order for this
content to become useful information that can empower users, rather than frus-
trate or confuse them, we need novel ways of delivering only what is needed,
at the right time and in the right format. News stories are the most important
source of up-to-date information about the world around us, and represent some
of the most often updated, and highest quality content on the web. Web page
descriptions and directories are more stable than news stories, but the amount

1

of pages needed to be indexed grows much faster than human indexers can pro-
cess. Therefore, it is most important to develop ways to process news, web page
descriptions and other forms of text efficiently. In this paper we have studied
machine learning models, and applied them to the automatic classification of
the two types of content.

News story articles are written by reporters from all over the world. These
reporters often work for news agencies such as the Associated Press and Reuters.
These agencies collect the news, edit them and sell bundles of articles to the
periodicals accessed by web users (e.g. news.yahoo.com, Sydney Morning Her-
ald, etc). It is important for both the agencies and the periodicals to have an
organized well-managed stream of news. News is normally classified according
to taxonomies that are relevant to readers, (e.g. politics, Iraq or Oil). This
classification can be very difficult because it requires human expertise to spot
relationships between the taxonomy and the documents. Even the experts do
not agree on what should go where and inter-indexer consistency in classification
shows considerable variation [7].

The web is also a great resource for all types of information, but it needs to be
organized in order to be useful. Hundreds of information designers and domain
experts have built and maintain directories such as Yahoo!, and thousands of
volunteers have built others such as the Open Directory Project (used by web
portals like Google and Lycos). Building and maintaining catalogs is a time
consuming and expensive task, particularly in those applications with a large
number of elements and categories as is the case of web-directories.

Automatic classification techniques use algorithms that learn from these hu-
man classifications, so they can only do as well as the human training data
provided. In addition, different algorithms can learn different types of patterns
in the data. In order to compare the classification performance of different al-
gorithms, researchers have a set of standarised benchmarks, with a particular
dataset, and a well defined task. The most popular classification benchmark
during the late nineties was a Reuters collection called Reuters-21578 (based
on Reuters-22173) with 21578 documents, that had to be classified in about
100 different categories [1]. This benchmark is still used currently to compare
the performance of different algorithms but the challenges now lie in moving
towards larger scale document classification. In 2002, Reuters released a new
research dataset with over 800,000 documents that we discuss in this paper.

There are several Machine Learning (ML) algorithms that have been success-
fully used in the past [1, 8, 11]. They include Neural Networks, Naive Bayes,
Support Vector Machines (SVM) and k-Nearest Neighbours (kNN). Each of
these methods has their advantages and limitations on classification perfor-
mance and scalability. The choice of algorithm will depend on the application,
and the amount of data to be used. In web applications, efficiency is of partic-
ular importance, since the large number of users and amount of data can make
some algorithms unfeasible.

Section 2 of this paper describes two datasets: 1. News: the Reuters RCV1
news stories collection, focusing on the challenges offered by its size, structure
and the richness of its XML structure; 2. Web: the Open Directory Project,

2

a major web pages directory where we focus on techniques such as stemming,
stopwords and thresholding that can be used to improve performance and reduce
the computational complexity of training the classifiers. Section 3 describes
the Näıve Bayes method used in this paper, section 4 describes a classification
framework [9] that simplifies the integration of automatic classifiers in web-
based applications. Section 5 describes the performance results for the news
stories classifier and section 6 the results on the catalog. Together, the results
in these two collections show how machines learning techniques can be used to
manage text of different types. Section 7 concludes.

2 Sample applications: managing news and web
directories

The Reuters RCV1 Corpus [7] consists of all English news stories (806,791)
published by Reuters in the period between 20/8/1996 and 19/8/1997. The
news is stored as files in XML format, using a News ML Document Type defini-
tion (DTD). NewsML is an open standard being developed by the International
Press and Telecommunications Council (IPTC). The news is written by approx-
imately 2000 reporters and then classified by Reuters specialists in a number
of ways. The classified news articles are then syndicated by websites such as
news.yahoo.com and news.google.com or periodicals like the Sydney Morning
Herald that may or may not have a website.

Due to seasonal variations, the number of stories per day is not a constant.
In addition, on weekdays there are an average of 2,880 stories per day compared
to 480 on weekends. Approximately 3.7Gb is required for the storage of the
uncompressed XML files.

