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Abstract

Outgoing from energy conservation and the second law of thermodynamics we derive a thermo-mechanically cou-
pled model for shape memory alloys. Additionally, we introduce a field function which allows for the modification
of the dissipation coefficient. All together, the model is capable to display the localized phase transformation as
well as temperature distribution which were observed in experiments.
This paper focuses on the influence of heat conductivity on numerical results for poly-crystalline shape memory
alloys. The heat conductivity is identified in the approach for the entropy production. Slight changes of the
entropy production ansatz yield interesting numerical results, capable of displaying experimental observations.
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1. Introduction

The atoms in shape memory alloys may be arranged in different stable lattice structures, depending on
temperature and load. These structures are well-known and denoted as austenite and martensite. At high
temperatures the atoms are composed in a cubic arrangement which is called austenite. At low temperatures
the material favors a less symmetric structure which can be converted from the austenite via shear and shuffle.
Thus, there exists no unique transformation which maps the austenite to the sheared and shuffled state, but
several which are coupled by symmetry relations. All those stable lattices are denoted by martensite whereas the
variants of martensite are distinguished by means of fixed rotation matrices. From the deformation of the cubic
austenitic lattice to the sheared and shuffled one of a particular martensitic variant a so-called transformation
strain may be measured which serves as mechanical characterization.

Pseudo-elastic shape memory alloys are characterized by a fully reversible austenite ↔ martensite phase
transformation. That means starting from a purely austenitic specimen phase transformations evolve until a
combination of different martensite variants is observed. During the process of phase transition a plateau in the
stress-strain diagram indicates the change of internal state. The phase transformation has a dissipative character.
Energy applied to the system via a prescribed displacement and the corresponding force is not only invested
in phase transitions but also in heat. Hence, releasing the specimen results in a back-transformation, but with
lower force. So, a hysteresis is observed.

Many models already exist capable of describing shape-memory alloys from different viewpoints. Phenomeno-
logical models were presented e.g. in Bouvet et al. (1987), Helm and Haupt (2003) and Lexcellent and Vivel
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(2002). In contrast to those we intend to describe phase transformations from the micromechanical side to over-
come the need to find many model parameters. Other micromechanical models for poly-crystals than ours may
be found in Govindjee and Miehe (2001), Stupkiewicz and Petryk (2002) and Stein and Sagar (2008). Different
finite element implementations of models were presented in Pan et al. (2007). As far to our knowledge there
exist no other model which is able to simultaneously describe phase transformation, localization and thermal
coupling than ours.

A poly-crystal is a conglomerate of single crystals (grains) each having a different orientation. Depending on
the direction of loads and the orientation of atoms a different material response may be expected. Therefore, in
a poly-crystal there will always be crystals which are more favored to undergo phase transformations due to their
orientation and some which will transform only slightly. In order to capture this property we use the relaxed free
energy for poly-crystalline shape memory alloys introduced in Hackl and Heinen (2008). We consider a material
behavior free of re-crystallization which means that the orientation of grains does not change.

The aforementioned approach for the energy is taken to derive evolution equations for the crystalline phases
and a heat conduction equation by means of maximization of the entropy production for which we make an
appropriate ansatz. This approach allows us to take the coupling between phase transformation and heat
into account. Introducing a field function for regularization similar to Dimitrijevic and Hackl (2008) allows a
modification of a dissipation coefficient in a way that the nucleation of martensite costs more energy as compared
to its evolution. The impact of this modification is the formation of moving transformation fronts similar to
localized plastic strains (Lüders bands) in our numerical results which coincides with experimental observations
of tension tests Schaefer and Wagner (2009). The complete approach results in a remarkable improvement of
our results since the original model, derived in Hackl and Heinen (2008), gives a homogeneous transformation,
Junker and Hackl (2009). The regularization is necessary since the modification of the dissipation results in a
loss of ellipticity and consequently in mesh dependent finite element calculations.

