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Abstract 
        This article deals with modeling and simulation of the wave propagation phenomenon in a heterogeneous linear elastic rod 
treated as piecewise homogeneous. Employing a reference configuration approach the piecewise homogeneous elastic rod is 
mathematically described by a linear hyperbolic system of partial differential equations. Its generalized solution is obtained by 
connecting intermediate states by contact shocks – thus allowing analytical solutions for some initial value problems even when 
boundary conditions are considered.  
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1. Introduction 

Stress waves propagation in solids is an important tool for studying the mechanical response of materials. 
Wave propagation provides information about the way solids behave when the forces acting on them are no longer in 
static equilibrium. Some phenomena such as scattering, dispersion and attenuation, which strongly influence wave 
propagation, affecting the thermomechanical response of the materials, may be attributed to nonlinearities like material 
heterogeneity, wave characteristics and loading conditions (Chen et al., 2004).  

Zhuang et al. (2003) have performed a systematic experimental investigation of the influence of interface 
scattering on finite-amplitude shock waves – which affects shock waves dissipation and dispersion – by considering 
shock wave propagation in periodically layered composites and have observed that these materials can support steady 
structured shock waves. These authors noted that wave propagation through layered materials composed by isotropic 
layers allows investigating the effect of heterogeneous materials under shock loading. 

Chen et al. (2004) presented an approximate analytical solution to one-dimensional wave propagation in 
layered heterogeneous materials subjected to high velocity plate impact loading conditions, based on Floquet’s theory, 
using neither a sinusoidal wave loading nor unit step loading, which, according to these authors, have been used in 
previous analytical works. 

Berezovsky et al. (2006) considered a piecewise homogeneous media, accounting for the wave distortion of 
nonlinear elastic waves. The authors performed numerical simulations of one-dimensional wave propagation in layered 
nonlinear heterogeneous solids, employing a finite volume approximation for hyperbolic problems, in which the 
Riemann problem is solved at each interface between discrete elements. They have considered finite amplitude 
nonlinear wave propagation to study scattering, dispersion and attenuation of shock waves, employing a wave 
propagation algorithm accounting for thermodynamic consistency, introduced by Berezovsky and Maugin (2001), for 
the two-dimensional problem in media with rapidly varying properties. The dispersion effects due to the microstructure 
in nonlinear deformation waves have been considered by Engelbrecht et al. (2007). 

This article presents a discussion concerning the dynamical response of a specific class of heterogeneous linear 
elastic rods which is piecewise homogeneous. This elastic rod is left in a nonequilibrium state. Starting from a given 
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initial data, the technique proposed in this paper allows obtaining analytical solutions for the strain, the stress and the 
velocity fields. Eventually this initial value problem may be subjected to some boundary conditions. 

The piecewise homogeneous linear elastic rod considered in the present work gives rise to a one-dimensional 
problem in the reference configuration which is mathematically described by a linear hyperbolic system of partial 
differential equations with eigenvalues depending on the position. In fact, these eigenvalues are piecewise constant, 
since the rod is assumed to be piecewise homogeneous – being composed by N different materials.  

Several problems in Mechanics are represented by hyperbolic systems, which permit very realistic 
descriptions, since the propagation of any quantity – or information – in real natural phenomena is characterized by a 
finite speed. However they may not admit a regular solution, requiring a larger space of admissible solutions. The 
hyperbolic system describing the piecewise homogeneous linear elastic rod considered in this article does not admit – in 
general – a solution in the classical sense, requiring an enlargement of the space of admissible solutions allowing 
working with the jump conditions associated with the set of equations in order to deal with discontinuous functions. 

The generalized solutions of the problem are obtained by connecting intermediate states by contact shocks 
(Lax, 1971; Smoller, 1983). A contact shock may be viewed as the limiting case of a rarefaction in which the 
rarefaction fan is reduced to a single line; namely a discontinuity with associated eigenvalue corresponding exactly to 
the shock speed. Unlike ordinary shocks, the contact shock is reversible, without any associated entropy generation 
(Saldanha da Gama, 1990). The reference configuration approach employed to describe the piecewise homogeneous rod 
gives rise to a problem characterized by deformation jumps at any two distinct materials interface, represented by 
stationary shocks – in other words, the interface position is not modified. An adequate composition of these 
discontinuous functions gives rise to the complete analytical solution of the initial value problem even with boundary 
conditions. 

The study of elastic wave equations accounting for their scattering in non-uniform media is important for 
acoustic problems. Approximate methods can lead to convenient simplifications, for weak inhomogeneities. 
(Tenenbaum and Zindeluk, 1992a) present an exact algebraic solution for the scattering of acoustic waves in one-
dimensional elastic media, considering the wave propagation pattern in layered media, valid for strong inhomogeneities. 
In a subsequent article (Tenenbaum and Zindeluk, 1992b) the same authors propose a sequential algorithm with 
arbitrary inlet pulse to solve inverse acoustic scattering problems for plane waves in elastic nonhomogeneous media, 
consisting of a mathematical inversion of the previous direct problem. 

