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Abstract

Vascular mechanical homeostasis is a fundamental assumption in modeling vascular growth and remodeling. Meanwhile, it

is a matter of debate, which mechanical quantity is responsible for governing the vascular growth and remodeling process.

Recently, an optimization method has been proposed to estimate the optimal distributions of arterial wall thickness and

anisotropy, such that a homeostatic condition is satisfied. In this study, the same optimization technique is utilized

to investigate variations in the distribution of wall thickness and anisotropy due to different homeostatic assumptions,

while two geometric models, one from a healthy aorta and one from a healthy internal iliac artery, are independently

used. Prior to optimization, material constitutive parameters are estimated by fitting biaxial mechanical test data from

human aorta and prescribed into the optimization process. Objective functions are set to restore both the original

arterial geometry and the homeostatic state based on either intramural stress or cyclic circumferential stretch. Different

homeostatic assumptions lead to distinct results for the optimal distributions of wall thickness and anisotropy. Namely,

the cyclic stretch homeostatic assumption yields lower levels of the wall thickness as well as a less longitudinal variation

of anisotropy. However, the arterial wall is consistently found to be thicker on the concave regions rather than on the

convex regions. With further improvements in the application of the boundary conditions, the presented computational

method seems promising to enhance our understanding of the vascular mechanical homeostasis and shall serve as a basis

for conducting validation experiments.

Key words: Patient-specific modeling; Vascular mechanics; Inhomogeneous properties; Growth and remodeling;

Parameter estimation

1. Introduction

In their seminal paper, Humphrey and Rajagopal (2002) introduced a new theoretical framework, called
a constrained mixture model for modeling growth and remodeling (G&R) of soft tissues. They presented a
modeling framework that utilizes ideas from classical mixture and homogenization theories while avoiding the
technical difficulties associated with mixture theory. This allows the model to capture the complexity that
occurs during soft tissue G&R such as deposition of multiple structural components (e.g., fibrous collagen,
elastin, and smooth muscle cells) with different natural configurations and turnover rates, whereas the governing
equation can be solved as if the soft tissue were made of a single constituent. Often not mentioned, but another
important contribution of their paper is the philosophy and guidance in developing a model of G&R of biological
tissues, summarized in six remarks in the paper. Based on their pioneering work, during the past decade, many
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constrained mixture models have been developed in the studies of vascular mechanics (Hansen et al., 2009;
Gleason et al., 2004; Valent́ın et al., 2009; Wan et al., 2010), progression of cardiovascular diseases (Baek et al.,
2006, 2007; Figueroa et al., 2009; Gleason and Humphrey, 2004; Sheidaei et al., 2011; Zeinali-Davarani et al.,
2011b) and mechanosensitive cellular behavior (Humphrey et al., 2008; Hsu et al., 2009).

While most studies after Humphrey and Rajagopal (2002) have focused on modeling the evolution of biological
or engineered tissues after the alteration of physiological and pathological conditions, in this paper we study
one of the most fundamental, but often overshadowed, assumption that soft tissue has an optimal structure
during the maintenance or normal G&R period. Humphrey and Rajagopal (2002) stated in Remark 2.3 that
“Normal growth and remodeling tends to be a stable dynamical process, one that seeks to optimize structure
and function with respect to yet unidentified parameters.” They further stated that “Although one ultimately
seeks parameters that govern the underlying mechanisms of mechanotransduction, it will be sufficient for certain
modeling purposes to identify parameters that simply correlate well with the overall process.”

