
Policy-based Distributed Data Management Systems

Arcot Rajasekar
Reagan Moore

University of North Carolina at Chapel Hill

Mike Wan
Wayne Schroeder

University of California, San Diego

Abstract
Scientific research collaborations generate massive amounts of data that are assembled
into collections, published in digital libraries, processed in data analysis pipelines, and
preserved in reference collections. Policy-based data management systems minimize the
amount of labor needed to manage the massive collections by automating the
enforcement of management policies and the validation of assessment criteria. The goal
is data management infrastructure that can be used to support all phases of the data life
cycle, while minimizing the amount of labor needed to maintain the collection.

1. Introduction:
With the ongoing explosion of data creation in digital form, digital repositories are being
deployed in large-scale virtual environments [1]. Such repositories allow data sharing
across research communities as well as provide information for public users. An
important aspect of such open repositories is that they are geographically dispersed
operating under autonomous administrative and disciplinary boundaries. Such
repositories also interact with distributed computational services (such as super computer
centers [2] and cloud computing providers [3]) and disperse information through
collaborating social communities and portals [4]. The requirement to provide a unified
open repository framework -integrating and spanning multiple autonomous repositories -
leads to challenges that encompass strategic problems in data management across the
entire lifecycle of information - from supporting the creation and management of digital
content, to enabling use, re-use, and interconnection of information, to ultimately
ensuring long- term preservation and archiving.

Multiple open repositories are being assembled by scientific and humanities groups. They
are bringing together data from distributed researchers in order to provide a single
uniform accessible portal that can be used by researchers and public alike. Some of the
national and international efforts with these goals are as follows:
• Astronomical data: The National Virtual Observatory [5] is assembling standard

mechanisms for sharing catalog information and sky survey images. They have
established interoperability mechanisms for querying catalogs and for accessing data
within a storage system.

• Oceanographic data: The Ocean Observations Initiative [6] is exploring the
integration of cloud computing systems and cloud storage caches with institutional
repositories. One goal is to manage extraction of previous observations from an
archive, caching of the data on a cloud resource, and on –demand analysis of the data.

• Plant data: The iPlant Collaborative [7] is federating existing data collections to
create a community-driven research environment. One goal is to enable multi-
disciplinary research and manage data re-use across disciplines.

• Science of Learning Centers: The NSF Science of Learning Centers [8] support six
research areas in cognitive science. They have the challenge of both sharing data
within a research area, and sharing data between research areas.

• Biomedical data: The Biomedical Informatics Research Network [9] is building a
public data repository for sharing brain images.

• Hydrological data: The Consortium of Universities for the Advancement of
Hydrologic Science (CUAHSI) organizes point observation data into a shareable
resource and provides tools for displaying and analyzing water data [10].

• Earth Systems Data: DataOne[11] is an NSF datanet initiative that will provide
universal access to data about life on earth and the environment.

• Scientific Computation: The NSF TeraGrid manages simulation output, providing
both high-performance access for post-processing, as well as a long-term archive.

• HASTAC: The Humanities, Arts, Science and Technology Advanced Collaboratory
promotes new platforms for social interaction.

• Odum Institute for Research in Social Science maintains an archive of computer-
readable social science data, and supports discovery and controlled access to the
collections.

• ARCS: The Australian Research Collaboration Service provides long-term eResearch
support through federation of shared collections across research institutions in
Australia.

• NARA TPAP: The National Archives and Records Administration Transcontinental
Persistent Archive Prototype is a research platform for investigating preservation
principles.

• NCCS: The NASA Center for Computational Science provides simulation tools and
organizes the output into shareable collections.

• UK eScience data grid builds shared collections and manages an archive for research
results.

Additional large scale data sharing initiatives are under design and development. These
include:
• LSST: The Large Synoptic Survey Telescope is developing a data grid to manage

transport of 150 petabytes of images from a telescope in Chile to the US, analysis of
the images, and archiving of the data.

• NCDC: The National Climatic Data Center is building a data grid to manage 150
petabytes of satellite images of the earth. The data grid will link computing resources
with data archives.

• CERN LHC: The Large Hadron Collider experiment will generate 15 petabytes of
data per year, and distribute the data around the world to data analysis platforms.

The common concerns of these projects are for immediate sharing and discovery of data
among collaborating researchers and to provide reference collections for long-term
preservation to enable future research. Because of the challenges in integrating data from
diverse projects (working in the same discipline and hence having an imperative to share)

a coherent open repository framework is necessary. We describe such a framework,
developed within our group, which is being used by several research initiatives for
sharing data and also being evaluated by other groups for eventual adaptation.

