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Abstract 
 
Many biological materials are composites composed of a soft matrix reinforced with stiffer fibers. These stiffer fibers may have a 
tortuous shape and wind through the soft matrix. At small material deformation, these fibers deform in a bending mode and 
contribute little to the material stiffness; at large material deformation, these fibers deform in a stretching mode and induce a 
stiffening effect in the material behavior. The transition from bending mode deformation to stretching mode deformation yields a 
characteristic J-shape stress-strain curve. In addition, the spatial distribution of these fibers may render the composite an anisotropic 
behavior. In this paper, we present an anisotropic finite-deformation hyperelastic constitutive model for such materials. Here, the 
matrix is modeled as an isotropic neo-Hookean material. “The behaviors of single tortuous fiber are represented by a crimped fiber 
model”. The anisotropic behavior is introduced by a structure tensor representing the effective orientation distribution of crimped 
fibers. Parametric studies show the effect of fiber tortuosity and fiber orientation distribution on the overall stress-strain behaviors of 
the materials.   
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1. Introduction 
 

A biological tissue is a highly advanced material. It undergoes many cycles of deformation, and is purpose-
made for each application. It is an intricate microstructural composite, composed of many types of proteins. One 
prevalent protein is collagen. Collagen is a stiff extracellular protein (Sasaki and Odajima, 1996(1,2); Cusack and 
Miller, 1979; Gosline, et al, 2002). It gives tendon its tensile stiffness (Sasaki and Odajima, 1996(2)), skin its strength 
(Holmstrand, et al, 1961), and bone its structure. In addition to collagen’s intrinsic mechanical properties, the 
microstructural arrangement of collagen in tissues determines the mechanical behavior (Billiar and Sacks, 2000; Cacho, 
et al, 2007; Comninou and Yannas, 1976; Gasser, et al, 2006 ). In tendon the collagen is highly aligned to the direction 
of loading (Vidal and Mello, 2009), which provides its stiffness and strength. In skin the fibers are not highly aligned 
(Osaki, 1999), allowing the tissue to extend and undergo large deformations before rupturing. Microfibrillar collagen in 
tissues arranges into bundles, termed collagen fiber bundles (CFB) (Elbischger, et al, 2006). Because the collagen fibers 
have finite thickness, and are cross-linked within the bundles, it has been speculated that collagen fibers have a finite 
bending stiffness (Basu and Lardner, 1985; Buckley, et al, 1980). These fiber bundles are tortuous in the material 
unloaded state. As the tissue is loaded, the fiber bundles straighten and begin to bear load. This latent engagement 
allows the tissue to limit distension in order to avoid damaging the softer, weaker matrix proteins. The degree of 
tortuosity determines the distensibility of the tissue before it stiffens. 

The effect of fiber orientations on the behavior of the tissue is tantamount to that of the tortuosity and bending 
stiffness of CFB. Most fiber reinforced tissue has an anisotropic nature, given that different tissues perform specific 
functions in the body. CFB are oriented in different directions, according to the function of the tissue. In example, artery  
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Figure 1: Schematic of crimped fiber model. The dotted line is the undeformed fiber configuration and the solid line is the 
deformed fiber configuration. 

 
tissue has fibers arranged in the axial-circumferential polar plane to limit inflational and axial deformation. This 
anisotropic arrangement can be as complex as orthotropic. A constitutive model must then take into account material 
symmetry and degree of anisotropy.  

This paper presents a two-part constitutive model, representing CFB and other matrix proteins. The CFB 
portion of the model uses a distributed CFB orientation as in (Gasser, et al, 2006), but also incorporates a second 
tunable axis for the orientation distribution. CFB are modeled as sinusoidal elastic beams which behave linear 
elastically, as was found by (Sasaki and Odajima, 1996(1)). This approach eschews the use of an engagement 
distribution function, which lowers model complexity. The second portion of the model uses an isotropic neo-Hookean 
constitutive formulation to represent the matrix behavior. 

