
 
 
 
 
INTERNATIONAL JOURNAL OF STRUCTURAL CHANGES IN SOLIDS – Mechanics and Applications 
 Volume 2, Number 1, April 2010, pp. 53-63 
 

_____________________________________________________ 
*Email:  dupaix.1@osu.edu 

53 
 
 

 
 
 
 
 

Material Characterization and Continuum Modeling of  
Poly (Methyl Methacrylate) (PMMA) above the Glass Transition 

 
               Arindam Ghatak, Rebecca B. Dupaix * 

Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210 

 
Abstract 
 

Uniaxial compression tests were conducted on poly (methyl methacrylate) (PMMA) over a wide range of strain rates and 
temperatures in and above the glass transition (from 102°C to 130°C). PMMA exhibits different behavior close to the glass transition 
(below 115°C) as compared to temperatures farther above the glass transition. In the temperature range just above the glass 
transition, a clear yield point and strain hardening at higher strains is observed. At temperatures farther above the glass transition, 
PMMA shows more fluid-like behavior, with no clear yield point or strain hardening at high strains. This change in behavior with 
temperature poses difficulties in using some of the existing constitutive models, as illustrated by the use of two different models, 
namely, the Dupaix-Boyce model and the Doi-Edwards model. The data obtained is used to calibrate the two models in order to 
predict the behavior of PMMA across this industrially significant range of processing temperatures for hot embossing applications. 
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1. Introduction 
 

Poly (methyl methacrylate) (PMMA) is a thermoplastic used in applications ranging from microelectromechanical 
systems (MEMS), to micro-optics and medical devices. In these applications, it is often necessary to create micro-scale 
features on the polymer surface using techniques such as hot embossing.  Hot embossing can produce micron-scale 
features and below in thermoplastics such as PMMA (Sotomayor Torres et al., 2003).  The hot-emboss process involves 
localized surface deformation using a die at temperatures above the material’s glass transition. Before the die is 
withdrawn from the material, the polymeric material is cooled below the glass transition temperature in order to 
“freeze” the material into its final embossed shape. However, the material does experience some spring-back from its 
embossed position after die removal, even with substantial cooling. Therefore, it is important to understand the 
relationships between spring-back, rate of loading, and processing temperatures in order to predict and optimize 
embossing processes while retaining quality features. 

In order to better understand the behavior of PMMA, uniaxial compression tests were conducted over a range of 
strain rates and temperatures. The stress-strain behavior obtained from the tests was then fit to the Dupaix-Boyce and 
Doi-Edwards models. A significant change in the behavior of PMMA was observed as it was heated to progressively 
higher temperatures. Beginning at temperatures around 115-120°C, PMMA begins to exhibit more fluid-like behavior. 
There is significant softening of the material at higher temperatures with no clear yield point and a loss of strain 
hardening. While the Dupaix-Boyce model successfully captures the behavior of PMMA between 102 and 115°C, the 
fluids-based Doi-Edwards model better captures its behavior between 120 and 130°C. 

 
2. Background 
 

Previous experimental work on PMMA near the glass transition has been conducted by Palm et al. (2006), G’Sell 
and Souahi (1997), and Dooling et al. (2002).  Recent work by Palm et al. (2006) used the Dupaix-Boyce model 
(Dupaix and Boyce, 2007) to capture the behavior of PMMA at temperatures above the glass transition (θg), though the 
temperature range explored in that work was limited to temperatures up to θg+13°C (115°C).  Another model by 
Dooling et al. (2002) also attempts to capture this temperature range with good results over the temperature range 114 
to 190°C (all above θg), and includes rate dependence .  A very recent model by Richeton et al. (2007) is able to capture 
the behavior of PMMA over a wide range of temperatures and rates, though it requires a large number of fitting 
constants and may have numerical problems in simulating cooling effects, as will be discussed later.  