Our approach to information lifecycle management for building an open repository
framework is based on policy-oriented data management. Our thesis is that different
stages in an open repository lifetime can be realized by a sequence of policy applications.
These discrete policy sets in turn abide by the requirements of individual repositories that
form the collaboratory framework, encode trust relationships among these repositories
and enable smooth interactions among repositories as well as collaborating social
communities. The outcome of this thesis is the development of a software framework
called the integrated Rule-Oriented Data System (iRODS) [12] being developed by the
Data Intensive Cyber Environments (DICE) group [13] with collaborations from various
groups and projects all around the world. The iRODS system is a data grid [14] that
spans geographically remote sites and supports a policy-oriented life cycle management
for digital artifacts.

In the next section, we briefly discuss the iRODS system, and in Section 3 we develop
the concept of an iRODS Open Repository framework. In Section 4, we show an
exemplar open repository that is being developed by the Temporal Dynamics of Learning
Center, and conclude in section 5.

2. The iRODS System
The iRODS [15] data grid can be viewed (see Figure 1) as a network of completely
connected nodes of resource servers, called iRES servers that provide access to data and
computational resources. These servers perform the protocol interchange that is needed
for interfacing with exotic devices and map their protocols onto a uniform API that is
used by the client framework.

The iRES servers are the workhorse of
the grid and perform data movement
between the servers and between the
client and the servers. Also they are
responsible for managing multiple types
of data transfer modes (parallel,
sequential, bundled, etc), multiple
transfer protocols (XML, binary,
TCP/IP, UDP, etc.), and operations
related to manipulation of complex
collections. iRES servers are also
responsible for providing data
management functionality and interfacing
to other servers described below.
In addition to the resource nodes there are three other special server nodes.

• The iCAT is a metadata catalog server that manages a relational database
containing information (metadata) about the data sets, resources, users, servers,

Figure 1. iRODS Components

rules and micro-services. Additional information required for authentication,
authorization, auditing, accounting, etc. are also stored in the metadata catalog
server. There is conceptually only one catalog server per data grid. The system
allows one to have multiple catalog servers provided one is in the master mode
and the rest are in the slave mode. The slave mode catalog servers are used for
‘read only’ operations and all catalog modifications are automatically directed to
the master catalog server. The use of master-slave servers is mainly for load
balancing and reducing access time when going across wide-area networks. All
servers are aware of the location of the iCAT catalog server.

• The iXMS is a messaging server that provides a “mailbox” service with store and
forward capability for messages between the server nodes and the micro-services
that execute in these resources. This server node is used by the messaging micro-
services to send, broadcast and receive messages. The server operates in both
push and pull mode for message delivery. Even though there is no limitation to
the number of messaging servers that can be operated in a grid, at least one should
be operational and its address known to all other servers.

• The iSEC is a scheduler and execution server that can schedule operations on
resource server nodes. This server, using information about pre-scheduled and
queued rules and micro-services stored in the iCAT server, executes them when
their execution time becomes valid. The server can also check for additional
success conditions apart from time stamps. If all conditions are met, the server
can execute the pre-scheduled action; otherwise the server puts the action back in
the queue with retries being done based on options set by the user and/or the
administrator.

The sequence of actions (micro-services or rules) that are performed during a rule
execution can be viewed as a workflow. Since a rule can have more than one rule-
definition, each of these rule-definitions can be viewed as an alternate “guarded”
workflow with a priority imposed on the set of definitions. According to the iRODS
implementation only one rule-definition “succeeds” when a rule is fired. Each alternative
workflow is tried in order and if there is a failure of any of the alternative (either because
the guard condition fails or because of a failure and recovery of the underlying workflow)
the next rule in the priority list is invoked. If any one definition succeeds, the rule
invocation is considered to be successful. If all rule-definitions fail then the rule
invocation is a failure.

There are three kinds of micro-services:
1) System micro-services are the core services that are used for providing operational
functions in the resource servers, iRES. These functions include low-level data
management, data movement (e.g. data replication, copy, move), integrity and type
checking (e.g. checksums such as MD5), collection-level operations, and micro-services
for providing metadata management, messaging services and delayed execution and
scheduling services. They also include services for authentication, authorization and
auditing and for emailing users. Micro-services for user management, resource
management and other administrative functions are also provided by system micro-
services. The iRES high level operations (as invoked by the client) translate into a set of
rule invocations that in turn invoke these micro-services.

