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Abstract

A pseudoelastic micromodel that accounts for deformation twinning and crystallographic slip (Glüge et al., 2010) is used in
conjunction with the representative volume element (RVE) method. The material model consists basically of a nonconvex
visco-elastic stress strain-relation, and has to be considered as a microscale-model. The material parameters are adopted
to {101̄2}〈1̄011〉 twinning in magnesium. The simulation setup follows the commonly conducted compression tests on
extruded Magnesium rods, where due to twinning a strong change of texture and a strength differential effect can be
observed. The simulations allow for an investigation of the twin propagation in the polycrystal. Furthermore, the simulated
twin volume fraction evolution, the texture evolution and the macroscopic stress-strain relation could be compared to
experimental findings obtained with pure magnesium and the magnesium based alloy AM30.

Key words: {101̄2}〈1̄011〉 twinning, pseudoelasticity, nonconvex strain energy, magnesium, crystal plasticity, homogenisation,
representative volume element technique, texture, strength differential effect

1. Introduction

Many materials undergo solid to solid phase changes upon thermal or mechanical loading, which results in phenomena
like the shape memory effect (SMA), the transformation induced plasticity effect (TRIP) or the twinning induced plasticity
effect (TWIP). In this work, the focus is on the isothermal and mechanically induced deformation twinning. The twins
develop as small layers. On the grain scale, these layers display a homogeneous shear deformation with a specific amount
of shear, while on the atomic scale, one observes a long-range reordering of the atomic lattice, such that a rotated copy of
the parent lattice is generated. For shuffle-free twinning modes, the twin lattice is obtained by applying a homogeneous
shear deformation to the parent lattice, while for twinning modes including shuffling, the homogeneous shear deformation
leaves only the atoms of a sub-lattice in their proper twin configuration, while the remaining atoms undergo a shuffling
displacement (Christian and Mahajan, 1995), see Figure 1. In both cases, a regular reordering of the atomic bonding is
observed. Although from a chemical point of view one might not want to speak about a phase change, some characteristic
ingredients of phase changes are displayed. Twinning produces sharp interfaces, at which the material properties that
depend on the crystal orientation undergo a jump. The twins form as plates inside of grains, and can alter significantly the
morphological and the crystallographic texture, both influencing the yield behaviour and the elastic anisotropy. Due to its
polarity, twinning can cause a pronounced differential effect on the strength of the material and the forming limit. For many
materials, these effects are not negligible, and need to be incorporated in the material model. Especially the ductile TWIP
steels and the lightweight hcp metals magnesium and titanium, which are interesting for engineering applications, display

∗Corresponding author. Email: gluege@ovgu.de

 
 
 
 
 
INTERNATIONAL JOURNAL OF STRUCTURAL CHANGES IN SOLIDS – Mechanics and Applications 
Volume 3, Number 1, February 2011, pp. 29-47 
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Figure 1: A twinning mode involving shuffling and a shuffle-free twinning mode.

extensive twin formation at room temperature. For such materials, the proper prediction of forming processes requires a
material model which includes mechanical twinning.

One approach, proposed by Ericksen (1975, 1984), is to treat phase changes by a non-convex elastostatic modelling.
Let w denote the elastic strain energy and E be the strain measure. Then, the overall modelling strategy is to construct an
elastic strain energy w(E) which exhibits nonconvex regions. In this regions, no stable equilibrium state can be attained.
The convex branches are assigned to different phases, which are separated by the nonconvex regions. This leads to the
pseudoelastic boundary value problem. The latter is ill-posed, since generally no unique energy-minimising configuration
can be given. Different strategies to overcome the ill-posedness have been proposed, which can be roughly classified into
relaxation and kinetisation.