The NewsML schema contains metadata produced by human indexers about
themes and categories. When two humans index a document differently they
create inter-indexer variations. These can be measured using a correction rate
C=(NC/NE)*100, where NE is the number of stories indexed by an editor and
NC is the number of times an editor has been corrected by a second editor.
Normally untrained editors will have a higher C than more experts ones, but
even when they are all experienced correction rates of 10% are common. In the
RCV1 collection there are correction rates of up to 77%. Since ML algorithms
learn from examples -classifications done by humans- correction rates are an
important limiting factor to their performance. Performance measures in classi-
fication systems are really a measure of how much they correlate to the human
classifiers.

RCV1 data is stored in XML documents providing the metadata information
normally required by news agencies and periodicals who need to deliver the
stories to end users. NewsML defines a rich schema with entities for title,
headline, text, copyright and several types of classification. For our experiments
we have used all three available classifications (topic, country and industry) as
a single task.

3

Web applications will increasingly exploit this type of metadata. As it has
been discussed by researchers studying the concept of the semantic web, the
next revolution in the Internet will come when web applications have access
to structured collections of information, and set of inference rules that can be
used to perform automated reasoning. This project aims at producing such
applications.

For the second evaluation we chose the ODP data set because of: its large
size (3.8 million websites classified in 460,000 categories), its flexible licensing
(free) and the impact that any improvement would have in very large user base
(i.e. Google users) and the the largest volunteer community in a single online
collaboration project (almost 60,000 editors). The shear size of the dataset
makes the evaluation of new algorithms extremely difficult, and since the goal
of this project was not to improve scalability we decided to use a subset.

Our subset is the Top/Computer/Internet subcategory that has 41,498 web
sites, belonging to 1,300 categories and with 122 that belong to more than
one category. The categories are structured in a 7-level hierarchy, with the
first one having 32 subcategories and the second one 253. We performed two
experiments, one using the two level hierarchy in a to train a novel hierarchical
Näıve Bayes algorithm [6], and one that uses the 253 categories with the Näıve
Bayes algorithm described earlier, and the data in a flat structure. In the
experiment described here, all the documents bellow level 2 are treated as part
of one of their parent (level 2) categories. We excluded the 5 level 1 and 12 level
2 categories without documents and the 652 documents that belong to the root
category (level 1). The distribution of documents is extremely skewed, with a
few categories having a very large number of documents and other having very
few. In fact, 77 out of 241 level 2 categories have only one document, but only
one level 1 category has less than 10. The ODP dataset we used was originally
stored in Resource Description Framework (RDF) format. The dataset is made
of a title, description and URL for each web page in the catalog. The title and
description is what we call ”document” in this paper.

3 Automatic classification with Näıve Bayes

This section introduces Näıve Bayes, one of the automatic document classifica-
tion technique used in this paper. The K Nearest Neighbors (kNN) algorithm
also used in the Reuters RCV1 benchmark is not described, for the sake of
brevity, but this is a well known and documented technique. A recent review
by Sebastiani [8] provides a more detailed description of this emerging field.

Näıve Bayes is a well known statistical method and has been successfully
applied to classification tasks [8, 4]. The different forms of Näıve Bayes are
based on Bayes theorem for computing the conditional probability that given a
document represented by d it belongs to category c:

P (c|d) =
P (d|c)P (c)

P (d)
(1)

4

The most probable category is given by:

ArgMax
cj∈C

P (cj |di) = ArgMax
cj∈C

P (di|cj)P (cj)
P (di)

(2)

The estimation of P (di|cj) is difficult since the number of possible vectors
di is too high. This difficulty is overcome by using the näıve assumption that
any two coordinates of the document vector are statistically independent. Using
this assumption, the most probable category cj can be estimated.

P (cj) is estimated from the number of documents in the training set that
belongs to cj . To estimate P (di|cj), we use the terms of di: ti1ti2 . . . tik and
ArgMaxcj∈C P (cj |di) is then estimated as:

ArgMax
cj∈C

P (cj |di) ≈ ArgMax
cj∈C

n∏
k=1

P (tik|cj)P (cj) (3)

Taking T as the total number of distinct terms in the training set, and
using Laplace smoothing the definition of probabilities for P (tik|cj)P (cj), the
conditional probablility for the terms can be written as:

P (tik|cj) =
1 + TF ((tik|cj)P (cj)

|T |+
∑N(cj)

s=1 TF (ts, cj)
(4)

The optimum category can be chosen by:

Cbest = ArgMin
cjεC

log
DF (cj)
|D|

+
n∑

k=1

log P (tik|cj) (5)

This last expression is the one used in our implementation of Näıve Bayes.
Previous studies [11] have shown that Näıve Bayes is accurate and fast com-

pared to other algorithms. In [6] we extended the above method so it can utilize
the hierarchical structure of the data.