Fluids-based approaches to modeling polymer mechanical behavior have also been used at temperatures 
approaching the glass transition from above (Hirai et al., 2003; Juang et al., 2002a, 2002b; Rowland, 2005a, 2005b; 
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Resistance N: molecular network interactions 
 
Resistance N consists of a highly non-linear spring and a dashpot. While the spring captures the strain-stiffening 

effects in the polymer, the dashpot represents the molecular relaxation at higher temperatures or lower strain rates. The 
elastic spring in (N) makes use of the Arruda-Boyce 8-chain model: 

( )211
3

eN
N N N

N N

vk N L
J N

λθ λ
λ

− ⎛ ⎞ ⎡ ⎤= −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
T B I           (6) 

where N is the number of rigid links between entanglements, and v  is the chain density. These are the only two 
material constants in this equation. 1L− is the inverse Langevin function defined as ( )( ) coth( ) 1/L β β β= − . The effective 

chain stretch Nλ  is given by the root mean square of the distortional applied stretch: 

( )
2/1

3
1

⎥⎦
⎤

⎢⎣
⎡= e
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         (7) 

This model has previously been given temperature dependence, through the constants ν and N (Arruda et al. 
1995).  However, this can cause numerical problems in simulations involving cooling.  The argument inside the inverse 
Langevin function (

√
) must always be less than one.  If N is prescribed to increase with temperature, as is done in the 

Richeton et al. (2007) model, and a simulation is performed at an elevated temperature, then a relatively large value of 
 may be achieved.  Now, as the material cools, N will decrease, possibly to the point that √  becomes smaller than 

the current value of  and causing a numerical singularity.  To avoid this, we interpret the molecular network as being 
independent of temperature. Instead, temperature is viewed as facilitating reptation, through the molecular relaxation 
dashpot.  The rate of molecular relaxation for resistance N is given by: 

1 /
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where n is a power-law exponent, α  is a measure of the orientation of the polymer chains with initial value 0α . cα  is 
a cutoff value, beyond which molecular relaxation ceases. α  is calculated as: 

⎟
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⎜
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⎛

++
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2
3

2
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2
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3211 ),,min(
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where λi are the principal stretches. The parameter C is temperature dependent and is given by: 

exp QC D
Rθ

⎧ ⎫= −⎨ ⎬
⎩ ⎭

        
(10) 

where D and Q/R are material parameters. 
 

There are a total of 15 parameters used in this model, given in Table 1.  The two constants that are perhaps the most 
physically intuitive are the glassy and rubbery modulus.  These are intended to represent the initial elastic stiffness of 
the material below and above the glass transition.  The constants were obtained from data fit close to the glass transition 
temperature, so the “glassy modulus” used here is somewhat lower than would be expected for PMMA at room 
temperature, because it was obtained just a few degrees below the glass transition.  The rubbery modulus may seem a 
bit high for the very compliant stress-strain curves seen above the glass transition, however, this constant is determined 
from the very early part of the stress-strain curve before any yielding or flow occurs.  Since flow occurs at very low 
stress levels above the glass transition, the initial elastic behavior has a fairly small effect on the overall stress-strain 
curve above the glass transition. 

 



 
M
 

r
r
t
t

a
m

5

T
I
i
e

 

58 

 

Modeling Resu

Figures 10 
rates ranging f
results. Howev
the initial mod
this model is c
stress, as well 
above θg. In th
more than 15 d

 
5.2 Doi-Edwar

The Doi-E
This approach 
In this approac
is in contrast to
elastic to plasti

Figure 10: Expe
                    tests 

 Inte

 

Initial Elast

Flow 

Resistance

Molecular 

ults 

and 11 show t
from -0.05/min
ver, as figure 1
dulus and the a
completely una

as predicts st
he next section
degrees above 

rds Model 

Edwards model
is used to illus

ch, the phenom
o the glass-rub
ic over time, w

erimental and simu
at the glass transit

ernational Jour

Table 1

tic Behavior 

Stress 

e Elasticity 

Relaxation 

the experiment
n to -6.0/min. 
12 shows, the 
amount of strai
able to capture 
train hardening
n, we discuss th
θg. 

l was develope
strate the poten

menon of stress
bber model just
with unchanged

ulation results for u
tion temperature, 1

 

rnal of Structur

1: Material constan

Materia
Glassy Modulu
Rubbery Modu
Temperature S
Transition Slop
Rate Shift Fac

Glassy Bulk M
Rubbery Bulk 
Pre-exponentia
Activation Ene
Rubbery Orien
Entanglement 
Temperature C
Second Tempe
Power-law Exp
Cutoff Orienta

tal and simulate
As can be see
model overpre
in hardening.  
the stress-stra

g that is not ob
he Doi-Edward

ed to capture p
ntial of fluids-b
s relaxation is i
t presented, wh

d material prop

uniaxial compress
102°C. 