In the experiments the shape of those transformation fronts is changing: the inclination angle differs from
specimen to specimen and a “reorientation” is observed during its movement. Transformation fronts perpen-
dicular to the longitudinal axes of a specimen in a tension test occur as well as inclined fronts with a certain
angle. One reason for this phenomenon is considered to be the thermo-mechanical coupling of the occurring
phase transformations. In this paper we want to analyze the influence of the assumed ansatz on the entropy
production. Since the dissipation coefficient for the heat flux may be identified as connected to heat conductivity,
we present examples for different coefficients. The numerical results are brought into comparison and discussed.

2. Material Model

From thermodynamics we know that the total energy of a system is conserved. This property may be
expressed by the well-known equation of energy conservation, Holzapfel (2000),

Ψ̇ + η̇ θ + η θ̇ = σ : ε̇ + h −∇ · q . (1)

In (1) Ψ denotes the specific Helmholtz free energy and η entropy, θ temperature, σ stress, ε strain, h internal
energy wells and q heat flux. Furthermore, the second law of thermodynamics has to hold which is taken here as

Δ = η̇ − h

θ
+ ∇ ·

(q

θ

)
≥ 0 , (2)

where Δ is the irreversible entropy production. Combination of (1) and (2) by eliminating h gives the identity

Δ =
1
θ

(
σ : ε̇ − Ψ̇ − η θ̇

)
+ q · ∇1

θ
, (3)

which has to hold at every point in time.
We know that Δ is a function of the thermodynamical fluxes of the system under consideration and we have to

make an assumption on this dependence. We follow Onsager (1931) and Hackl and Fischer (2008) and maximize
the entropy production Δ with respect to the thermodynamical fluxes in order to receive evolution equations.
This approach is called maximization of the dissipation and gives for many cases same results as the minimization
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of a dissipation potential (see Hackl and Fischer (2008)) which was used for example in Ziegler (1962), Svoboda et
al. (2002) and Svoboda et al. (2006). This general approach was introduced for the thermodynamically coupled
case in Hackl et al. (2010). The maximization has to be carried out under several constraints. First, the identity
(3) has to be fulfilled. Additionally, the phases may only evolve under the constraint of mass conservation and
positivity. The mass conservation has to be achieved in every single grain. This may be brought to formulas
via the introduction of volume fractions λj

i . The index j belongs to grains which are described by a randomly
chosen rotation matrix Rj . N denotes the maximum number of grain orientations assumed (j ∈ {1, . . . , N}). The
different phases may be distinguished via the index i whereas i = 0 indicates austenite and i > 0 the corresponding
martensitic phase (i ∈ {0, . . . , n}, n is the number of martensite variants). Then, mass conservation reads

n∑
i=0

λ̇j
i = 0 ∀ j . (4)

Since negative volume fractions do not make any physical sense, we demand

λj
i ≥ 0 ∀ i, j . (5)

We introduce the Lagrangian for our problem as

L = Δ + β

{
Δ − 1

θ

(
σ : ε̇ − Ψ̇ − ηθ̇

)
− q · ∇1

θ

}
+

N∑
j=1

κj
n∑

i=0

λ̇j
i −

N∑
j=1

n∑
i=0

γj
i λ̇j

i → max
ε̇,λ̇,θ̇,q

, (6)

with Lagrange parameters β and κj for the constraints (3) and (4) and Kuhn-Tucker parameters γj
i for (5),

respectively. The Kuhn-Tucker parameters are only active if the constraint of positivity is not fulfilled. Thus,

γj
i =

{
= 0 for λj

i > 0 ∨
(
λj

i = 0 ∧ λ̇j
i > 0

)
> 0 else

. (7)

The Lagrangian L has to be maximized with respect to its free variables, which are the rates of strain, volume
fraction and temperature and the heat flux. Finding the stationary values of L gives

∂L
∂ε̇

= 0 ⇔ σ =
∂Ψ
∂ε

, (8)

∂L
∂λ̇

= 0 ⇔ (1 + β)
∂Δ
∂λ̇

+
β

θ

∂Ψ
∂λ

+ κ − γ = 0 , (9)

∂L
∂θ̇

= 0 ⇔ η = −∂Ψ
∂θ

, (10)

∂L
∂q

= 0 ⇔ (1 + β)
∂Δ
∂q

− β∇1
θ

= 0 , (11)

with

κ = κjeiej , γ = γj
i eiej , ek : unit vectors . (12)