The question that has long been asked and is yet to be answered in biomechanics research is what are the
parameters that correlate well with the G&R process? Are they stress, strain, or strain rate that cells respond
to? Humphrey (2001) claimed that the question may be ill-posed. Stress and strain are merely convenient mathe-
matical concepts and are not unique observable or physical quantities. He suggested, however, that “the concepts
of stress and strain will continue to be convenient metrics in both empirical correlations and phenomenological
constitutive relations that seek to relate certain cellular responses to particular stimuli.” A practical question
still remains as to what are the constitutive relations for such mechanical quantities, that best describe the main-
tenance of vascular tissues. During the maintenance, the turnover of cells and extracellular matrix is balanced
and unchanged; hence, there is no net change in mass, structure, or the properties. Therefore, it is plausible
that we may find the right constitutive relation or at least discriminate between different constitutive relations
by numerically investigating the consequence of the constitutive relation in tissue structures and comparing the
results with experimental studies. Stress and strain are interrelated (Humphrey, 2001; Kassab, 2008), and using
an idealized symmetric model, such as a straight tube, it may be difficult to distinguish the difference in optimal
structures obtained from different hypotheses.

In this paper, we propose that in medical image-based models different hypotheses for a mechanical homeo-
static state may lead to distinct consequences with regard to the distributions of wall thickness and anisotropy,
giving us the opportunity to better understand the governing rules of tissue adaptation. Toward this end, we
employ an inverse optimization method that we recently developed to estimate material and structural param-
eters of image-based models of arteries corresponding to a given constitutive relation (Zeinali-Davarani et al.,
2011a), and compare the results with regard to multiple hypotheses of a homeostatic condition.

2. Hypotheses on vascular mechanical homeostasis

Vascular tissue tends to adapt in response to changes in its mechanical environment and a variety of evidence
offers diverse hypotheses on this homeostatic tendency. In response to a sustained pressure increase, the thickness
of the blood vessel increases, implying a tendency toward uniformity of circumferential stress (Matsumoto and
Hayashi, 1994; Wolinsky, 1971; Xu et al., 2000). Blood vessel diameter increases in response to an increase in
blood flow, thereby normalizing the wall shear stress (Kamiya and Togawa, 1980; Langille et al., 1989). Some
studies underscore the importance of strain mechanosensitivity along the coronary arterial tree (Guo and Kassab,
2004; Lu et al., 2001), whereas others indicate strain rate as an important component of vascular homeostasis
(McKnight and Frangos, 2003). Meanwhile, the vascular system is under pulsatile forces and several observations
emphasize the role of pulsatility in vascular homeostasis (Cummins et al., 2007; Leung et al., 1976). In an in
vivo study, Eberth et al. (2009) observed a strong correlation between morphology and pulsatility of pressure
and flow rather than mean values, which is consistent with a study by Boutouyrie et al. (1999).

Stress and strain are both tensorial quantities and previous studies have sought simpler scalar measures of
mechanical stimuli for modeling vascular adaptation. For example, Baek et al. (2006) utilized the magnitude
of traction on the plane normal to the fiber direction as a scalar measure of the fiber stress. In another stress-
driven model, Hariton et al. (2007) and Driessen et al. (2008) used the normal component of traction on the
plane normal to the fiber direction as the remodeling stimulus. These models assumed that the mechanical
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stimuli that vascular cells sense correlate with tension or shear on the fibrous tissue that they reside on. The
stretch of collagen fibers was also used by Watton and Hill (2009) as the mechanical quantity governing the G&R.
Nevertheless, these studies assumed that fibers have the same mechanical properties and, hence, the uniform
stretch of fibers means the uniform tension.

In a more phenomenological study, Guo and Kassab (2004) examined the distributions of circumferential
stress and strain along the porcine aorta and the coronary arterial tree. They found that the circumferential
stretch ratio (from the zero-stress state to the loaded state) is relatively uniform compared to the stress and
suggested that the vascular system closely regulates the degree of deformation. It is difficult, however, to explain
how the cells in vascular tissues can regulate the deformation given that cells do not experience the zero-stress
state of the blood vessel in vivo. Lillie and Gosline (2007) suggested that the strain of elastin during the cardiac
cycle is nearly constant along the porcine thoracic aorta. Our recent study with the porcine thoracic aorta
also showed that the cyclic strain during the cardiac cycle is relatively uniform in the circumferential direction
compared to the circumferential component of stress (Kim and Baek, 2011).