2) Rule-Language Micro-services provide workflow control functions. The iRODS rule
language does not provide powerful language constructs which one normally expects
when building workflows, e.g. loops and conditional forks. Semantically (and in theory)
these types of constructs can be coded using the simple rule-definition syntax by a rule
developer. But it is more helpful and useful if syntactic constructs are pre-programmed to
make it easier for rule programmers to code these complex workflows. The design
decision in providing these functionalities was not to complicate the rule engine with
complex rule interpretations, but to provide these functionalities as micro-services that
are executed by the rule engine. The complexity of managing the workflow constructs
such as loop variables and if-then-else conditionals is left to the design of the individual
“rule-language’ micro-services. We support constructs including while, for,
forEachInList, ifThenElse, output strings and assignment. In addition, constructs for
remote execution, parallel execution and delayed execution are also coded as micro-
services that can be invoked. Each construct can execute a chain of micro services
defined by input parameters.
3) Domain micro-services are domain-specific functions that are organized in modules of
micro-services. A community can include as many modules as they need for their data
system configuration to achieve a required functionality.
 In iRODS, policies are encoded as rules of the form:

 A :- C | M1, …, Mn | R1, …, Rn
where A is the name of the action (rule name),
 C is the guard condition for the rule to fire
 Mi is a micro-service or a rule, and
 Ri is a recovery micro-service.

Micro-services in iRODS are well-defined C functions that take a set of arguments for
input and output. A special argument called the ‘white board’ is also used for
communicating between micro-services – one can view this as a global structure which
gets passed intrinsically between the micro-services. Recovery micro-services are used
when the sequence of micro-services fails at some point. The recovery micro-services
are executed in order to roll back any changes or operations that were performed within
the rule. The recovery micro-services provide a “transactional” capability for a rule such
that either the whole rule is executed or the state is rolled back to a point before the
execution of the rule. The semantics of the rules is that only one rule is “fully” executed
on any invocation. All other rules of the same name that were tried whose conditions fail
will have been rolled back. The rest of the rules are not tried once the first rule succeeds.
This semantics is quite different from that of normal logic programming semantics, but
has relevance to an operational semantics similar to what can be found in Prolog-type
systems. The back-tracking through “recovery” micro-service is unique to iRODS and
was needed so that a data system is not left in a corrupted or unstable state. Programmers
who write micro-services should be careful to make sure that all actions are recoverable
and should write corresponding recovery-micro-services. The rule-programmer can then
use these to define rules. We presume that the rules will be written by scientists and those
not well-versed in programming, but can work at a pragmatic level based on the
semantics of the rules and micro-services.

More information on iRODS can be found here [16].

2.1 Complexity of iRODS
The implementation of a consistent, extensible, scalable, and evolvable data management
system for an open repository requires integration of concepts from a wide variety of
systems: data grids, relational databases, active databases and database triggers, logic
programming and rule systems, server-side workflows, content management systems, and
distributed operating systems. Data grids provide a means of accessing distributed
storage resources using common interfaces with single sign-on for user authentication for
access to data in diverse resources [30, 31, 32, 33]. Some data grids such as the SRB
provide an integrated metadata catalog so that one can access replicated copies of files
using logical names given to files. Others such as EUDataGrid and Globus Data Grid
provide a tool kit where a user or community can put their own data grid together by
integrating separate services. The SRB integrated system provides ease of installation,
administration and usage and provides a uniform low-level API that is used to implement
higher-order clients. The SRB has been used in multiple projects [34, 25, 35, 36, 37, 38,
39] and has been shown to handle Petabytes of data and 100s of millions of files. The
logical naming paradigm and single sign-on authentication along with third-party
authorization and metadata catalog services are the main ideas adapted from data grids
into iRODS.

Relational databases [40, 41] play an important role in iRODS for the implementation of
the integrated metadata catalog iCAT. In iRODS, as in the SRB, the metadata schema is
quite complex. By using ANSI SQL conventions and 3rd Normal Form functional
dependencies, the iRODS system implements an automatic query generation mechanism
such that the user is exposed to a universal schema that hides the complexity of the
underlying multi-table schema.

Rules and distributed rule execution are central to iRODS. The concepts for developing
the rule language, the implementation of the rule engine and the transactional properties
of rule execution rely heavily on concepts from active databases and database triggers,
logic programming and rule systems and their semantics. The rules in iRODS are
extensions to the Event-Condition-Action (ECA) rules/triggers of active databases [22].
The transactional property of each rule is maintained through recovery micro-services
defined for each rule. This is an extension from the semantics of ECA rules in active
databases. Triggers in databases use roll-back of database operations through database
transactions. The semantics of the rule execution in iRODS are similar to that of
operational semantics of logic programs (or their implementation as in Prolog). Indeed,
the iRODS rule engine uses the backtracking mechanism of prolog-type languages so that
when a rule fails, if there is another rule with the same name, then that is tried.

The iRODS rules control execution of a server-side workflow. This is in contrast to
scientific workflow systems [42, 43] that execute the workflow at a compute server or at
the client. The iXMS messaging system provides a simple way of distributed workflow
data exchange. Unlike the Kepler workflow, where the director performs time-slicing of
operations to enforce a semblance of parallel workflow operations, the system in iRODS
provides true concurrent execution of the micro-services through the distributed rule
engine.