This approach of maximizing the entropy production yields the constitutive equations both for stress (8) and
entropy (10). The equations (8) till (11) can be used to find expressions for the Lagrange parameters β and
κj . Plugging those expressions back into the set of equations (8) and (11) we derive evolution equations for the
phases⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f

θ
pj

i −
f

θ

1
nAj

∑
k∈Aj

pj
k =

∂Δ
∂λ̇j

i

, i ∈ Aj

f

θ
pj

i −
f

θ

1
nAj

∑
k∈Aj

pj
k = − 1

1 + β
γj

i , i �∈ Aj

, (13)
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where we applied the active set strategy. The active set collects all phases in each grain which fulfill the constraint
of positivity (5) identically. Thus,

Bj =
{

i|λj
i = 0

}
(14)

Aj =
{

i ∈ Bj|λ̇j
i > 0

}
∪ {

i �∈ Bj
}

. (15)

In Eq. (13) pj
i := −∂Ψ/∂λj

i denote the thermo-mechanically conjugated driving forces, nAj the number of active
variants in each grain j and

f :=
β

1 + β
. (16)

We have to make ansatzes for the energy and the entropy production. For the energy we take the approach of
Hackl and Heinen (2008) in combination with Huo and Müller (1993) which is

Ψtot =
1
2

(ε − ηeff) : Ceff : (ε − ηeff) + ceff(θ) (17)

with

ηeff =
N∑

j=1

n∑
i=0

1
N

λj
i

(
Rj

)T · ηi · Rj︸ ︷︷ ︸
=: ηj

i

, Ceff =

⎡
⎣ N∑

j=1

n∑
i=0

1
N

λj
i

(
C

j
i

)−1

⎤
⎦−1

, ceff(θ) =
N∑

j=1

n∑
i=0

1
N

λj
i ci(θ) ,(18)

where ηi, Ci and ci are the transformation strains, elastic constants and the temperature dependent chemical
energy for each phase i. This energy is the result of a complete convexification of the entire energy of the system
which can be expressed by the weighted sum of energies in all grains and all phases. By means of the randomly
chosen rotation matrices Rj we can calculate the rotated elastic constants according to

C
j
i pqrs = Rj

tpR
j
uqR

j
vrR

j
wsCi tuvw . (19)

For the chemical energy part we follow Huo and Müller (1993) by

ci(θ) = cθ (θ − θR) − cθ θ ln
(

θ

θR

)
+ ai − biθ , (20)

where θR denotes the reference temperature, cθ the specific heat (= heat capacity) and ai and bi phase dependent
energetic and entropic constants, respectively. Finally we use (10) and our assumption for the energy which gives
the rate of entropy as

η̇ = cθ
θ̇

θ
+

N∑
j=1

n∑
i=0

1
N

λ̇j
i bi . (21)

Plugging this back into (1) and introducing our ansatz for the entropy production

Δ = r (|λ0|) |λ̇|ξ +
αθ

2
|q|2 . (22)

(r (|λ0|) and αθ are dissipation coefficients for phase transformation and heat flux, respectively) where

|λ̇|ξ =

√√√√ N∑
j=1

1
N

n∑
i=0

(
λ̇j

i

)2

, (23)
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we receive the evolution law for the phases and the heat conduction equation as

λ̇j
i =

ρ

N

f

θ

[
devAj pj

i

]
Aj

(24)

cθ θ̇ = p : λ̇ −∇ ·
(

f

αθ
∇1

θ

)
− θ

N∑
j=1

n∑
i=0

1
N

λ̇j
i bi , (25)

with the Kuhn-Tucker conditions

ρ ≥ 0 , φ ≤ 0 , ρ φ = 0 (26)

and the consistency condition

devAj pj
i ≤ 0 for i ∈ Aj . (27)

In (27), devAj pj
i := pj

i −
∑

k∈Aj pj
k is called active deviator, φ = 1/N (f/θ devAp)2 − r2(|λ0|) a yield function

and ρ a consistency parameter determined by the constraint φ ≤ 0.
The argument in the function of the dissipation coefficient r is the average amount of austenite at each

material point, calculated by

|λ0| =
N∑

j=1

1
N

λj
0 . (28)

This strategy allows us to account for different energy cost regarding the nucleation and the evolution of marten-
site by making an appropriate ansatz for r.