In this study, we choose the following three scalar measures that have been proposed in the literature to be
associated with the homeostatic state:

• Case 1: σk = ||σkn||
• Case 2: σk = n · σkn

• Case 3: λcyc = λsys
1 /λdias

1 ,

where σk and n are the partial stress and the unit vector representing the alignment of the kth constituent. λsys
1

and λdias
1 are circumferential stretches at systolic and diastolic pressures. The distributions of thickness and

fiber alignment are obtained by an inverse optimization using the above three cases.

3. Constitutive relations and an inverse optimization method

To identify in vivo material and geometric parameters for each case of a homeostatic condition, we follow
an inverse optimization method developed by Zeinali-Davarani et al. (2011a) as a two-step procedure; first,
estimating constitutive parameters of a healthy human artery using experimental data and, second, estimating
the distributions of wall thickness and fiber alignment using an inverse optimization integrated with the finite
element model of inflated blood vessels.

3.1. Constitutive equations and material parameters
Here, we briefly describe the constitutive relations. The arterial wall is assumed to be a mixture of constituents

‘i’ such as elastin (i = e), multiple collagen families (i = 1, ..., k, ..., 4), and smooth muscle (i = m). The strain
energy of the mixture per unit reference area is w =

∑
iw

i = we +
∑

k w
k +wm +wm

act and the membrane stress
is given as (Baek et al., 2006; Humphrey, 2002)

T =
2
J

F
∂w

∂C
FT , (1)

where J is the determinant of the 2-D deformation gradient F and C = FTF. The stretches of the smooth
muscle (SM) and collagen fiber ‘k’ from their natural (stress-free) configuration to the current configuration are
given as

λk
n = Gc

hλ
k, λm

n = Gm
h λ1, (2)

where Gm
h and Gc

h are homeostatic stretches of SM and collagen. We define a new tensor, G̃e =

diag
{
Ge

1, G
e
2,

1
Ge

1Ge
2

}
, which represents a mapping from the natural configuration of elastin to the reference

configuration such that,
Fe

n = FG̃e, Ce
n = Fe

n
T Fe

n = [G̃e]TCG̃e. (3)
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Table 1: Summary of material parameters used in the optimization.

Elastin: c1 = 50.6 Nm/kg, Ge
1 = 1.22, Ge

2 = 1.23,

νe = 0.2.

Collagen: c2 = 3195 Nm/kg, c(comp)
2 = 0.1c2, c3 = 25.0,

Gc
h = 1.034, σc

h = 143 kPa,

νk = [0.06, 0.06, 0.24, 0.24],

αk = [0◦, 90◦, 45◦, 135◦].

Smooth muscle: c4 = 16.45 Nm/kg, c5 = 14.14, Gm
h = 1.165,

νm = 0.2, σm
h = 81 kPa, λM = 1.4,

λ0 = 0.8, S = 54 kPa.

Homeostatic cyclic stretch: λcyc
h = 1.02.

Density: ρ = 1050 kg/m3.

Strain energies of the constituents i per unit reference area, wi, are given as

we(Ce
n(t)) = M e c1

2

(
Ce

n[11] + Ce
n[22] +

1
Ce

n[11]C
e
n[22] − Ce

n[12]
2 − 3

)
(4)

wk(λk
n) = Mk c2

4c3

{
exp

[
c3

(
(λk

n)2 − 1
)2

]
− 1

}
(5)

wm(λm
n ) = Mm c4

4c5

{
exp

[
c5

(
(λm

n )2 − 1
)2

]
− 1

}
(6)

wm
act = MmS

ρ

{
λ1 +

1
3

(λM − λ1)3

(λM − λo)2
}
, (7)

where M i is the mass per unit reference area for the constituent i. Ce
n[11], C

e
n[22] and Ce

n[12] are components of
Ce

n. λM and λo are stretches at which the SM contraction is maximum and at which active force generation
ceases, S is the stress at the maximum contraction of SM.