2. Modeling 

2.1 Modeling an Individual Collagen Fiber Bundle 
Here, we assume that the tortuous fiber can be represented by planar sinusoid-shaped beam, as was adopted 

previously for artery tissue (Basu and Lardner, 1985; Buckley, et al, 1980; Garikipati, et al, 2008). (Comninou and 
Yannas, 1976) developed a constitutive model for tendons consisting of sinusoidal collagen fiber bundles, termed 
crimped fibers. In their analysis, only small stretches and small-amplitude fiber crimp were considered. In this section 
of the paper, the crimped fiber model is extended to nonlinear stretch behavior. The fiber has a given elastic modulus, 
E, cross-sectional area, A, second moment of inertia, I, radius of gyration R, period 2π/b=4l0 and amplitude a as shown 
in Figure 1. From Figure 1, the six parameters, A, E, a, R, l0 and I can be further simplified to four parameters: the 
modulus, E, the cross-sectional area, A, the ratio between bending rigidity and extensional stiffness, , 
and another specifying the geometry of the fiber, . The undeformed and deformed contour lengths of 
the fiber are denoted as 0

CL , and CL , respectively. The projected length of the undeformed fiber is L0 and the deformed 
is L. It is important to understand the difference between the projected length and the contour length, as the average 
stretch internal to the fiber, defined as , gives rise to the force, and the apparent stretch, defined as 

, relates to the overall material deformation.  
The undeformed beam can be described by  

 siny a bx= .   (1) 
The contour length of the undeformed beam is 
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where ( ).E is the complete elliptic integral of the second kind. Using the linearization of error O(a3b3/3) applied by 
(Comninou and Yannas, 1976), under the application of the tensile load, FF, the beam is assumed to deform to a 
sinusoidal shape with smaller amplitude but longer wavelength, expressed as  

 ,   (3) 

where  is the ratio of the current amplitude to the original amplitude, calculated as 
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 ,   (4) 

where ω relates the bending stiffness contribution of the beam and is calculated as 

 .   (5) 

R is the radius of gyration for the cross section of the beam. The contour length of the deformed beam can be calculated 
(see Appendix for detailed derivation) as  
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The relationship governing the stretch in the fiber compared to the apparent stretch is  
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Eq. (7) can be linearized with the same order of error as before, then rewritten in terms of the apparent fiber stretch, , 
and the material stretch, λ, by substituting the relationships, giving 

 .   (8) 

Eq. (8) is rewritten in terms of the two fiber geometry parameters: 0/R l , 0θ  

 .   (9) 

Eq. (9) is solved for the material stretch, λ, at a given . Assuming the fiber behaves as a Hookean material, given the 
observed stretch, the force is calculated from the stress as 
 .               (10) 

2.2. Orthotropic Crimped Fiber Model 
Here, we consider a material deformation that can be represented by a deformation gradient F . The right 

Cauchy-Green deformation tensor, C, and the finger tensor b are defined as  

 , , 
∂

=
∂

xF
X

,               (11) 

where  x and X are spatial and material coordinates of a material point, respectively. The second Piola-Kirchhoff stress 
tensor S , the first Piola-Kirchhoff stress P , and  the Cauchy stress  are  

 , , ,                 (12) 

where  is the strain energy density function and J is the determinant of the deformation gradient. It is convenient to 
represent the strain energy function in terms of the invariants of C. In the isotropic case, 
 ,             (13a) 
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where 

 .                                                    (13b) 

In the incompressible case, we require , thus the strain energy depends only on the first and second invariants. 
In the anisotropic case with one family of fibers, there are two additional invariants pertaining to the 

deformation of the fibers. If the fibers are aligned in the direction of  then the structure tensor is defined as (Spencer, 
1971) 
 ,               (14) 
and the invariants describing the deformation of the fiber family are 
 .                                                    (15) 
The fourth invariant has a straightforward meaning, and can be calculated as 
 ,                                                    (16) 

where  is the fiber stretch, and the fifth invariant is related to how the fibers couple to shear deformations. In this 
analysis, we use a unit vector a to denote a0 in the current configuration. Thus, a is calculated as  

 .                                                          (17) 

In the case of two fiber families, there are five additional invariants of the deformation tensor. If the fibers are aligned in 
the directions of  and , the structure tensors characterizing these fiber families are  

 , .                                                          (18) 

In addition to the invariants from the transversely isotropic case,  and , there are three additional invariants. The 

first two are calculated similar to  and  as, 

 , .                                                        (19a) 
The eighth and ninth invariants use both structure tensors from the fiber families, and are calculated as 
 ( )8 0 0trI = CA G , ( )9 0 0trI = A G .                                                        (19b) 

If  and  are orthogonal to one another, the eighth invariant is identically zero, and thus does not enter in to the 
calculations. In the model presented in this paper, it is assumed that the tissue is incompressible, and does not depend on 
the invariants involving . Thus, we consider invariants ,  and  with the constraint that . The model 
strain energy density is the total of strain energies representing the collagen fiber bundles and the isotropic, neo-
Hookean material, 
 NH CFψ ψ ψ= + ,                                                        (20a) 
where the subscripts NH and CF denote the neo-Hookean and crimped fiber portions respectively. This linear 
superposition of strain energy density allows us to calculate the stresses as 
 El CF= +S S S .                                                          (20b) 
     If we consider the extension of a single fiber, the total energy is given by 