3. Finite Element Implementation

The material model presented in Section 2 holds on the material point level. As usual, this model can be
applied to whole samples by introducing the elastic potential. This potential Π has to achieve a minimum.
The consequential minimization conditions are then used to find the displacement field under some boundary
conditions. The displacements cause strains which serve as input data for the material model whereas the
internal state, which is described by the volume fractions, has an influence on the stiffness and hence back on
the displacements. The system of equations has to be solved in an iterative way due to its non-linearity.

The potential we use is the very common potential

Π =
∫

V

Ψ dV −
∫

V

u · (ρ f) dV −
∫

∂V

u · tdA (29)

which consists of the total free energy and terms due to internal and external loads (u: displacements, ρ: density,
t: tractions on the surface). It is emphasized that it is not Ψtot which we have in (29), but an extended free
energy denoted by Ψ. The extended free energy is composed of the Helmholtz free energy Ψtot and additional
terms which are necessary for regularization purposes. Without any regularization the non-constant dissipation
coefficient would yield mesh dependent results. The strategy to circumvent that effect is to introduce

Ψ = Ψtot +
βϕ

2
(ϕ + 1 − |λ0|)2︸ ︷︷ ︸

coupling

+
cϕ

2
|∇ϕ|2︸ ︷︷ ︸

higher order term

(30)

with numerical coefficients βϕ and cϕ. Penalizing the gradient of the field function ϕ will penalize the gradient of
the internal variables due to their coupling. By this approach we adopt the idea of Dimitrijevic and Hackl (2008).
Although we introduce the field function mainly due to numerical reasons (mesh independence) it still may be
interpreted as a phase field for the averaged crystallographic variants. Then, the higher order term reflects some
average interface energy. The parameter cϕ controls the penalization of the interface energy. Thus, lower values
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of cϕ lead to interfaces which are sharper pronounced whereas higher values lead to interfaces which are more
diffuse. In the results presented below we chose cϕ = 0.1. The numerical factor βϕ may be chosen arbitrarily
since it hasn’t any noticeable influence on the results as shown in Dimitrijevic and Hackl (2008). From (30) we
can calculate the driving forces for the volume fractions as

pj
i = − ∂

∂λj
i

Ψ (ε, λ, |λ0|, ϕ) (31)

=
1
N

[
ηj

i : Ceff : (ε − ηeff) +
1
2
(ε − ηeff) :

(
Ceff :

(
C

j
i

)−1

: Ceff

)
: (ε − ηeff) − ci(θ)

]
(32)

+ ξjβϕ (ϕ + 1 − |λ0|)︸ ︷︷ ︸
�

(33)

with additional parts (�) due to regularization. The stationary conditions of (29) are∫
V

δε :
∂Ψ
∂ε

dV −
∫

V

δu · (ρf) dV −
∫

∂V

δu · t dA = 0 ∀ δu (34)∫
V

βϕ (ϕ + 1 − |λ0|) δϕdV +
∫

V

cϕ∇ϕ · ∇δϕdV = 0 ∀ δϕ , (35)

which are solved by the finite element method. Additionally, we write the heat conduction equations in their
variational form ∫

V

cθ θ̇ δθ dV =
∫

V

p : λ̇ δθ dV −
∫

∂V

f

αθ
∇1

θ︸ ︷︷ ︸
=q

·n δθ dA +
1
αθ

∫
V

f∇1
θ
· ∇δθ dV

−
∫

V

θ
N∑

j=1

n∑
i=0

1
N

λ̇j
i bi δθ dV ∀ δθ (36)

for which we apply finite elements, too.

4. Numerical results

We present numerical results for a tensile test for pseudo-elastic Nickel Titanium. The corresponding trans-
formation strains as well as the elastic constants are collected according to Wagner and Windl (2008) in Tab.
1 and 2, respectively. In all cases the boundary conditions remain the same: for both sides we prescribe the
displacements of all first two rows of nodes inside the discretization, i.e. the boundary nodes are excluded. On
the left hand side all displacements are zero, whereas the displacements at the right hand side are prescribed in
longitudinal direction. Through these boundary conditions the experimental conditions can be simulated best.
The dimensions of the specimen are 35 mm, 3.3 mm and 0.68 mm (length, height, depth).