Material parameters (summarized in Table 1) are determined in three different ways. The first set of param-
eters are prescribed from the literature such as density (ρ), mass fraction of constituents (νi) and (λ0, λM , S).
The second set of parameters (c1, c2, c3, c4, c5, Ge

1, G
e
2, G

c
h, Gm

h ) are estimated via a nonlinear least squares
optimization, proposed by Zeinali-Davarani et al. (2009) using the biaxial mechanical test data of healthy human
aorta (Vande Geest et al., 2004, 2006). Subsequently, the target homeostatic values (σm

h , σc
h, λcyc

h ) are calculated
assuming an idealized geometry.

3.2. An inverse optimization method
The next step is to estimate the distributions of wall thickness and material anisotropy as an inverse optimiza-

tion problem where the objective function comprises two additive terms; the first term (“EG”) corresponds to
the deviation of geometry from the in vivo configuration and the second one (“ES”) corresponds to the deviation
of a mechanical state from the homeostatic condition. The first term stems from the fact that a geometry based
on medical images is normally considered as the stress-free configuration, while under the in vivo pressure it may
no longer coincide with the in vivo configuration. In this regard, multiple computational approaches have been
developed in order to account for the pre-stressed state of vessels in patient-specific computational models (Lu
et al., 2007; Gee et al., 2009; de Putter et al., 2007; Speelman et al., 2009). However, these studies do not take
into account the optimal structure in vascular homeostasis. The second term of the objective function enforces
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the homeostatic condition throughout the domain. Since we are interested in minimizing both terms, each term
is normalized and a weight parameter ξ (or a Lagrange multiplier) is used to adjust the minimization weight for
each normalized term. Then, in Cases 1 and 2, the objective function is given as

W =

∫
Ω ||x(h, αk) − Ximage||2dA∫

Ω ||Ximage − X̄||2dA + ξ
∑

i

νi
∫
Ω(σi(h, αk) − σi

h)2dA∫
Ω
(σi

h)2dA
, (8)

where i = m, 1, ..., k and x is the finite element (FE) solution for the nodal position vector (see Appendix for
details of the image-based FE model of the arterial wall). Ximage constitutes the target geometry and is the
nodal position vector of the FE mesh that is generated based on the 3-D models of arteries. The geometric
models of arteries are reconstructed from MRI images of normal arteries and assumed to be under mean pressure
(see Sheidaei et al. (2011)). X̄ is the geometric center of the artery and is used as a fixed reference point for
normalizing the first term. σi

h and νi are the homeostatic stress and mass fraction assumed for the constituent
i. (h, αk) are the unknown wall thickness and anisotropy, i.e. orientation of the collagen fiber k. The deviation
of stress for each constituent is scaled by its mass fraction and integrated over the computational domain.
Therefore, constituents such as fiber families in helical directions will be given more weight in minimizing the
objective function (see Table 1).

Similarly, the corresponding objective function to minimize in Case 3 is defined as

W =

∫
Ω ||x(h, αk) − Ximage||2dA∫

Ω
||Ximage − X̄||2dA + ξ

∫
Ω(λcyc(h, αk) − λcyc

h )2dA∫
Ω(λcyc

h )2dA
, (9)

where λcyc is the cyclic stretch in the circumferential direction. Thickness and anisotropy distributions are then
approximated, independently from the finite element mesh, with a smaller (I) number of unknown variables with
associated base functions

h(s, θ) =
I∑

j=1

{βh
j φj(s, θ)}, αk(s, θ) =

I∑
j=1

{βk
j ψj(s, θ)}, (10)

where (βh
j , βk

j ) are variables for thickness and anisotropy associated with the approximation point j. φj(s, θ)
and ψj(s, θ) are basis/approximation functions defined on the computational domain Ω, where (s, θ) are two
spatial parameters that parameterize the arterial wall surface such that s represents the longitudinal distance
along the artery and θ represents azimuthal position on the arterial wall (see Zeinali-Davarani et al. (2011a) for
more details of this mapping technique). Products of Legendre polynomials (Pm;m = 0, ...,M − 1) and periodic
functions (Fn;n = 0, ..., N − 1) are employed for both φj and ψj (Zeinali-Davarani et al., 2011a). M and N
determine the total number of optimization variables (2I) such that I = M × N . The Nelder-Mead simplex
algorithm (Lagarias et al., 1998) is implemented to minimize Eqs. (8) and (9) with an appropriate stopping
criterion (Torczon, 1989; Zeinali-Davarani et al., 2011a).