4 Classifier Design and Implementation issues

4.1 Reusable engineering with a Document Classification
Framework

The end goal of our project is to develop classification tools that can be inte-
grated into web applications or other types of information systems seamlessly.
As the field of document classification progresses, this integration effort becomes
more important so designing the classification software for reusability of design
and implementation is of great importance.

We have implemented the Näıve Bayes classifier (and others not described
here) using an Object Oriented Application Framework [3] for document classi-
fication [9]. The framework has been designed to increase reusability and offers

5

Knowledge Learner Hypothesis

Models

Categorizer

Uses Produces

Figure 1: Packages in AI::Categorizer

a structured way to extend it. Figure 1 shows the overall structure of the frame-
work. The Knowledge package includes the KnowledgeSet class that represents
the set of documents, the set of categories, and the many-to-many mappings be-
tween them. The Learner package is made of the Learner class and subclasses
as shown in the UML diagram of Figure 2. The abstract Learner class provides
an interface to train on a set of pre-categorized documents. The result of asking
a Learner to categorize a previously unseen document is a Hypothesis object
that make up the Hypothesis package. These object may be queried for report-
ing information such as which categories were assigned, which was the single
most appropriate category, what scores were assigned to each category, etc.

The Näıve Bayes and other machine learning algorithms are implemented
by subclassing the Learner abstract class and by creating two concrete meth-
ods: train() and categorize() that represent the training and test phase
respectively, and get scores() and create model() that are called by them
internally.

4.2 Feature Selection

Feature selection methods are used to reduce the dimensionality of the feature
vectors. This dimensionality reduction reduces computational cost and often
increases the classification accuracy. Several feature selection methods are used
for text classification including: document frequency (DF), information gain
(IG), mutual information (MI), a χ2-test (CHI), and term strength (TS) [12].

DF is given by the number of documents in which each a term occurs, DF is
the simplest method with the lowest computational cost, and high effectiveness
so we chose it for the experiments described here.

6

Learner::SVM

Learner::NaiveBayes Learner::KNNLearner::Boolean

Learner::Weka

Learner::Rocchio Learner::Guesser

Learner::DecisionTree

Learner

Figure 2: UML diagram for the AI::Categorizer framework

4.3 Thresholding Strategy

Three thresholding strategies are commonly used in the field of text categoriza-
tion [10]. The thresholds are tuned during training by optimizing the classifiers’
performance on the documents in the cross-validation set. The trained classi-
fiers are then used over the documents of the test set. The three thresholding
strategies of Scut, Rcut and Pcut are defined by Yang [10] as follows:

• Scut - the name stands for score-based classification. For categories ci∈C,
given a document dj , function Φi : D → [0, 1] returns a categorization
status value [8], this value is between 0 and 1, which scores the percentage
of evidence of the fact dj∈ci. For each category ci, we can set a value
of threshold τi such that, if Φi(dj) ≥ τi, category ci∈C is interpreted
as True. This means ci is the selected category for document dj . If
Φi(dj) < τi, category ci∈C is interpreted as False, so ci is discarded for
document dj . We can set a single appropriate global threshold for all
the category memberships, or we can have per-category local threshold
strategy in which a different τi is chosen for each different ci. This is one
of the thresholding strategies evaluated in the results section.

• Rcut - this approach is a rank-based classification. Given a document dj ,
function Φi : D → [0, 1] returns a score value for each category ci. We
then rank the score of each category ci in descending order, in which we
choose the k (an interger value between 1 and m) top-ranking categories
to be assigned to each document dj . When a document is assigned to one
and only one category, k = 1 this is a commonly used technique. This the
second thresholding strategy evaluated in the results section.

7

Human Expert
Machine Classifier YES NO

YES aj bj

NO cj dj

Table 1: Contingency table for class j

• Pcut - the name stands for proportion-based classification. For category
ci∈C, given a document dj , function Φi : D → [0, 1] returns a score
value for each document dj . We rank the score of each document dj in
descending order, in which we choose the kj top-ranking documents to be
assigned to each category ci, where kj = P (ci)× x×m, m is the number
of categories, P (ci) is the prior probability that document dj belongs to
category ci, x is the number between 0 and n to be adjusted in a similar
way as tuning k for Rcut [5].