Although the rotation matrices are chosen randomly, we receive reproducible results since we calculate with
a relatively high number of grains, exactly N = 100.

The plot of the assumed chemical energies for austenite and all variants of martensite is shown in Fig. (1)
(left) as well as the plot of the dissipation coefficient as function of the average amount of austenite (right).

The functions for the chemical energies are

c0(θ) = 0.01(θ − 293.15)− 0.01 θ ln
θ

293.15
+ 2.61 − 0.0089 θ [MPA] , (37)

ci≥0(θ) = 0.01(θ − 293.15)− 0.01 θ ln
θ

293.15
+ 1.76 − 0.0060 θ [MPA] . (38)
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Figure 1: Left: chemical energies for austenite c0 and all martensite variants ci>0. Right: assumed function for the dissipation
coefficient r(|λ0|).

The dissipation coefficient r is determined by the constraint that nucleation of martensite (rstart) costs more
energy than its evolution (rav). Furthermore, the completion of the transformation of austenite (rfinish) will
again dissipate more energy as compared to the “average evolution” of martensite, due to the highly increasing
number of interfaces (between austenite and martensite and between martensite and martensite). However, less
energy is dissipated as compared to the case when the very first nucleation of martensitic grains takes place.
The translation of these physical assumptions into a mathematical scheme is done via

rstart = r(1) (39)
rfinish = r(0) (40)

rav =
∫ 1

0

r(|λ0|) d|λ0| (41)

rav < rfinish < rstart . (42)

For the different dissipation coefficients we assume

rstart = r� , rfinish =
3
5
r� rav =

7
15

r� , (43)

with r� = 0.018 MPa/K. By quadratic interpolation this yields

r(|λ0|) = 0.018 · (0.6 − 1.6|λ0| + 2|λ0|2) [MPA/K] . (44)

We mention that the exact values for rstart, rfinish and rav are not essential since a variation gives similar results.
In the following we present different numerical results for the same boundary value problem described above.

The only parameter we change is the value for the dissipation coefficient for the heat flux αθ from Eq. (22),
namely αθ = {1.0, 2.5, 5.0} · 10−3 mmK/W.

In Fig. (2) we present the distribution of austenite at various steps in time for αθ = 1.0 · 10−3 mmK/W.
In this case the phase transformation initializes where the specimen is ”clamped” (where the displacements
are prescribed). Due to the released heat the increased temperature causes the material to evolve a further
transformation zone. The relatively small value of αθ results in a homogeneous temperature conduction so that
in the center of the specimen the further front is created. Any small deviation of the front’s orientation at
the ends from being perpendicular to the longitudinal axes is damped out (the randomness of the orientation
matrices yields very small stochastic variations). During further loading phase transformations can be observed
in all three zones.

The corresponding distribution of temperature can be seen in Fig. (3). We present the temperature distribu-
tion for some selected points in time. It can be seen that the phase transformation serves as internal heat source
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Figure 2: Distribution of the austenite phase over the specimen at different load steps, αθ = 1.0 · 10−3 mmK/W.

since energy is dissipated during transition. During the increasing prescribed displacements the heat sources
move through the specimen analogously to the transformation fronts.

In contrast to Fig. (2) we see a different behavior in Fig. (4). Here, we changed the dissipation coefficient
slightly to αθ = 2.5 · 10−3 mmK/W. However, the general material response in the beginning is similar. The
transformation starts where stress peaks occur but almost simultaneously at two points in the specimen phase
transitions initialize. Due to some inclination of the initial fronts the temperature field is not perpendicular either
and caused by the a slower heat transport the additional phase transformation happens more closely to the ends.
All the fronts proceed localized in a front like manner after their formation. Interestingly, the additional fronts
are not perpendicular to the longitudinal axes anymore as they are in the previous case. Due to the changed
heat conduction, the austenitic state is more stable in some areas and less stable in others. This influence results
in a non-perpendicular but inclined direction in which the transformation spreads over the cross section.