4. Results

Two 3-D geometric models, one from a healthy aorta and the other from a healthy internal iliac artery,
are used as computational domains. For simplicity, fibers oriented in circumferential and axial directions are
considered fixed and only helical fiber orientations (α3, α4) are considered as variables of anisotropy such that
α3 = −α4.

Figure 1 illustrates the convergence history of the objective function and its compartments, EG and ES,
corresponding to Cases 1 and 2 for the aorta model. A sharp decrease in EG and a similar reduction in ES
are noticed for both stress hypotheses when the convergence is achieved. Note that the small plateau regions
are associated with the search periods when a new minimum has not been reached yet. Figure 2 contrasts the
corresponding optimized distributions of wall thickness and anisotropy for the aorta model in Cases 1 and 2. In
both cases, the concave side is found to be relatively thicker than the convex side. Helical fibers on the convex
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Figure 1: Change in the objective function and its associated compartments versus optimization iterations in Cases 1 and 2 using
60 variables (M = 6;N = 5;ξ = 0.01).

side tend to orient themselves more in the circumferential direction as opposed to the concave side, even though
the overall anisotropy variation is not as large as the thickness variation. The similar convergence level for both
hypotheses (Fig. 1) follows from the similar inhomogeneous distributions of thickness and anisotropy for both
cases. In spite of a similar trend of distribution, a larger circumferential anisotropy variation is noticeable in
Case 2 (Fig. 2d).

An analogous comparison between Cases 1 and 2 has been made for the internal iliac artery model (Fig.
3). In both cases, relatively similar distributions of wall thickness are observed. However, fiber orientations are
distributed with more variability between the two cases than for the aorta model. For the iliac artery model in
Case 1, Fig. 4 illustrates the geometric deviation from the in vivo configuration (||x − Ximage||) as well as the
normalized deviation of stress in a helical fiber from the homeostatic value ((σk − σk

h)/σk
h) when (M = 5;N = 3)

(a, c) and (M = 6;N = 5) (b, d). As expected, the geometric deviation is minimized (< 0.3 mm) in both
conditions (Fig. 4a,b).

The maximum deviation of fiber stress from the homeostatic value still seems to be large (< 80%) although
on average the deviation has been minimized (Fig. 4c,d). Some adaptive provisions in the optimization may
be useful to reduce the localized high values of deviations in future improvements of the proposed technique.
Apparently, increasing the number of approximation points (from I = 15 to I = 30) in the optimization results
in only a minor improvement in reducing the average deviations, while the maximum deviations remains the
same. That is, a further increase in approximation points may not be computationally justifiable.

With regard to Case 3, Fig. 5 shows the geometric deviation from the original in vivo configuration (a),
the normalized deviation of the circumferential cyclic stretch (b) as well as the optimized distributions of wall
thickness (c) and anisotropy (d) for the aorta model. As required by the objective function, the geometric
deviation from the image is minimized (to a maximum value of 0.05 mm). Cyclic stretch is also homogenized
toward the target homeostatic value (i.e., 1.02) on most parts with the largest deviation on areas close to the fixed
boundaries (maximum normalized deviation of 1.5%). When compared to Cases 1 and 2 (Fig. 2), lower levels
of thickness are predicted by the cyclic stretch hypothesis (Fig. 5c). More circumferential and less longitudinal
variations of anisotropy are noticeable in Case 3 (Fig. 5d), whereas anisotropy is more locally distributed in
Cases 1 and 2. Convergence of the optimization is an issue when the cyclic stretch hypothesis is applied to a
more complex geometry such as the iliac artery model (not shown).
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Figure 2: Optimized distributions of thickness (a, b) and anisotropy (c, d) for the aorta model obtained in Cases 1 and 2 (M =
6;N = 5;ξ = 0.01). Black arrows identify the direction of one set of corresponding collagen fibers in both Cases 1 and 2 (c, d).
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Figure 3: Optimized distributions of thickness (a, b) and anisotropy (c, d) for the internal iliac artery model obtained in Cases 1
and 2 (M = 5;N = 3;ξ = 0.1).
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Figure 4: Deviation of the geometry from the in vivo configuration (||x−Ximage||) and deviation of stress in a helical fiber direction
from the homeostatic value ((σk − σk