In the experiments described below we have used SCut and RCut.

4.4 Performance measures

Table 1 describes the possible outcomes of a binary classifier. The “assigned”
YES/NO results refer to the classifier output and the “correct” YES/NO refers
to the ODP assigned categories. A perfect classifier would have a value of 0 for
bj and cj .

Using Table 1 we define the three performance measures common in the
document categorization literature:

Recall = R =
{

a
a+c if a + c > 0
0 otherwise

Precision = P =
{

a
a+b if a + b > 0
0 otherwise

F1 =
2PR

P + R

The first two measures contain information about whether classification er-
rors are dominated by false positives or false negatives. The trade-off between
recall and precision can often be controlled by setting a classifier’s parameters.
Both measures should typically be used to describe the overall performance, as
neither is particularly informative by itself. The third measure F1 is an average
of R and P .

When dealing with multiple classes there are two possible ways of averaging
these measures, macro-averaging and micro-averaging. In macro-averaging, one
contingency table per class is used, then performance measures are computed
on each of them and averaged. In micro-averaging only one contingency table

8

is used; an average of all the classes is computed for each cell and the per-
formance measures are obtained therein. The macro-average weights equally
all the classes, regardless of how many documents they contain. The micro-
average weights equally all the documents, thus biasing toward the performance
on common classes.

5 The Reuters classifier

We have tested the extended framework on the Reuters RCV1 data in order to:

1. Assess the feasibility of automatic document classification on large-scale
management of news stories.

2. Measure the classification performance of Naive Bayes and kNN classifiers
on this new corpus, and find ways to improve it.

The data was selected from the original RCV1 dataset using a simple strategy
where we randomly chose 80% of the total amount of dates as training set, and
20% as test set. With this approach the total number of news on each set is not
an exact percentage since there are different number of stories on each day. This
sampling strategy has the disadvantage of producing test sets that might have
somewhat different statistics, for example a particular date (i.e. Bush’s election
or September 11) could start a new type of documents that did not appear in
the training set.

In the two tasks evaluated (Reuters and ODP datasets), we have used Näıve
Bayes and an additional algorithm that we considered interesting for compar-
ison. For the Reuters classifier we used kNN. Table 2 shows the classification
results for the Näıve Bayes and the kNN classifier described in [2]. We can see
that the classification performance is better than for the Näıve Bayes classifier.
This is particularly true with the recall measures. The computational perfor-
mance of kNN is an obstacle and we have not performed tests for all the subsets.
KNN is not optimum for web applications, such as the one we discuss in this
paper, since all the processing is performed at test time (there is no training),
this means that in a real application all the computation would be performed
when the news arrive and need to be redirected. kNN showed to have much bet-
ter recall performance (miR=0.55) compared to Naive Bayes (miR=0.19). This
means kNN is able to assign more documents to some category, and this might
be of great importance in some applications. Precision (the number of correct
classifications) was somewhat degraded by using kNN, but not in a considerable
amount.

The second goal of the experiments was to see if the newsML structure
could be used to improve performance and find guidelines on how to do it. We
expected that giving more weight to more important attributes of the newsML
schema (i.e. the title) would be beneficial. The content of title element is
similar to the headline. In the experiments we have fixed the weighting factor
of headlines and text elements to 1, and we tried several weighting factors for

9

Method maR maP maF1 miR miP miF1
Näıve Bayes 0.327 0.860 0.430 0.540 0.950 0.690

kNN 0.456 0.657 0.487 0.260 0.773 0.389

Table 2: Accuracy measures for Näıve Bayes and kNN on RCV1

Figure 3: Näıve Bayes performance on the RCV1 dataset

title, T = 0, 1, 3, 7, 17. The weighting factor T means we give T times the
frequency count of the word in the document. Figure 3 shows the performance
results for the weighting factors, and indicates that micro-precision (miP) of
80-90% are achievable. We must remember that: first, due to the inter-indexer
variations (humans do not always agree on how to classify a document), 100%
precision is not possible. Second, and that these results only show the correlation
with the human classifier, this means we assume humans are always right, and
this is not always the case, in fact machines might be doing it better.

Analyzing the performances for different weighting schemes we find that the
optimum T seems to be around 3. We can also see that increasing the number
of training days from 10 to 50 improved the miP but does not seem to improve
the miF1 measure in a considerable amount.