It is worth noting that the methodology presented in this work could be extended to nonlinear homogeneous 
problems by employing the approximate Riemann solver developed by Roe (1997), considering “approximate solutions 
which are exact solutions to an approximate problem”. Essentially, this scheme allows each Riemann problem – which 
is to be solved for each two consecutive steps, in order to implement a difference scheme like Glimm’s one (see (Gama 
and Martins-Costa, 2009)  and references therein) – to approximate an originally homogeneous nonlinear system by a 
heterogeneous linear one. The procedure for implementing this scheme is briefly described by an example in in which a 
nonlinear elastic rod is considered. 
 
2. Mechanical model 

The one-dimensional phenomenon considered is this work is mathematically described, from a continuum 
mechanics viewpoint (Billington and Tate, 1981) as 

                                                              0

0

v
t X

v
t X
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

     
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                                                                                               (1) 

where   represents the mass density in the reference configuration (piecewise constant here), v the velocity,   is the 

normal component of the Piola-Kirchhoff tensor and   is the strain. The first equation above represents a geometrical 
compatibility while the second one represents the linear momentum balance in the reference configuration. In both the 
equations t represents the time while X represents the position (in the reference configuration). 

The strain field   is defined as 

                                                               1
x
X

 
 


                                                                                                        (2) 

in which x represents the position in the current configuration (spatial position). 
Since a linear elasticity hypothesis is assumed in this work the Piola-Kirchhoff normal stress   is a piecewise 

linear function of the strain  . In other words, 
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                                                        1, fori i ic X X X                                                                              (3) 

where ic  is a positive constant. The mass density   is assumed constant in 
1i iX X X   . 

                                                     1constant,    fori i iX X X                                                                     (4) 

 
3. The associated Riemann problem and its generalized solution 

Associated with equations (1)-(4) there is an initial value problem – named associated Riemann problem, given 
by 

                                         0
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                                                           (5) 

in which L , R , Lv  and Rv  are known constants.  

The solution of the hyperbolic system represented by Eq. (5) is reached by connecting the left state ( , )L Lv  to 

the right state ( , )R Rv  by means of rarefactions (continuous solutions) and/or shocks (discontinuities satisfying the 

entropy conditions). Two states are connected by a rarefaction if, and only if, between these states, the corresponding 
eigenvalue is an increasing function of the ratio 

0( ) /X X t  (Smoller, 1983; Lax, 1971; John, 1974). 

The eigenvalues associated to the hyperbolic system described by Eq. (5) are given, in increasing order, by 

                              
1/ 2 1/ 2 1/ 2 1/ 2
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                                          (6) 

in which '  represents the first derivative of the normal component of the Piola-Kirchhoff tensor with respect to the 
deformation  . 

When iX   and 
1iX    , the solution of Eq. (5) depends on the ratio 

0( ) /X X t  only and, since the 

eigenvalues are constant, the generalized solution is discontinuous. In other words, the left state ( , )L Lv  is connected to 

an intermediate state * *( , )v  by a discontinuity (called 1-shock or back shock) while the right state ( , )R Rv  is 

connected to an intermediate state * *( , )v  by another discontinuity (called 2-shock or front shock). Since 

1 20   , the entropy conditions (Keyfitz and Kranzer 1978; Callen 1960) ensure that the shock speed 1s  (back 

shock speed) is always negative while 2s  (front shock speed) is always positive. 

The intermediate state * *( , )v  is obtained from the Rankine-Hugoniot jump conditions, which for the hyperbolic 

system (5) are given by (Smoller 1983) 

                                                                       
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where s denotes the shock speed and the brackets denote the jump. 
Equation (7) allows concluding that 
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The set of equations (5)-(8) gives rise to the following (generalized) solution for the strain and the velocity 
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in which  
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It is important to note that, since 
1 1s   and 2 2s  , both the 1-shock and the 2-shock are called contact 

discontinuities and no entropy generation is associated with these shocks (Lax 1971). 
Now supposing that iX  , 

1 0iX X   and 
2iX   , an infinite rod composed by two homogeneous parts is 

represented.  
In such a case the solution presents a stationary shock at the (reference) position 

1iX 
 and the generalized solution 

of Eq. (5) also depends only on the ratio 
0( ) /X X t . Nevertheless the 1-shock (left) and the 2-shock (right) speeds 

have different absolute values. 
Since there exists a stationary shock at 

1 0iX X X  , it may be concluded, from the jump conditions across 

this shock, that velocity and stress do not jump at this point. So, only the strain   jumps across the stationary shock 
and, since   0  , it comes that (Keyfitz and Kranzer, 1978) 
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In this case, the jump conditions give rise to the following set of equations 
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and the complete solution is given by 
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where 
1( ) /iX X t    and 
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Remark: Equation (10) consists of a particular case of Eq. (14), obtained when 1i ic c   and 
1i i   . In this case 

there is no stationary jump at 
1iX 
 and * * *      even for 

1( ) / 0iX X t  . 