h)/σk
h) when (M = 5;N = 3) (a, c) and when (M = 6, N = 5) (b, d) for the iliac artery model.
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Figure 5: Deviation of the geometry (a), cyclic stretch in circumferential direction (λc)(b) and corresponding distributions of
thickness and and anisotropy (c, d) for the aorta model obtained in Case 3 (M = 6;N = 3;ξ = 0.01). Black arrows identify the
direction of one set of corresponding collagen fibers (d).
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5. Discussion

In this study, we utilized a numerical optimization method to find the optimal distributions of structural
parameters of healthy arteries based on different homeostatic assumptions (i.e., uniform stress and cyclic stretch).
We found that for medical image-based models different homeostatic assumptions lead to different inhomogeneous
distributions of wall thickness and anisotropy. The potential application of the proposed optimization method to
arteries with higher levels of geometric complexity was also illustrated by using the internal iliac artery model.

Different assumptions for stress homeostasis (Cases 1 and 2) led to homologous overall distributions
of thickness, but differing distributions of anisotropy for both arteries (Figs. 2 and 3). Interestingly, the
arterial wall on the concave regions was found to be thicker than on the convex regions and the variation
of anisotropy was small. Possible correlations between the wall thickness and anisotropy variation and other
geometric parameters such as the surface curvature and tortuosity of the vessel wall can be examined in an
independent study by systemic application of the technique using multiple image-based arterial geometries.
Case 3 (stretch-based homeostasis) produced noticeably contrasting results with Cases 1 and 2. Indeed, in Cases
3, the wall thickness was predicted to be in general smaller than in Cases 1 and 2 (stress-based homeostasis),
while a less longitudinal anisotropy variation was observed (Fig. 5). The assumption of a uniform cyclic stretch
resulted in a remarkable improvement for both terms of the objective function (Fig. 5a,b), thereby revealing
a stronger potential for the cyclic stretch homeostatic assumption, which remains to be further validated with
experimental data.

Meanwhile, here, we assumed a constant proportion of the constituents as well as a uniform distribution of
the material parameters and focused more on the variation of structural parameters such as the wall thickness
and fiber orientation. Some studies, however, indicated non-uniform deformations of the arterial wall during
the cardiac cycle (Draney et al., 2004) and observed a circumferential variation of material properties of the
aortic wall. In a recent ex vivo inflation test of aorta Kim and Baek (2011) found that the posterior region of
the arterial wall is thinner, but stiffer than the anterior region. This may be due to the influence of surrounding
tissue as well as the local variation in the content of each constituent. Our study excluded the effect of
anatomical variation of boundary condition due to the surrounding tissue which may have influenced our results.
This effect can be more pronounced when a complex in vivo geometry such as the internal iliac artery (Fig. 3)
is involved. Also, the fixed boundary conditions considered at both ends are inconsistent with the cyclic stretch
homeostatic assumption, thereby resulting in large deviations at both ends (Fig. 5b).

Based on our preliminary results, the error or deviation of geometry relative to the image geometry is less
sensitive to the fiber orientations than the wall thickness. Removing the condition α3 = −α4 (i.e., adding one
more set of optimization variables) did not result in more variability in optimal fiber orientations, whereas it
doubled the computational cost. Considering variable orientations for fibers in the axial and circumferential
directions greatly adds up to the numerical complexity of the optimization.