The temperature distribution which corresponds to the second example is presented in Fig. 5. Since the
temperature flows through the specimen its distribution is not as localized as the distribution of phases and the
non-perpendicular front is smeared out. Again, the temperature sources move through the specimen.

The last example presented in this paper is based on a dissipation parameter for the heat flux of αθ = 5.0·10−3

mmK/W. The resulting distribution of the austenitic phase is shown in Fig. 6. We recognize that again at the
ends the initial phase transformation occurs. Here, the heat conductivity is the smallest one. Therefore the heat
produced during the phase transformation at the ends of the specimen is not transported to the center very fast
but remains mostly in the area of its release. Again, as in all examples here, the produced heat is high enough
to stabilize the austenite in a remarkable way. Hence, again more zones of phase transformation occur, in this
example quite close to the ends, similar as in the previous example. But in contrast to this one, any inclination
of the initial zones does not affect the further developed zones since the ”transporting variable”, the temperature
distribution, moves too slow according to the low heat conductivity. The impact of this fact is that the zones
evolve perpendicular to the longitudinal axes of the specimen, similar as the first example, but now with two
additional zones instead of only one. In Fig. 7 the temperature distribution for some points in time is shown. It
can be seen that obviously in the regions where the phase transformation has initialized the temperature is the
highest.

Another interesting point is the global mechanical response of the specimen. This behavior can be captured
in force displacement diagrams which we present in Fig. 8. It is obvious that all specimens react in a very similar
way during the elastic regime. First when the phase transformations take place some slight differences can be
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Figure 3: Distribution of the temperature over the specimen at different load steps with according legends, αθ = 1.0 ·10−3 mmK/W.

Figure 4: Distribution of the austenite phase over the specimen at different load steps, αθ = 2.5 · 10−3 mmK/W.
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Figure 5: Distribution of the temperature over the specimen at different load steps with according legends, αθ = 2.5 ·10−3 mmK/W.

Figure 6: Distribution of the austenite phase over the specimen at different load steps, αθ = 5.0 · 10−3 mmK/W.
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Figure 7: Distribution of the temperature over the specimen at different load steps with according legends, αθ = 5.0 ·10−3 mmK/W.

Figure 8: Force displacement diagram for the three different cases of dissipation coefficient.
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Figure 9: Experimentally measured phase distribution. Courtesy of A. Shaw.

recognized. All branches do not show a plateau during transformation which coincides well with experimental
findings for tension test under high velocities, e.g. Shaw (2000). Due to temperature effects the localized trans-
formation is less pronounced the faster the velocity is, as we have shown in our numerical results. Transformation
is influenced by two opposing effects: on the one hand stress will favor the material to transform, on the other
hand temperature will stabilize the austenitic phase. The interaction of both factors results in the non-linear
but not plateau-like material behavior observed. The blue branch in Fig. 8 corresponds to the distribution of
austenite presented first. This branch has the highest similarity to a plateau which is reasonable due to the initial
nucleation of the two fronts and a subsequent formation of the middle front. The orange branch belongs to the
distribution of the austenitic phase with various fronts presented last. In that case the material response is almost
linear during transformation but with a different slope than in the part without phase transformations. That
corresponds to the fact that due to various fronts nearly everywhere in the specimen transformations are going
on, but those are slowed due to the high production of heat. The last, red branch gives the material response
for the case with transformation fronts with inclined angle. Here, we have a similar material response compared
to the blue branch but with higher strains and stresses. At the first glance this result may seem surprising, but
since a more localized distribution and less favorable transportation of heat in the specimen is present in this
case the rate of transformation is slowed down. Due to the loss effective heat conduction the stabilizing effect
on the austenitic phase is more pronounced and can be identified in the global material response.