Figure (1) presents the solution, obtained by employing Eq. (13) in the plane X t , for a case in which 
iX  , 

1 0iX X   and 
2iX    . It is worth noting that the representation in the plane X t  presented in Figure 1 does not 

depend on the initial data ( , )L Lv  and ( , )R Rv , once the propagation speeds do not depend on the states ( , )v . 
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Figure 1: Riemann problem (Eq. (5)) in the plane X t  for 

iX  , 
1 0iX X   and 

2iX   . 

4. The associated Riemann problem when X0Xi for any i 
This section studies problems in which the interface between two different materials (placed at any position 

iX ) is not coincident with the jump in the initial data (placed at 
0X ). In this case the solution of the Riemann problem 

no longer depends on 
0( ) /X X t . In fact, the solution depends on 

0( ) /X X t  only until a shock (either front or back) 

reaches a stationary shock, characterizing a shock interaction. At this point, a new Riemann problem arises, centered at 
the position of the stationary shock, having as “initial time” the time in which the shock interaction has taken place. 

Now, considering the problem defined by Eq. (5) and assuming 
0 1i iX X X   , since 0X  is different from any iX , 

both the 1-shock and the 2-shock are centered at 0X , while a stationary shock is present at each iX . It is important to 

note that while there is no shock interaction between shocks coming from distinct points, the solution depends on the 
ratio 

0( ) /X X t  only. When the 1-shock reaches the stationary shock at 
iX X , the solution behaviour is changed. In 

any case, the intermediate state becomes new initial data (with respect to the time in which the shock interaction 
occurred) giving rise to a new Riemann problem. The solution of this new Riemann problem has always the same 
structure of Eq. (13) enabling Eq. (5) to be solved for any piecewise constant initial data. 

In order to illustrate the solution procedure, a particular case is now considered: an infinite rod composed by three 

different homogeneous parts such that: 
1X  , 

2 0.7X L  , 0 0X  , 3 0.3X L  and 
4X   with 

1 1 2 2/ 3 /c c   and 
3 3 2 2/ 0.3 /c c  . 

Starting from the initial data ( , ) ( , )L Lv v  , for 
0X X  and ( , ) ( , )R Rv v  , for 

0X X , the intermediate 

state * *( , )v  – which will be treated as a left state ( , )L Lv  – is given by Eq. (10). At the point “a” the front shock (with 

speed 
2 2/c  ) reaches the stationary shock placed at 

3X , giving rise to a new Riemann problem, centered at “a”, 

characterized by the left state 
1 1( , )v  and the right state ( , )R Rv . The intermediate states * *( , )v  and * *( , )v  for this 

“new” Riemann problem, are given by Eq. (14). Repeating this procedure, a solution in the plane X t  may be 
constructed, as depicted in Figure 2. Table (1) relates Eq. (14) and each of the states presented in Figure 2.  

Since all the propagation speeds are previously known and constant, the time associated with each shock 
interaction (a, b, c, d, e, f and g) is easily determined. For instance, point “a” is reached when 

2 20.3 /t L c ; point “e” 

when 
2 21.7 /t L c  and point “c” when 

2 2/t L c . 

Table 1: States 1 to 13 and their relation with Eq. (14). 

Riemann problem 
centered at 

LEFT 
STATE 

INTERMEDIATE STATE “ ”  
Eq.(14) 

INTERMEDIATE STATE “ ”  
Eq.(14) 

RIGHT
STATE

a 1 2 3 R 
b L 5 4 1 
c 4 6 6 2 
d 5 8 7 6 
e 6 9 10 3 
f 7 11 11 9 
g 11 12 13 10 
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Figure 2. Riemann problem solution for 

1X  , 
2 0.7X L  , 

0 0X  , 
3 0.3X L  

and 
4X  ;  with 

1 1 2 2/ 3 /c c   and 
3 3 2 2/ 0.3 /c c  . 

 
5. Finite rods – problems involving boundary conditions 

The tools presented up to this point are sufficient for describing wave propagation in rods in which one edge is 
assumed to be fixed ( 0)v   and the other is either fixed ( 0)v   or free ( 0   and 0)  . Such boundary conditions 

are automatically satisfied by introducing artificial states beyond the actual rod. In other words, for imposing a fixed 
edge at 1X , it suffices to assume the existence of a rod at the left (

1X X ), with a state such that * 0v   while a fixed  

edge at 
1NX   is imposed by assuming the existence of a rod at the right-side (

1NX X  ), with a state such that * 0v  . 