Duraspace [20] and LOCKSS [21] are two systems based on digital library technologies.
LOCKSS provides a persistent archive by managing multiple copies over the wide area
network and is used for managing electronic publications across university libraries.
Duraspace provides middleware for managing metadata and data for digital content.
Multiple user interfaces have been integrated on top of Duraspace to manage accession
services for ingesting data. Content management systems, like Documentum [44],
Alfresco [45], Sharepoint [46], and Stellant [47] provide services needed to
collaboratively create, edit, review, index, search, publish and archive digital files. These
systems work within an enterprise and deliver a single common workflow package for
managing large-scale and scalable data systems. A few of the systems also provide some
form of rule-processing. Unlike iRODS, they do not use the concept of micro-services to
create definable tasks that can be executed in a distributed chain to achieve a required
goal.

The iRODS system, because of the aggregation of multiple technologies and paradigms,
is unique and provides a platform for intelligent and evolvable open repository systems.

3. The iRODS Open Repository Framework
Open repository systems need an evolvable and scalable system for managing distributed
data that may be shared by autonomous data providers and administrators. The iRODS
system provides an ideal system for this implementation. Having presented the system
description of iRODS, we show how it maps into the logical framework needed for an
open repository framework.

The fundamental entity of the iRODS open repository framework is the concept of a
digital data collection (or collection for short.) A collection is an aggregation of digital
object that are “gathered together” because of some common logical characteristics. In
iRODS, the collections form a hierarchical structure with collections having objects and
sub-collections. The digital objects in a collection are physical objects that are located
somewhere on the data network but are provided a unique identifier in the collection. The
combination of the collection-hierarchy path identification and the name of the object in
the collection together provide a unique data object identifier for each object in the open
repository. Moreover, each iRODS open repository is given a name (called a zone name)
that is unique and is registered in a zone authority [17]. The zone name and the unique
object name in an iRODS collection provide a means for a global unique identifier (guid)
[18] for each object registered in an iRODS system. The concepts of unique identification
of digital objects and aggregation of objects into logical collections (for ease of
browsing) are important features needed in an open repository framework. Moreover,
these unique identification persist in the metadata catalog (iCAT) and provide a persistent
identifier even if the object is physically moved from one repository to another.

A collection can span multiple administrative domains and storage locations – i.e., the
objects in the collection can be owned, curated or administered by different people and
agencies. The iRODS data grid organizes distributed data into a hierarchy of collections
of objects that is independent of the location of the objects but provides a logical

grouping that can be used to enforce uniform management policies across multiple
administrative and storage domains – again a key need in a collaborative open repository.
Policies for the open repositories are encoded as rules that govern the various operations
that are allowed and performed at the collection-level. Even though the policies govern
the life-cycle of a collection (and hence its component objects and sub-collections), there
are other entities that also play an important role in an open repository framework. These
include

1. User names, groups of users, resource names and resource pools- defining who
are the users/owners/curators of collections and objects, and where the objects
are located. These entities are also “uniquely” named inside an iRODS system
independently of their network addresses and iRODS provides the necessary
mapping.

2. Internal ontology that provides the schema of the system-wide metadata for the
collections and other entities of the system (e.g. size and type of objects, role of a
user (normal user, curator, etc), resource free space, etc)

3. User and domain specific (extensible) metadata system that captures non-systemic
metadata needed for discovery and usage. These may include information about
the object (e.g., telescope settings for an astronomical image), or process-centric
information (e.g. flags needed by an ingestion workflow process),

4. A controlled vocabulary (or ontology) for defining and applying access controls
and fundamental operations that can be performed on collections and objects,

5. Rule bases that encode the policies of the iRODS system and the micro-services
(executable functions) that are the building blocks of the action part of the rules.

These entities are also abstractions that map physical names (such as data types and
network addresses) to uniform logical names unique under the iRODS framework. This
level of abstraction (or physical transparency) provides a means to design a system that is
extensible and evolvable in time (the concept is similar to the data transparencies [19]
provided by relational databases, enabling one to define schemas and queries without
worrying about the internal implementation structures of the database). An advantage of
such abstract name spaces in iRODS is that it becomes easier to migrate collections from
one iRODS system to another as well from another data management system to iRODS
and vice versa. The abstraction is also needed for long-term preservation – an important
aspect of open repositories – as it enables evolution in system design, ontologies and
implementations.