5. Conclusions

Experimental results for a tension test are presented in Shaw (2000). There, the localized strain distribution
was measured (which corresponds to a change of phase). The result is recalled in Fig. 9. We see that various
inclinations of the front orientations may be observed in reality, e.g. the front in the upper end is changing its
orientation during loading. Since our model is capable to display this phenomenon via a change of the dissipation
coefficient αθ, one reason for the change may be a locally different heat conductivity due to inhomogeneities in
the alloy composition.
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We presented numerical simulations of poly-crystalline shape memory alloys based on a micro-mechanically
well motivated model. The model is able to predict the localized transformation as well as the corresponding
distribution of temperature and their coupling. In this paper we focused on the influence of the heat conductivity.
Small changes of the dissipation coefficient cause the material to show different behavior. Due to to the randomly
chosen rotation matrices the initial orientation of the first transformation front always differs very slightly. Thus,
the temperature distribution shows as well some ”initial direction” of the fronts. Those very small deviations
are then more or less pronounced depending on the heat conductivity. Coupling of the whole system evokes
that the direction of the transformation front depends on where and with which orientation additional fronts
evolve. The evolution of all fronts is then coupled again. This result may give a hint why a different material
behavior is observed in the same test. The locally different heat conductivity in real specimens due to variation
of the elementary composition of the alloy may be one reason for the observed changes in the orientation of the
transformation fronts. Of course, the influence of dislocations and the current distribution of grain boundaries is
not taken into account explicitly. On the other hand, those effects are always random so that we may interpret
our randomly chosen orientations to reflect this point in some way.

Some future goals of ours are the implementation of locally random parameters for the dissipation coefficient
and the analysis of pseudo-plastic problems via our model.

Table 1: Transformation strains for cubic to monoclinic transforming NiTi. ᾱ = 0.02381, β̄ = −0.02480, δ̄ = 0.07528, ε̄ = 0.04969

η1 =

⎛
⎝ᾱ δ̄ ε̄

δ̄ ᾱ ε̄
ε̄ ε̄ β̄

⎞
⎠ η2 =

⎛
⎝ ᾱ δ̄ −ε̄

δ̄ ᾱ −ε̄
−ε̄ −ε̄ β̄

⎞
⎠ η3 =

⎛
⎝ ᾱ −δ̄ −ε̄
−δ̄ ᾱ ε̄
−ε̄ ε̄ β̄

⎞
⎠

η4 =

⎛
⎝ ᾱ −δ̄ ε̄
−δ̄ ᾱ −ε̄
ε̄ −ε̄ β̄

⎞
⎠ η5 =

⎛
⎝ᾱ ε̄ δ̄

ε̄ β̄ ε̄
δ̄ ε̄ ᾱ

⎞
⎠ η6 =

⎛
⎝ ᾱ −ε̄ δ̄
−ε̄ β̄ −ε̄
δ̄ −ε̄ ᾱ

⎞
⎠

η7 =

⎛
⎝ ᾱ −ε̄ −δ̄
−ε̄ β̄ ε̄
−δ̄ ε̄ ᾱ

⎞
⎠ η8 =

⎛
⎝ ᾱ ε̄ −δ̄

ε̄ β̄ −ε̄
−δ̄ −ε̄ ᾱ

⎞
⎠ η9 =

⎛
⎝β̄ ε̄ ε̄

ε̄ ᾱ δ̄
ε̄ δ̄ ᾱ

⎞
⎠

η10 =

⎛
⎝ β̄ −ε̄ −ε̄
−ε̄ ᾱ δ̄
−ε̄ δ̄ ᾱ

⎞
⎠ η11 =

⎛
⎝ β̄ −ε̄ ε̄
−ε̄ ᾱ −δ̄
ε̄ −δ̄ ᾱ

⎞
⎠ η12 =

⎛
⎝ β̄ ε̄ −ε̄

ε̄ ᾱ −δ̄
−ε̄ −δ̄ ᾱ

⎞
⎠

Table 2: Elastic constants for austenite and martensite

Caust =

⎛
⎜⎜⎜⎜⎜⎜⎝

140 110 110 0 0 0
110 140 110 0 0 0
110 110 140 0 0 0
0 0 0 32 0 0
0 0 0 0 32 0
0 0 0 0 0 32

⎞
⎟⎟⎟⎟⎟⎟⎠ GPa Cmart =

⎛
⎜⎜⎜⎜⎜⎜⎝

223 129 99 0 27 0
129 241 125 0 −9 0
99 125 200 0 4 0
0 0 0 76 0 −4
27 −9 4 0 21 0
0 0 0 −4 0 77

⎞
⎟⎟⎟⎟⎟⎟⎠ GPa
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