 
 
 
 

ral Changes In 
 

 
 

nts for the Dupaix

al Property 
us 
ulus 
Shift 
pe 
tor 

Modulus 
Modulus 

al Factor 
ergy 
ntation Modulu
Density 

Coefficient 
erature Parame
ponent 

ation 

ed stress-strain
en, the model 
edicts the stres

At even warm
ain behavior.  I
bserved in exp
ds model in an 

polymer chain 
based modeling
interpreted as 
hich models st

perties. 

 
sion Fig

             

 Solids, 2(1), 20

-Boyce model

Symbol
μg  

Bg 
Br 

 
us 

eter 
1/n 

n curves for PM
predictions are

ss values at 11
mer temperatur
It both overpre
periments at te

attempt to cap

reptation and 
g at temperatur
a reduction in 
tress relaxation

gure 11:  Experime
             compressi

rμ
θΔ
gX

ξ

0Iγ&
GΔ

vkθ
N
D

/Q R

cα

010 53-63 

Value 
325 MPa 
50 MPa 
30 K 
-3 KPa/K 
3 K 

1.0 GPa 
2.25 GPa 

137.5 10× 1
2.12 10−×
8.0 MPa 
500 

41 .7 1 0×  1/
71042.1 ×  K

6.67 
0.0012 

MMA at 102°C
e in good agre
5°C. The mod

res, as the mate
edicts the initia
emperatures m
pture this beha

is a Non-New
res more than 1
material modu

n as a transfer o

ental and simulatio
ion tests at 110°C 

1/s 
19 J 

/s  
K  

C and 110°C at 
eement with th
del overpredicts
erial softens fu

al modulus and
ore than 15 de

avior at temper

wtonian fluid m
15 degrees abo
ulus over time.
of deformation

on results for uniax

strain 
he test 
s both 
urther, 
d yield 
egrees 
ratures 

model. 
ove θg.  
  This 

n from 

 
xial 



 

u

w

f

t
k

w
o

 
 
b

. The origin
uniaxial comp
stress tensor as

where the relax

pτ  is a time c
further terms d

The other 

tangent vector 
k, and the temp

              

Qα

where 
ο
indi

orientation ten
 

Uniaxial Defor

       Assuming
becomes 

Ghatak

Figure
 

nal model dev
ression. Detail
s a function of 

xation modulu

constant, and p
does not signifi
variables are 

to the polyme
perature of the 

( ) ( )
= α

αβ
F

Fu
F

icates a volum
nsor which acco

rmation 

g uniaxial defo

k and Dupaix / Ch

e 12: Experimental

elopment, as c
led derivations
time are taken

(αβσ

s 'μ  is given b

'μ

p is a set of in
icantly change 
the deformati

er chain segme
materialθ .  Q

( )
− αβ

βα δ
3
1

2u

Fu

e average com
ounts for the de

ormation in the

haracterization and

l and simulation re

contained in (D
s of these equa
n to be 

)( '
0 dtGt

t

μ∫
∞−

=

by 

2 2

8( )
p odd

t
p π

= ∑

ntegers. We us
the results wh
on gradient F

ent u, the curre
Qαβ

 is given by:

(
∫

⎪⎩

⎪
⎨
⎧

=
s

d
π4

2

0

Fuu

mputed as an in
eformation gra

e z-direction a

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

λ

0

0

1

F

 
 