Our approach of using iRODS to define an open repository framework has several
significant points of departure from the designs of digital libraries, portals, data grids and
cloud storage systems, that makes it more suited for an open repository implementation.
These include:

1. Explicit enumeration of the locations in the data management framework at which
policy needs to be enforced. The iRODS system defines a minimal set of policy
enforcement locations that enable the creation of generic infrastructure that can be
used to support data sharing, data publication, data preservation, data analysis,
and real-time data streams, by changing the management policies. Since an open
repository system needs to be customized for each discipline that shares its data,

the underlying policies can be easily encoded using the iRODS system. Normally,
in a portal like framework, policy management and repository management are
kept separate with repository management being performed at the server-side and
policies for ingestion, curation, sharing and long-term maintenance being done by
explicit functionality encoded in the portal software. The outcome of a portal-
based approach is that one can communicate with the repository only from the
blessed portal entry-point and any other access would be completely disabled. In
the approach taken by iRODS, by plugging in the policy at the server-side as part
of the integrated repository framework, the client-side system is completely
differentiated from the policy enforcement system. Hence, any type of client can
be used (as appropriate for the community) without any penalty in policy
enforcement. This again provides for multi-disciplinary use, as each discipline can
choose clients appropriate for their data and usage model. Appendix A provides a
list of “policy-enforcement” points in the iRODS system. When building an open
repository using iRODS, the administrators and data owners can define checks
and actions to be performed at these policy-enforcement points to customize the
system for their needs.

2. Explicit enumeration of micro-services, the modules of executable code from
which processing workflows can be composed. The need for policy enforcement
at the repository server side requires one to provide the software functionalities
that are needed for this purpose. In iRODS, we have defined a core set of such
functionalities – called micro-services – that can be used in rules to encode the
policies of the open repository. Micro-services can be viewed as well-defined
software functions or procedures that perform a particular task. For example,
iRODS has a micro-service for “replicateObject” which can be used to make
copies of a digital object in two (geographically distant) storage resources and
record the replication information in a metadata catalog. Users can discover and
access the two copies under one logical object name. Another useful micro-
service calculates a checksum for a digital object and stores that information in
the metadata catalog. For the iRODS environment to be feasible, the level of
composition of micro-services needs to be at a high level of granularity to
simplify construction of procedures that enforce management policy. We list a
subset of these micro-services that pertain to open repository management in
Appendix B.

3. Explicit enumeration of the policies that are being enforced within the data grid.
The policies that are needed by a community are encoded as iRODS rules which
are very similar to the ECA rules found in active databases [22]. The policies are
enforced through a distributed rule engine that is co-located with every storage
system used within the data grid. Thus all operations applied by the data grid on
its digital holdings are executed under the control of rules that are stored at the
storage resource. This makes it possible to enforce management policies across
administrative domains for retention, disposition, distribution, replication, time-
dependent access control, integrity, authenticity, chain of custody,
trustworthiness, Institutional Research Board access approval, HIPAA
compliance, provenance.

4. Explicit enumeration of the types of structured information generated by the
application of remote procedures. Since, the micro-services are fundamental
blocks of policy enforcement, and they are chained together to form rules,
intercommunication between micro-services is important. This requires a standard
mechanism for inter-service communication. Similar to WSDL [23], that enables
communication between web services [24], iRODS uses well-defined structured
information for communication between micro-services. Since micro-services can
be launched in multiple repositories that are distributed over a network,
communication of the structure over the network is also necessary. For efficiency
of local computation, the iRODS data grid had to be able to store in memory the
structures generated by a micro-service, for efficient access by a chained micro-
service. The structures also had to be linearized for transmission over the network
to a micro-service at a remote location or to the client. This dual-nature of
communication is enabled through the development of a mechanism to describe
each structure, and pack and unpack the structures for transmission.

5. Explicit enumeration of the state information attributes required to implement a
data management system. When micro-services operate, they require two types
of information – information that is part of the immediate session and information
that needs to be kept for long-term persistent after the session. The short-term
session information is stored in the same structure that is used for inter-micro-
service communication. For persistent state information, iRODS uses a metadata
catalog (called iCAT) that stores persistent information in a relational database
such as Postgres or Oracle or mySQL. The system provides a means to access the
persistent information (say for a given data object) using a very simple query
mechanism which is a subset of the SQL language. Also, each micro-service
generates state information upon successful completion. The state information is
saved to ensure consistent operation of the open repository. The state information
constitutes the memory of the system, tracking the status of every record in the
shared collection. This aspect is also important for open repositories because one
needs to be able to consistently inform the users about changes being made to the
system. By analyzing an audit trail, users and curators can track that proper
operations were performed.

6. Explicit support for evolution of the data grid, through use of logical name spaces
for first class objects that include users, files, resources, rules, micro-services, and
state information. A major need was the ability to change a management policy
and the associated procedures, and migrate data from the original collection which
enforced the original policies, to a new collection managed by new policies.
Through use of logical name spaces, versions of each first class object can be
managed. Within the same data grid, the old rules controlling the old micro-
services that generate the old state information for the original collection can be
run in parallel with the new rules that control the new micro-services generating
new state information on a new collection. A rule can control the migration of
data from a collection controlled by the old policies to a collection controlled by
new policies.