10

6 The ODP classifier

We have evaluated the Näıve Bayes classifier using the performance measures de-
scribed earlier. A number of stop-words without intrinsic semantic value (mostly
prepositions and articles) were removed from these documents. We also applied
Porter’s stemming algorithm and only left the stem of each term reducing the
total number of distinct terms, and therefore the size of the vector representa-
tions to be used. We finally represented the distinct terms of each document
as vectors using the Term Frequency / Inverse Document Frequency (TF/IDF)
weighting scheme as described in [8]. We compare here the performance of the
Näıve Bayes algorithm and a a novel hierarchical Näıve bayes model [6] that
exploits the intrinsic hierarchy of the documents in a directory.

The skewed distribution, commonly found in most collections produces lower
macro-averaged performance measures. Interestingly, the hierarchical mod-
els are better at handling these distributions, probably because despite being
skewed, higher level categories normally have enough training documents. This
result to our knowledge, has not been discussed by other authors, although
it could compensate for the fact we discussed earlier, that errors carried from
higher to lower levels in the hierarchy can not be recovered.

6.1 Accuracy

Table 3 sumarizes the results in [6] showing the average results for several ex-
periments using the Näıve Bayes classifier described earlier and a variant that
exploits the hierarchical structure of the data. The results for hierarchical clas-
sification algorithms reported in the literature, have been mixed, with a few
reports of performance improvements for specific datasets. In the case of our
ODP data we can see that the macroF1 measure is better for the hierarchical
classifier but not so the microF1.

Flat NB Hierarchical NB
maR 0.3675 0.4079
maP 0.5086 0.5166
maF1 0.4017 0.4218
miR 0.7469 0.7032
miP 0.8798 0.8969
miF1 0.8079 0.7883

Table 3: Performance results averaged for 6 different partitioning of the dataset
using flat and hierarchical Näıve Bayes and Scut thresholding strategy

6.2 Thresholding strategy

We evaluated the Scut and Rcut thresholding strategies described earlier. The
results for Scut are shown on Table 3 and for Rcut in Table 4.

11

k maR maP maF1 miR miP miF1
1 0.457 0.405 0.367 0.763 0.652 0.7029
2 0.512 0.260 0.249 0.840 0.270 0.408
3 0.560 0.223 0.2171 0.865 0.154 0.2615
4 0.579 0.198 0.194 0.878 0.103 0.1844
5 0.586 0.184 0.178 0.884 0.073 0.136

Table 4: Accuracy results for RCut strategy with different values of k on the
hierarchical classifier.

The Rcut thresholding strategy was performed choosing k = {1, 2, 3, 4, 5}.
In Table 4 we can see that the best performance is for k = 1. We believe
this is because the average of categories which each document is assigned to is
approximately 1. When k increases, the recall of the classifier increases, but
the precision decreases more rapidly, causing the decrease of the overall F1
performance. We also note that the best performance of the Rcut strategy is
considerably worse than the Scut thresholding strategy.

6.3 Time performance

The experiments were performed on an Intel Pentium 4 CPU (2.40GHz) with
512 Megabytes of RAM and running Redhat Linux 8.0. The time cost results
are given on table 5. We trained the classifiers of parent nodes with all the
data in the leaf nodes, this approach increases the computational expense of
training the classifier, but makes it more accurate. Classifying new documents
is faster on the hierarchical model. It is interesting to note, that in order to
improve accuracy we train the level one category classifiers with documents that
belong (and have been used for training) in level 2 categories. This procedure
makes the training more computationally expensive. In a related project we are
looking at how large scale classification tasks can be parallelised and therefore
make the classification algorithms more scalable.

Flat Näıve Bayes
Pre-processing phase 122 Seconds

Training phase 9 seconds
Categorizing phase 106 seconds

Total 237 seconds
Hierarchical Näıve Bayes

Pre-processing phase 122 Seconds
Training Phase 558 seconds

Categorizing Phase 43 seconds
Total 763 seconds

Table 5: The time efficiency between flat NB and hierarchical NB

12

7 Conclusions

Generally, information designers define categories that model knowledge do-
mains for a particular application. They define these categories so that the
content can be easily understood and located by users (i.e. news topics or web
categories). Normally, domain experts will then assign specific documents to
these categories.