 ,                                                            (21) 

where PF is the nominal stress in a fiber. The quantity AF can be brought into the integral, and rewritten in terms of the 
force generated by the fiber as  

 .                                                                       (22) 

It is important to note that Eq. (22) defines the total energy of the fiber, not a strain energy density. 
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 Figure 2: The ellipsoidal structure tensor, which shows how the structure tensor 
transforms unit vectors. A longer dimension indicates a higher concentration 
of fibers in that direction. a0 and g0 are not aligned with the global coordinate 
system, but in the model, are allowed to be aligned to whichever preferential 
directions the tissue may have. 

 
To consider orthotropic material behaviors, a three-dimensional structure tensor, with two orthogonal 

directions and one isotropic component is used to characterize the material. As with the distributed collagen fiber 
orientation method of modeling used previously (Gasser, et al, 2006)  a three-dimensional structure tensor is utilized to 
characterize the orientational distribution of the collagen fiber bundles. Unlike the method employed by (Gasser, et al, 
2006) the structure tensor used here has two orthogonal groups of fibers, forming the major axes of an ellipsoid with 
tunable shape in all three major directions. The vectors a0 and g0 are aligned with the preferential directions of the fibers 
in the tissue in question. The structure tensor then takes the form 

 ( ) ( )0
1 1 1

3
κ γ κ γ+ −

= + − ⊗ + − ⊗0 0 0 0H I a a g g .                                                     (23) 

This structure tensor can be visualized as an ellipsoid with trace of 1, as in Figure 2. The structure tensor in the current 
configuration is denoted as 
 0

T=H FH F .                                                    (24) 
The structure parameters,  and γ, must satisfy the requirements that 0 1κ≤ ≤ , 0 1γ≤ ≤ , and 1κ γ+ ≥  in order to 
ensure that none of the major dimensions of the structure tensor become negative. As with the model introduced by 
(Gasser, et al, 2006; and Spencer, 1984), the stretch experienced by a fiber is related to the structure tensor by

2
0 :Fλ = H C . This can be written in terms of the invariants,  
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The strain energy density function is given by  
 ( )CF F FKψ ψ λ= .                                                   (26) 
In general, for a material dependent on the first, fourth and sixth invariants, the stress is given by  

 ,                                           (27a) 
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Where K is the fiber number density. Using Eqs. (27a, b), the stress is 
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Figure 3: The normalized force-extension behavior for three cases of fibers is shown. The fiber force, f  is 
normalized by the Young’s modulus, E. The solid line shows a typical force-extension behavior of 
a crimped fiber. The dashed line is shown with very small bending stiffness. The dotted line shows 
a crimped fiber where the extensional stiffness is very low. 

2.3. Complete Model for Composites 
The model strain energy is the total of the strain energies representing the collagen fiber bundles and the 

elastin network weighted by its volume fraction,  
 El El CFfψ ψ ψ= + .                                                   (29) 
This is a simple but effective treatment for composites and ignores the interaction between fibers and matrix. Since the 
collagen fiber bundle model already contains a fiber areal number density, K, Eq. (28) does not have a volume fraction 
for collagen fiber bundle energy density. In addition, it is possible to lump the volume fraction  with the elastin 
shear modulus. This linear superposition of strain energy allows us to calculate the stresses as 
 El CF= +S S S ,                                                      (30) 
which can be rewritten as 
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Because A and K together determine the total area of the collagen fibers per unit material area, it is advantageous to 
lump the two together, KA. Thus, in total, there are seven parameters to consider: the elastic network isotropic shear 
modulus, ; three parameters for the collagen fiber bundles: intrinsic Young’s Modulus, E, fiber shape, 0θ , and 
normalized radius of gyration, 0R l ; one pertaining to collagen fibers per unit material area, KA; and two for the 
orthotropic structure tensor: the major axis a0, κ, and the second major axis g0, γ. In order to simplify the model further, 
for this paper, the modulus of collagen was chosen to be in the range of previous work(Sasaki and Odajima, 1996; 
Cusack and Miller, 1979; Harley, et al, 1977; Zulliger, et al, 2004), with a value of 10 GPa.  

3. Results 
In the following, we evaluate the model behavior by investigating the stress-strain response of a material under 

uniaxial loading conditions. First, the single crimped fiber is analyzed for the contribution of the bending stiffness and 
axial stiffness. Second, the stress-stretch response of the model under uniaxial loading is developed. Lastly, we conduct 
parametric studies to observe the effects of structural parameters on the model predictions. 