7. Support for deferred and periodic execution of rules to enable automation of the
validation of assessment criteria. A rule can be written that checks whether the

current state information matches the desired values. If a discrepancy is found,
such as a corrupted file caused by a disk head crash, the rule can access a valid
copy and replace the corrupted file. Such checks need to be performed
periodically since there are no perfect storage systems. Data may be lost through
hardware malfunction, software malfunction, operator error, natural disasters, or
malicious users. Assertions about properties of the shared collection are only as
good as the set of assessment criteria that are used to validate the correctness of
the system. Since policies can change over time, assessment criteria must also
parse audit trails to determine the impact of policy changes. Given the ability to
assess the system consistency, it is possible to have the system detect and repair
problems, minimizing the amount of labor needed for an open repository
administration.

3.1 Scalability and Performance
An important aspect of an open repository is its scalability – both in terms of the number
of digital objects under its control and also in the ingestion rate and access characteristics
under heavy load. The iRODS system has been shown to be highly scalable. The iRODS
system used by the NARA TPAP project [25] has more than 15 million files and will
have more than 100 million files in the near future (the project is aggregating EOS files
from NASA Distributed Active Archive Centers) as an archived collection in the testbed.
Experiments performed with iRODS have shown that it is capable of handling large file
ingestions (50 files/second from a single stream), and degrades gracefully as the
collection size increases. This result is reported in [26]. Several optimization techniques
are also being tested and advocated for better performance of the iRODS system. These
results give us confidence that an open repository implemented with iRODS can scale to
100s of millions of files and give good performance for ingestion and access.

4. Example Open Repository based on IRODS
The Temporal Dynamics of Learning Center (TDLC) [8] is one of six NSF Science of
Learning Centers (SLC) [27]. TDLC aims to achieve integrated understanding of the role
of time and timing in learning, across multiple scales, brain systems, and social systems.
The scientific goal is therefore to understand the temporal dynamics of learning, and to
apply this understanding to improve educational practice. Learning occurs at many
levels: at the level of synapses and neurons; at the level of brain systems involved in
memory and reward; at the level of complex motor behaviors; at the level of expertise
learning; and finally, at the level of learning via social interactions between teachers and
students. TDLC initiatives address such fundamental research questions as: How is
temporal information about the world learned? How do the intrinsic temporal dynamic
properties of brain cells and circuits facilitate and/or constrain learning? How can the
temporal features of learning be used to enhance education? What are the best theoretical
ways to conceive the temporal dynamics of learning in the brain and between brains?

Answering these questions cannot emerge from a single line of inquiry, so TDLC's
research model is collaborative and interdisciplinary from the beginning. The center has
created communities of scientists that cross disciplinary and institutional barriers in
pursuit of these common research questions. Researchers in machine learning,
psychology, cognitive science, neuroscience, molecular genetics, biophysics,

mathematics, and education focus on these issues from multiple perspectives,
synchronizing their research in parallel experiments in animals, people, and theoretical
models. The center includes laboratories from 12 universities in the US, Canada,
Australia, and UK. A significant challenge for collaborations among such geographically
distributed scientists is sharing large quantities of data and stimuli quickly and easily,
while carefully controlling access to only the collaborators permitted to view and
manipulate the data.

One initiative of the TDLC is to develop and deploy innovative technologies to support
this kind of data sharing in the learning sciences, not only for the TDLC but in also
partnership with the other NSF Science of Learning Centers. The goal is to enable just-
in-time sharing of neurophysiological data, motion-capture data, fMRI and
electrophysiology data, and high-quality images and video across many laboratories. This
requires easy, efficient, fault-tolerant transfer of hundreds of gigabytes, terabytes, and
one day perhaps petabytes of data on a regular basis. Collaborators also need to be
assured that shared data are seen only by those with permission dictated by human
Institutional Research Board (IRB), HIPAA [28], and animal IACUC [29] protocols. And
after a project or even TDLC ends, data need to be de-identified before sharing outside
the immediate collaborative group, as dictated by IRB protocols. TDLC’s challenge is
technology for data sharing that includes speed, fault-tolerance, and sophisticated access
control but at the same time is easy for scientists to install, maintain, and use on a regular
basis.
The generality of the iRODS approach enables the implementation of TDLC specific
policies. An example is the enforcement of Institutional Research Board approval flags
for human subject data. The approval flags are managed in an independent institutional
database that denotes the locations where human subject data may be distributed and the
names of individuals that may access the data. iRODS rules are written that periodically
harvest information from the administrative database, establish explicit access
permissions for the named individuals, and set distribution approval flags for each file.
At the policy enforcement point for data retrieval, all accesses are checked, verifying that
both the distribution approval flag has been set and the access permission has been set for
the specific individual. This approach makes it possible to independently control both
access and distribution of controlled data.