In this paper we have experimentally investigated automatic classifiers on
two datasets: one with news stories from Reuters and the other a web direc-
tory with web page descriptions from the Open Directory Project (ODP). A
Näıve Bayes classifier was trained, and then used to classify new documents.
The results were compared to a kNN (for the Reuters dataset) and to a hierar-
chical classifier (for the ODP dataset). All classifiers were implemented in an
Object Oriented Classification Framework so that they can be integrated into
web applications and business workflows.

News stories are normally classified manually, but with this type of tech-
niques automatic or assisted classification can be used to reduce the cost and
time involved in managing, syndicating and delivering news stories. The clas-
sification performance shown by these experiments is extremely promising and
would allow real web applications to use this type of functionality. We obtained
0.9 miP, meaning that 9 out of 10 stories were correctly classified. The miR
and therefore the miF1 are somewhat lower because some classes contain few
examples and are harder to classify. Naive Bayes classifiers produce lower qual-
ity classification but seem to be better suited for applications were classification
needs to be performed at real time, kNN instead produces better classification
but places to much load on classification time since there is no training.

The same happens with web page directories, particularly the ODP directory
used in this paper, where nowadays many human hours are required to update
and maintain the information.

Several parameters must be optimized in an automatic classifier, and we have
described our use of stemming and stop-words, changes in the amount of training
data and thresholding strategies, and techniques for exploiting the structure
within an XML document or the hierarchical structure within a collection. In
the Reuters set we studied the impact of the amount of data used to train
the classifier. In the ODP application we compared two different thresholding
strategies: Rcut and Scut and showed that in the ODP application Scut gives
a better performance.

The time performance evaluations discussed give an indication of the type of
applications that can be targeted with state of the art algorithms and hardware.

The results and previous literature show that the choices to be made for an
optimum classifier (i.e algorithm, use of stemming or stopwords, etc) will be
different for each dataset and application.

13

Acknowledgements

JML and RAC acknowledge the Australian Research Council and Hansung Uni-
versity for their financial support. XL and RAC acknowledge the support of the
Capital Markets Collaborative Research Centre.

References

[1] Rafael A. Calvo and H. A. Ceccatto. Intelligent document classification.
Intelligent Data Analysis, 4(5), 2000.

[2] Rafael A. Calvo and Jae-Moon Lee. Coping with the news: the machine
learning way. In A. Treloar and A. Ellis, editors, Proceedings of Ausweb
2003 Conference, Gold Coast, 2003.

[3] Mohamed Fayad and Douglas C. Schmidt, editors. Building Application
Frameworks. John Wiley & Sons, 1999.

[4] David D. Lewis. Naive (Bayes) at forty: The independence assumption
in information retrieval. In Claire Nédellec and Céline Rouveirol, editors,
Proceedings of ECML-98, 10th European Conference on Machine Learning,
number 1398, pages 4–15, Chemnitz, DE, 1998. Springer Verlag, Heidel-
berg, DE.

[5] David D. Lewis and Mark Ringuette. A comparison of two learning algo-
rithms for text categorization. In Proceedings of SDAIR-94, 3rd Annual
Symposium on Document Analysis and Information Retrieval, Nevada, Las
Vegas, 1994.

[6] Xiaobo Li and Rafael A. Calvo. Hierarchical document classification using
naive bayes. In 8th Australasian Document Computing Symposium, CSIRO,
Canberra, Australia, 15th December 2003.

[7] Tony G. Rose, Mark Stevenson, and Miles Whitehead. The reuters corpus
volume 1 - from yesterday’s news to tomorrow’s language resources. In 3rd
International Conference on Language Resources and Evaluation, page 7,
May 2002.

[8] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Computing Surveys (CSUR), 34(1):1–47, 2002.

[9] Ken Williams and Rafael A. Calvo. A framework for text categorization. In
The University of Sydney, editor, 7th Australasian Document Computing
Symposium, Syndey, Australia, 2002.

[10] Yiming Yang. A study on thresholding strategies for text categorization.
In SIGIR, 2001.

14

[11] Yiming Yang and X. Liu. A re-examination of text categorization methods.
In 22nd Annual International SIGIR, pages 42–49, Berkley, August 1999.

[12] Yiming Yang and Jan O. Pedersen. A comparative study on feature se-
lection in text categorization. In Douglas H. Fisher, editor, Proceedings of
ICML-97, 14th International Conference on Machine Learning, pages 412–
420, Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco,
US.

15