On the other hand, for imposing a free edge boundary condition, it suffices to consider an artificial rod with a state such 
that * 0  . This can be done in an easy way too. The choice of the state in the artificial extension of the rod is done 
based on Eq. (10), assuming the same material for both the artificial extension and the actual rod. 

For instance, in this work a problem in which 
1 0X  , 

2 4X L , 
3 12X L , 

0 7X L  and 
1 1 2 2/ 2 /c c   is 

considered for two distinct simulated situations – namely situation (i) representing a rod fixed at both edges and 
situation (ii) representing a rod fixed at the left edge, with the right edge free. 

Some selected results associated with the cases defined above as (i) and (ii) are presented in Table (2), 
assuming the rod at rest for 0t   and defining 

2 2/w v c . The solution is reached by employing Eq. (14) after each 

shock interaction. The quantitative results are presented for specified left and right states as well as given boundary 
conditions. 

 
Table 2: Some results for cases (i) and (ii). 

case L  R  1  1w  2  2w  3  3w  4  4w  5  5w  6  6w  

i 0.20 0.20 0.20 0.00 0.10 -0.20 0.40 -0.20 0.00 0.00 0.20 0.00 0.03 0.07 

ii 0.20 0.20 0.20 0.00 0.10 -0.20 0.40 -0.20 0.00 0.00 0.00 -0.20 0.03 0.07 

i -0.40 -0.40 -0.40 -0.40 -0.20 0.40 -0.80 0.40 0.00 0.00 -0.40 0.00 -0.07 -0.13 

ii -0.40 -0.40 -0.40 -0.40 -0.20 0.40 -0.80 0.40 0.00 0.00 0.00 0.40 -0.07 -0.13 

i 0.00 0.50 0.25 0.25 0.08 0.17 0.33 0.17 0.17 0.00 0.00 0.00 0.14 -0.06 

ii 0.00 0.50 0.25 0.25 0.08 0.17 0.33 0.17 0.17 0.00 0.00 0.00 0.14 -0.06 

i 0.00 -0.50 -0.25 -0.25 -0.08 -0.17 -0.33 -0.17 -0.17 0.00 0.00 0.00 -0.14 0.06 

i 0.80 0.40 0.60 -0.20 0.33 -0.93 1.33 -0.93 -0.13 0.00 0.80 0.00 0.02 0.09 

ii 0.40 0.60 0.50 0.10 0.23 -0.33 0.93 -0.33 0.07 0.00 0.00 -0.40 0.12 0.11 

ii -0.50 -0.10 -0.30 0.20 -0.18 0.63 -0.73 0.63 0.13 0.00 0.00 0.50 -0.21 -0.21 
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6. An application to nonlinear elasticity 
In this section a nonlinear elastic rod is considered. In this case, the Piola-Kirchhoff normal stress   may 

assume, for instance, the following nonlinear constitutive equation 
                                                               f  , for X i  X  X i 1

                                                                      (15) 

A convenient redefinition is now considered for the constant ic , before each advance in time  

                                                                 
1

1
,     where      

2 i i
i X X X X

c f    
 

                                                    (16) 

giving rise to the following approximation for the stress  
                                                                   ci, for X i  X  X i 1

                                                                            (17) 

It is important to note that, is this case, the problem lies within the range of the procedure proposed in this work, 
being reduced to a piecewise linear function of the strain . 

The associated Riemann problem, given by equation (5) is now obtained from equations (1), (2), (17) and (4) and 
all the previously described steps after equation (5) remain unchanged. 

 
7. Final Remarks 

Although this article presents a discussion concerning piecewise homogeneous linear elastic rods, the results 
can be extended to any linear heterogeneous rod. This extension is performed by approximating the heterogeneous rod 
by a piecewise homogeneous one. This latter could be composed by any number of different materials, for instance, 10, 
100 or 1000 materials could be considered, according to the required accuracy. Also, taking advantage of the scheme 
proposed by Roe (1997), which approximates nonlinear homogeneous problems by linear heterogeneous ones, it could 
be directly extended to piecewise nonlinear elastic rods, as briefly stated in section 6. 

In addition, Glimm’s scheme allows building an approximation for hyperbolic problems subjected to any 
arbitrary initial data. It suffices to approximate the arbitrary initial condition by piecewise constant initial data. In the 
sequence, a Riemann problem – an initial value problem characterized by a step function initial condition – is to be 
solved for each two consecutive steps. The main idea behind the method is to appropriately gather the solution of as 

many Riemann problems as desired to successively march from a given time instant nt t  to the successive time 

instant
1n nt t t    .  
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