6. Conclusion
We have discussed the requirements for an open repository framework. We have shown
that the integrated Rule Oriented Data Systems (iRODS) is an effective candidate for
implementing such an open repository system. We demonstrated this by first describing
briefly the iRODS system and then showed how the salient features of that system make
it a useful open repository system. Finally, we have shown an example open repository
system under development that is being implemented by the TDLC community for
sharing their distributed data. We have shown that their need for immediate sharing,
discovery and processing as well as the need for long-term preservation for promoting
new research and reuse of data objects are met by their iRODS based repository. Other
groups that are implementing similar open repositories based on iRODS range from
institutional repositories (the Carolina Digital Repository), to regional data grids (the
Renaissance Computing Institute engagement center data grid), to preservation

environments (the Duke Medical Archives), to data analysis systems (the MotifNetwork).
An open repository is capable of supporting all types of data management applications.

Acknowledgement:
The research results in this paper were funded by the NARA supplement to NSF SCI
0438741, “Cyberinfrastructure; From Vision to Reality” - Transcontinental Persistent
Archive Prototype (TPAP) (2005-2008) and by the NSF Office of Cyberinfrastructure
OCI-0848296 grant, “NARA Transcontinental Persistent Archive Prototype”, (2008-
2012). The iRODS technology development has been funded by NSF ITR 0427196,
“Constraint-based Knowledge Systems for Grids, Digital Libraries, and Persistent
Archives” (2004-2007) and NSF SDCI 0721400, "SDCI Data Improvement: Data Grids
for Community Driven Applications” (2007-2010).

References:
1. Australian Research Collaboration Service; Davis: A Generic Interface for SRB and

iRODS, www.dhpc.adelaide.edu.au/reports/197/dhpc-197.pdf.
2. San Diego Supercomputer Center, http://www.sdsc.edu/.
3. Amazon Simple Storage Service (Amazon S3), https://s3.amazonaws.com/
4. Teragrid, http://www.teragrid.org/
5. US National Virtual Observatory, http://www.us-vo.org/
6. Ocean Observatories Initiative, http://www.oceanobservatories.org/spaces
7. IPlant Collaborative: Empowering a new plant biology, http:iplantcollaborative.org
8. Temporal Dynamics of Learning Center, http://tdlc.ucsd.edu/portal/
9. BIRN, Biomedical Informatics Research Network, http://www.nbirn.net/
10. Consortium of Universities for Advancement of Hydrologic Science,

http://www.cuahsi.org/
11. DataONE: Enabling Data-Intensive Biological and Environmental Research through

Cyberinfrastructure,
http://mediabeast.ites.utk.edu/mediasite4/Viewer/?peid=38558e47202247bd847456b
047cedfbd

12. Rajasekar, A., M. Wan, R. Moore, W. Schroeder, “A Prototype Rule-based
Distributed Data Management System”, HPDC workshop on “Next Generation
Distributed Data Management”, May 2006, Paris, France.

13. Data Intensive Cyber Environments Center, http://dice.unc.edu/
14. Aschenbrenner, Andres et. al., “The Future of Repositories? Patterns for Cross-

Repository Architectures,” D-Lib Magazine, November/December 2008, Volume 14
Number 11/1.

15. Rajasekar A, R. Moore, M. Wan and W. Schroeder, "Universal View and Open
Policy: Paradigms for Collaboration in Data Grids" 2009 International Symposium on
Collaborative Technologies and Systems, Baltimore, MD, May 18-22, 2009.

16. integrated Rule Oriented Data System, http://irods.diceresearch.org
17. SRB and iRODS zone authority, http://www.sdsc.edu/srb/index.php/Zone_Authority
18. Globally Unique Identifiers, http://www.ostyn.com/standards/docs/guids.htm
19. Codd, E.F. (1970), "A Relational Model of Data for Large Shared Data Banks",

Communications of the ACM 13(6): 377–387.

20. Duraspace open technologies for durable digital content,
http://duraspace.org/index.php

21. LOCKSS Lots of Copies Keep Stuff Safe, http://www.lockss.org/lockss/Home
22. Dayal U., Active Database Systems: Triggers and Rules for Advanced Database

Processing, Morgan Kaufmann Publishers Inc. 1994.
23. WSDL Web Service Definition Language, http://www.w3.org/TR/wsdl
24. Open Grid Services Architecture, http://www.ogf.org/documents/GFD.80.pdf
25. NARA Transcontinental Persistent Archive Prototype,

http://www.dlib.org/dlib/july07/07inbrief.html
26. Rajasekar A, R. Moore, M. Wan and W. Schroeder, "Universal View and Open

Policy: Paradigms for Collaboration in Data Grids" 2009 International Symposium on
Collaborative Technologies and Systems, Baltimore, MD, May 18-22, 2009.