It is worth mentioning that the mechanical homeostasis of the normal tissue maintenance may also change
under various additional conditions, such as aging and vascular diseases. The application of the current tech-
nique to diseased arteries will require more understanding of tissue growth and remodeling under pathological
conditions. Nevertheless, the current method showed a distinguishing capability in terms of the optimal structure
based on various forms of constitutive relations and homeostatic assumptions. There is a clear need for more
experimental data in order to validate and exploit the current technique in understanding the multifactorial
process of vascular homeostasis and possible implementation in patient-specific models of vascular diseases.
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Appendix A. Finite Element Formulation

The arterial wall is considered as a thin membrane, with X = {X1, X2, X3} and x = {x1, x2, x3} being
the reference and current positions in the global Cartesian coordinate system with base vectors {E1,E2,E3}.
Linear triangular elements are used for developing a nonlinear FE model of a non-axisymmetric cylindrical
membrane. We define a local Cartesian coordinate system for each element in order to facilitate calculation of
the local deformation gradient and prescribe material anisotropy. The centroid of an element Xc = {Xc

1, X
c
2, X

c
3}

is set as the origin of the local Cartesian coordinate system (with base vectors {Ee
1,E

e
2,E

e
3}) and ‘element-

wise’ orthogonal surface coordinates ξ1 and ξ2 are allocated to any point on the element with respect to the origin.

A linear triangular element has three nodal points {X(1),X(2),X(3)} in the reference and {x(1),x(2),x(3)} in
the current configurations while Xc

i = 1
3

∑
k X

(k)
i (i, k = 1, 2, 3). A set of local orthonormal basis {Ee

1,E
e
2,E

e
3}

is then defined on the element with Xc as its origin and Ee
3 being normal to the element. For the reference

and current position vectors in the local coordinate system, Xe = {Xe
1 , X

e
2 , X

e
3} and xe = {xe

1, x
e
2, x

e
3}, the

two-dimensional right Cauchy-Green deformation tensor can be calculated as (Kyriacou et al., 1996; Park and
Youn, 1998)

C =
(∂xe

∂ξα
· ∂x

e

∂ξβ

)
Ee

α ⊗ Ee
β (A.1)

where α, β = 1, 2. The weak form for the membrane is derived from the principle of virtual work

δI =
∫

S

δwdA−
∫

s

Pn · δxda = 0, (A.2)

where P is the internal pressure, n is the outward normal unit vector. Let a finite approximation of the current
position be given as

x = Φxp, xi = ΦiAx
p
A, (A.3)

where xp and Φ are the nodal vector for the current position and shape function matrix, respectively. The
governing equations for an element are derived from the weak form as

{F}e

P
=

∫
Se

( ∂w

∂Cαβ

∂Cαβ

∂xp
P

− P̃iΦiP

)
dA = 0, (A.4)

where for a linear triangular element,

P̃i = P
εijk

(
x

(2)
j − x

(1)
j

)(
x

(3)
k − x

(1)
k

)
||εlmn

(
X

(2)
m −X

(1)
m

)(
X

(3)
n −X

(1)
n

)|| . (A.5)

The tangent matrix for the Newton-Raphson method to solve the equation (A.4) is given as

[
K

]
PQ

=
[ ∂F
∂xp

]e

PQ
=

∫
Se

( ∂2w

∂Cαβ∂Cγω

∂Cαβ

∂xp
P

∂Cγω

∂xp
Q

+
∂w

∂Cαβ

∂2Cαβ

∂xp
P ∂x

p
Q

− ΦiP P̃i,Q

)
dA, (A.6)

where (i, j, k, l,m, n = 1, 2, 3), (α, β, γ, ω = 1, 2), and (A,B,M,P,Q = 1, 2, 3, ..., 9).

The strain energy w is the sum of strain energies of all constituents (given by equations (4)-(7)) and is a
function of thickness and fiber orientations. At each step of the optimization routine, the calculation of the
objective function (equations (8) and (9)) requires the FE solution for the nodal positions and the resulting
constituent stress or circumferential stretch with the updated values of thickness and fiber orientations.
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