3.1. Single Fiber Extensional and Bending Stiffness 
To better understand the fiber behavior, three cases of fiber parameters were studied. First, the force-extension 

behavior of a typical crimped fiber is shown in Figure 3. This typical fiber has a non-zero bending stiffness, where its bending 
stiffness is seen by its non-zero tangent slope at low stretch. The second and the third represent the two extremes. In the 
second case, the force extension behavior of a fiber with zero bending stiffness is plotted. It is seen that there is zero force until 
the fiber is straight, where the force increases linearly at the extensional stiffness. This ultimate stiffness is the same as that of 
the typical fiber. In the third case, the fiber has low extensional stiffness compared to the bending stiffness. This fiber’s 
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behavior is comparable to the typical fiber at stretches close to 1, but behaves linearly as the stretch is increased. This linear 
behavior is because the amplitude of the fiber remains constant as it is stretched, giving a constant stiffness. This is a 
somewhat fictitious response, though, as a fiber with low extensional stiffness also has low bending stiffness. The discrepancy 
between the full model and the sum of the two extremes is due to a convoluting effect of the extensional stiffness on the total 
fiber behavior, thus causing a deviation from the bending stiffness dominant fiber response. 

3.2 Model Simulations of Uniaxial Deformation 
Material point simulations were performed using the model with varying parameters. For these simulations, a0 

and g0 were aligned to the global direction vectors X1 and X2 respectively. Applying the load in the 1-direction, S11, one 
can solve for the uniaxial stress by applying the appropriate boundary conditions of S22=S33=0 and the incompressibility 
constraint. Taking the full orthotropic model, with the stress applied in the 1-direction,  
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where 

 .                                            (33) 

Using S33=0, we can solve for the Lagrange multiplier associated with the incompressibility constraint,  p, as  
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Combining this with S22, we obtain the expression 
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This can be solved numerically for λ2 and λF given λ. Once λ2 and λF are obtained, the uniaxial stress can be calculated. 
For uniaxial tests in the 2-direction where S22 is controlled, the process is similar, but with S11=0. 

3.3 Full Model Behavior 
Here, the effects of the crimped fiber orthotropic model parameters are studied. The parameters can be tuned to 

achieve a certain behavior. Besides having high flexibility in modeling anisotropy and engagement, the model produces 
a basic shape of the stress-stretch curves that is consistent with the J-shape seen in many soft biological tissues.  

Figures 4 and 5 show the stress-stretch curves for varying one parameter and holding the others constant. In 
these figures, λ1 and λ2 correspond to the X1 and X2 stretches, respectively. All stresses are the first Piola-Kirchhof 
stress. In Figure 4(a-c), the uniaxial material response is shown for the orthotropic crimped-fiber model, showing the 
effect of changing the model parameters pertaining to fiber orientations. In addition to the crimped fiber model, the 
isotropic neo-Hookean model response is also plotted for reference. For each set of parameters, the resultant uniaxial 
behaviors along the two orthogonal directions are shown. 

Figure 4(a) shows the case for γ=κ.  The material demonstrates an isotropic behavior with a characteristic J-
shape. The transition from the initial low stiffness to the ultimate high stiffness can be roughly represented by a 
transition strain, or engagement strain (Lammers, et al, 2008). Although a more sophisticated definition of engagement 
strain is provided in our recent study (Lammers, et al, 2008), for the purpose of illustration of model behavior, we  
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(a)              (b)                                                                 (c) 
Figure 4: A parametric study varying κ and γ. A) It is seen that when κ = γ, the behavior is transversely isotropic; the uniaxial stress-stretch curves lay on 

top of one another. B) As γ is decreased in relation to κ the X2 behavior becomes increasingly stiffer than the X1 direction. The X1 directions are in 
solid lines and the X2 directions are in dotted lines. C) As κ is decreased in relation to γ, the degree of anisotropy is increased, with the X1 direction 
becoming significantly stiffer than the X2 direction. Here μ=20 kPa, KA=1x10-3, E=10GPa, 0θ =27°, 0R l =0.05. 