 

d Modeling of PM

 
esults for uniaxial 

Doi, 1980) is c
ations can be f

([)( '' tQtt Fαβ−

2 exp
p p

t
τ τ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

se only p = 1 
hile increasing c
F, the compone

ent time t, a ref
 

) ( )
−βα δ

3
1

2Fu

Fuu

ntegral over th
adient operating

and incompress

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

λ
λ
0

01

00
 

MMA above Glass T

 

compression tests 

cast in a form t
found in Dupa

)], 't  

since it is sho
computation tim
ents of the Ca

ference time in

⎪⎭

⎪
⎬
⎫

αβδ  

e surface of a 
g on the unit v

sibility of the m

Transition  

at 115°C. 

to predict stres
aix (2003). The

own in (Dupaix
me. 
auchy stress te

n the past 't , B

unit sphere. T
ector along the

material, the d

5

ss-strain behav
e components 

(

 (

x, 2003) that a

ensor αβσ , the

oltzmann’s co

This is effective
e chain backbo

deformation gra

59

vior in 
of the 

      
(11) 

(12) 

adding 

e unit 

nstant 

 (13) 

ely an 
ne. 

adient 

(14) 



 
 
 
 

 International Journal of Structural Changes In Solids, 2(1), 2010 53-63 
 

 
 
 
 

60 

where λ is the applied z-direction stretch and the nonzero components of can be expressed as: 

2 2 1 2

3 2 2 1 2 2( )
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z x
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This can be evaluated analytically using spherical coordinates for u and the stress is given by: 
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For loading at a constant strain rate starting at t = 0, 
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Taking only the p=1 term and simplifying, equation (16) becomes: 
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p

GZ
τπ 20
8

= . 

 
The two constants to be determined are Z and τp. Temperature dependence is introduced by making Z and τp 

functions of temperature through the following curve-fit expressions: 
 

 
3 21.1 10 0.8859 178.4393Z θ θ−= × − +  (19) 

34.289914.15102 212 +−×= − θθτ p        (20) 

 
where temperature θ  is in Kelvin. 
 
Modeling Results 
 

Figures 13-16 show the experimental and simulated (using the Doi-Edwards model) true stress-strain curves from 
115 to 130°C at strain rates of -0.05/min, -1.0/min and -3.0/min. The Doi-Edwards model is able to capture the initial 
slope of the stress-strain curves successfully. However, the fit at higher strains is not as good, especially at temperatures 
between 115°C and 120°C. The reason for this is that at temperatures around 115°C, there is a small amount of strain 
hardening taking place, and strain hardening effects are not included in the Doi-Edwards model.  At higher 
temperatures, where strain hardening is absent from the data, the Doi-Edwards model does a much better job. At all 
temperatures, the Doi-Edwards model can partially capture rate dependence, but its predictive abilities are very poor for 
the lowest strain rate.  
 
6. Disucssion and Conclusions 
 

Uniaxial compression tests were conducted over a wide range of temperatures and strain rates on PMMA to verify 
and improve upon the models described in (Doi, 1980; Doi and Edwards, 1978, 1986; Palm et al., 2006). The 
experimental results were consistent with previous experimental data in this temperature range (Dooling et al., 2002; 
G’Sell and Souahi, 1997; Palm et al., 2006). Test results up to about 115°C show material characteristics of typical 
polymer materials which undergo elastic deformation followed by plastic deformation accompanied by strain 
hardening, especially at higher strain rates and lower temperatures. 
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depending on whether the material is below or above the glass transition, either branch 2 or branch 3 becomes active in 
the model.  The main drawback to using this model in simulations is the need to fit close to 50 material constants, so it 
seems there is still room for improvement in developing a practical model for hot embossing simulations.   

In spite of the limitations shown here for the Dupaix-Boyce model at temperatures more than 15 degrees above the 
glass transition, even a limited model may be fairly successful in predicting hot embossing outcomes (Cash and Dupaix, 
2008).  It largely depends on the precise temperature range of interest, the relevant time scales (strain rates), as well as 
the level of deformation expected in the embossing operation.  Regardless of the choice of model, since all of these 
models were developed from data collected on isothermal experiments, care must be taken when modeling processes 
involving potentially large temperature changes so as to avoid introducing artifacts into the simulations.  
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