27. Science of Learning Centers, http://silccenter.org/nsf_slcs_index.html
28. Health Information Privacy, http://www.hhs.gov/ocr/hipaa/
29. Institutional Animal Care and Use Committee (IACUC),

http://www.iacuc.org/aboutus.htm
30. Storage Resource Broker, http://srb.diceresearch.org
31. Globus Data Grid, http://www.globus.org/toolkit/docs/2.4/datagrid/
32. OGSA DAI, http://www.ogsadai.org.uk
33. European Union Data Grid, http://eu-datagrid.web.cern.ch/eu-datagrid/
34. Biomedical Information Research Network, http://www.nbirn.net
35. Data Grid Services Based on SRB for National Digital Archives Program in Taiwan

Wei-Long Ueng, Hui-Min Lin, Eric Yan, In Storage Resource Broker Workshop,
2006.

36. SCEC: Southern California Earthquake Center, http://www.scec.org
37. ROADNet: Real-time Observatories Applications and Data Management Network,

http://roadnet.ucsd.edu
38. NSDL: National Science Digital Library, http://www.nsdl.org
39. SIO Explorer, http://siox.sdsc.edu/
40. Introduction to Database Systems, Date, C.J., Addison Wesley, 8th Edition, 2003.
41. Database Systems: The Complete Book, Ullman, J., Garcia-Molina, H., and Widom,

J., Prentice Hall, 2008.
42. Kepler, https://kepler-project.org/
43. Taverna, http://taverna.sourceforge.net/
44. EMC Documentum: Enterprise Content Management, http://www.documentum.com
45. Alfresco: Open Source Content Management System, http://www.alfresco.com
46. Microsoft Office Sharepoint, http://sharepoint.microsoft.com
47. Stellent, http://www.oracle.com/stellent/index.html

Appendix 1: Policy-Enforcement Points in iRODS
 The policy-enforcement points in iRODS enable the open repository administrator, data
provider and system curator to enforce customized operational checks and actions. Each
open repository can have a different set of rules that are triggered at these points and lead
to different behaviors for the system. We list the set of such points that are available in
iRODS that are appropriate for open repository customization.

Each policy enforcement point has two sets of rules. The first set is applied before the
action is performed and the second set is applied after the operation is performed. For
example, the “On Creation of a Collection” point has two sets of rules, the first rule set is
applied before the collection is created and the second rule is applied after the successful
creation of the collection. In an open repository implementation, the administrator might
have policies to be enforced both before (e.g. check collection-naming convention, check
the role of the creator of the collection, etc.) and after (e.g. give access/write permission
to groups of users, associate resources that can be used to store objects in the collection,
put policy on how many replicas need to be created for each object ingested in the
collection, etc.) the creation of a collection.

Collection-level Policy Points Policy-Enforcement Points:

1. On Creation of a Collection
2. On Deletion of a Collection
3. On Copying a Collection
4. On Moving a Collection
5. On Renaming a Collection
6. On Backing Up a Collection
7. On Versioning a Collection
8. On Replicating a Collection
9. On Listing a Collection
10. On Querying Metadata from a Collection
11. On Associating Metadata to a Collection
12. On Disassociating Metadata from a Collection
13. On Changing Metadata of a Collection
14. On Performing a discipline-centric operation on a Collection

Object-level Policy-Enforcement Points

1. On Ingesting an Object into a Collection
2. On Deleting an Object into a Collection
3. On Copying an Object from a Collection
4. On Moving an Object from a Collection
5. On Renaming an Object in a Collection
6. On Backing Up an Object in a Collection
7. On Versioning an Object in a Collection
8. On Replicating an Object in a Collection
9. On Querying Metadata of an Object in a Collection
10. On Associating Metadata to an Object in a Collection

11. On Disassociating Metadata from an Object in a Collection
12. On Changing Metadata of an Object in a Collection
13. On Performing a discipline-centric operation on an Object in a Collection

Appendix 2: Open-Repository-related Micro-services
Additional system-level micro-services useful for Open Repositories can also be applied
as rules under the control the iRODS data grid. These micro-services implement specific
functions required for discipline-specific applications, or advanced preservation
functionality.

1. Compute and Register Checksum for an Object or Collection
2. Validate the Checksum of an Object or Collection
3. Recover an object on corruption from uncorrupted copies
4. Create a replica (copy) of an object in another storage resource
5. Maintain a record of all operations performed upon a file (audit trail)

Domain-specific micro-services useful for Open Repositories:
1. Extract metadata from an object using appropriate routines
2. Associate metadata to an object
3. Format Conversion routines (e.g. png to jpeg, MS Word to PDF, Open Office to

PDF, ROM to netCDF, HDF to netCDF, etc)
4. Semantic Conversion routines (e.g. upload a selected subset of metadata from an

XML file)

Assessment criteria:

1. Verify mandatory descriptive metadata attributes are present
2. Verify all records specified in a submission agreement are present in the

collection
3. Verify that all Archival Information Packages conform to a specified template
4. Verify that all identifiers are unique
5. Verify all operations performed upon a record comply with current policy

(requires processing audit trails)
6. Verify all accesses complied with stated policy