 

 
Figure 5: Results for the crimped fiber model, showing the effect of changing crimped fiber parameter 0θ . The stress-

strain behaviors in X1 directions are in solid lines and in the X2 directions are in dotted lines. As 0θ  increases, the 
engagement strain, where the material stiffens, moves rightward. It also decreases the overall stiffness, as the contour 
length is increased. Here μ=20 kPa, KA=1x10-3, E=10GPa, 0R l =0.05, κ=0.60 and γ=0.65. 

simply use the intersection of the linear extrapolations of low and high stretch portions of the stress-stretch curve to 
define the engagement strain, as shown as 0λ  in Figure 4(a). The neo-Hookean behavior is also shown in Figure 4(a) 
for comparison.   Figure 4(b) shows the change in material behavior due to changes in γ . A lower value for γ  
corresponds to fiber alignment in the X2 direction. Decreasing γ  (or fiber orientation prefers X2 direction) causes the 
engagement in the X2 direction to occur at a smaller stretch and in the X1 at a larger stretch. This is because, as 
illustrated in the previous study using the Arruda-Boyce eight chain model ( 1993)  polymer chains, when they are in a 
network, can accommodate large deformation through rigid body rotation. Therefore, as the fiber is oriented toward X2 
direction, the fiber can rotate more toward X1 direction to accommodate a larger stretch in the X1 direction and can 
rotate less toward X2 direction to accommodate deformation in the X2 direction. From the fiber point of view, the 
stretch mode is engaged at a larger stretch in the X1 direction than it does in the X2 direction. Figure 4(c) shows the 
change in material behavior due to changing κ  while holding all other parameters constant causes an observed change 
in the anisotropy of the collagen component. Figure 4(c) shows the opposite trend of Figure 4(b). As κ  decreased, the 
fiber becomes more oriented toward X1 direction, which causes a smaller engagement strain in the X1 direction and 
larger engagement strain in the X2 direction.   

The change in material behavior due to a change in 0θ , as in Figure 5, is observed in both the ultimate stiffness 
and engagement stretch. Increasing 0θ  directly causes an increase in the engagement strain. In addition to increasing the  
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Figure 6: Results for the crimped fiber model, showing the effect of changing crimped fiber parameter 0R l . As the radius 
of gyration is changed, it causes the transition to broaden and become more gradual. Here the parameters held 

constant are μ=20 kPa, KA=1x10-3, E=10GPa, 0θ =27°, κ=0.55 and γ=0.65. 

engagement stretch, the ultimate stiffness is decreased. This is, as stated earlier, due to the increased contour length of 
the beam with constant end-to-end distance. It may appear that the degree of anisotropy is increased with increasing 0θ , 
but the perceived increase in the degree of anisotropy is due only to the increased stretch at which engagement occurs. 
 
           The effect of 0R l on behavior is shown in Figure 6. At low values of 0R l , there is little contribute from the 
fiber, as shown in Figure 6, the initial stiffness is given by neo-Hookean matrix.  The stiffness rapidly increases and 
becomes linear quickly above the engagement stretch. At higher values, it is seen that there is some low-stretch stiffness 
due to the fibers and the transition to the fully-developed stiffness is more gradual.  

4. Conclusions 
An orthotropic constitutive model for a composite with an isotropic soft matrix reinforced by tortuous fibers 

was presented. Here, the matrix was modeled as an isotropic neo-Hookean material. The tortuous fiber wass modeled 
by a crimped fiber model, which considered the fiber as a planar sinusoidal linear elastic beam.  The anisotropic 
behavior was introduced by a structure tensor representing the effective orientation distribution of crimped fibers. The 
model described the transition of the material stress-strain behavior from an initial low stiffness at low stretch ratio to a 
very stiff response at high stretch ratio, a characteristic behavior of many biological soft tissues. The model has 
relatively low complexity, due to the flexibility afforded by the sinusoidal crimped fiber model and the ellipsoidal 
structure tensor used to represent the orthotropic behavior of the material.  
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Appendix: Derivation of contour length of the undeformed and deformed sinusoidal beam 
To calculate the contour length of the beam, we find the incremental arc length ds for a given differential length dx and 
subsequent differential change dy, with Eq. (1) as the function, 
 

 .                                                    (A1) 

 
 
 
 

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

Stretch λ
S

tr
e

ss
 (

kP
a

)
 

 
Neo−Hookean
X

1

X
2

R/l
0
=0.001

R/l
0
=0.025

R/l
0
=0.050

22

2

2 2 2

2 2 2

1

cos 1

cos 1

ds dy
dx dx
ds a b bx
dx
ds a b bx dx

⎛ ⎞= +⎜ ⎟
⎝ ⎠

= +

= +



 
 
 

International Journal of Structural Changes In Solids, 2(1), 2010 19-29 
 

 
 
 
 

28 

Integrating along the length, we obtain 
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Integrating only to the first quarter wavelength is necessary, as the quarter wavelengths shapes are similar, we obtain 
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For the deformed beam whose shape is described by Eq. 16, the arc length s is calculated as 
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and for the first quarter wavelength is  
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