Some work has been contributed to the energy relaxation strategies, initialised by introducing different notions of
convexity (Ball, 1977). One way of relaxing w(E) is to replace it by a convexified strain energy wc(E). wc(E) should
reproduce the main features of w(E). For an analytical relaxation, often several simplifications (small strains, elastic
isotropy, two-well potential) are needed (Govindjee et al., 2003), and in general no analytical solution may be attained.
Since an exact quasiconvexification is only possible in rare cases, it needs to be approximated in terms of bounds, i.e. by
the rank-1-convex and the polyconvex hull. For this purpose, numerical relaxation schemes have been developed (Pagano
et al., 1998; Bartels et al., 2004). The relaxation is a special form of homogenisation, which results in material models
that predict phase volume fractions at each material point. One may relax w(E) as well by adding a capillarity, since
the convexity of the strain energy is determined by the dependence on the highest strain gradient (Sidi Ammi and Torres,
2008), wc(E,∇E) = w(E) + c(∇E), where c(∇E) must be convex in the strain gradient ∇E. This corresponds to an
energetic penalisation of sharp strain gradients, as encountered near interfaces. Note that non-quasiconvex minimization
problems may arise also in standard material models, see e.g. Carstensen et al. (2002).

The second line of work is to introduce a nucleation criterion and a kinetic relation for the phase growth, summarised
in Abeyaratne and Knowles (2006). By this, the modelling approach is shifted from energy minimisation to evolution
tracking. This may be achieved by any kinetic relation, which must not necessarily be connected to the phase growth. E.g.,
by incorporating inertia forces, one has to track the propagation of waves. Depending on the kinetic relation, the treatment
becomes complicated as well. By introducing a kinetic relation, strain path independence of a purely elastic modelling is
resolved. In any case, the resulting model allows to assign definitely a single phase to each material point, i.e. one can
speak of a microscale-model. Therefore, in order to obtain macroscale material laws, still a homogenization is required.
Moreover, either implicitly or directly, phase boundaries enter the model. These may be regularized (phase field model,
Wang et al. (2004)) or discrete (sharp interface model, see Hou et al. (1999) for a concise outline). Summaries on material
modelling approaches which include phase mixtures are given by Ortiz and Repetto (1999), Roubı́ček (2004) and Zimmer
(2006).

In particular, as a regularising kinetic relation, the viscous regularisation enjoys some popularity. It is often applied
to single out solutions when damage, strain softening, strain rate softening or phase changes occur (Chaboche et al.,
2001; Dias da Silva, 2004; Böhlke et al., 2009; Glüge et al., 2010). It is as well used to overcome the Taylor problem in
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crystal plasticity (Hutchinson, 1976), and to transform the algebraic differential equations governing ideal plastic material
behaviour to ordinary differential equations (Simo and Hughes, 1998). It is moreover simple to implement, and compliant
with thermodynamic considerations.

The material model that is employed here (see Section 4) is derived in detail in Glüge et al. (2010). In the same article,
the predictions of the model on the microscale have been investigated and compared to experiments. For a comparison with
macroscale material behaviour, some kind of homogenisation is required. Therefore, the material model has been combined
with the numerical homogenisation via the representative volume element method. Commonly conducted compression
tests have been simulated, and the findings are compared to experimental results. In particular, we compare the evolution
of the twin volume fraction, of the crystallographic texture, and of the stress state to experimental results obtained for pure
magnesium and the magnesium-based alloy AM30. Moreover, the model allows for an observation of the twin propagation
in the polycrystal.

1.1. Notation

Throughout the work a direct tensor notation is preferred. If an expression cannot be represented in the direct notation
without introducing new conventions, its components are given with respect to orthonormal base vectors ei, using the
summation convention. Vectors are symbolised by lowercase bold letters v = viei, second order tensors by uppercase
bold letters T = Tijei ⊗ ej or bold greek letters. The second order identity tensor is denoted by I . Fourth-order tensors
are symbolised like C. The dyadic product is defined as (a ⊗ b) · c = (b · c)a. Matrices are denoted like [A]. A dot
represents a scalar contraction. If more than one scalar contraction is carried out, the number of dots corresponds to the
number of vectors that are contracted, thus a ⊗ b ⊗ c · · d ⊗ e = (b · d)(c · e)a, α = A · · B and σ = C · · ε.
When only one scalar contraction is carried out, the scalar dot is frequently omitted, e.g., v = Fw, A = BC. The
Rayleigh-product is defined by applying a second order tensor to all base vectors of a tensor. E.g., in case of a fourth order
tensor, P ∗ C = CijklPei ⊗ Pej ⊗ P ek ⊗ Pel, with C = Cijklei ⊗ ej ⊗ ek ⊗ el. Orthogonal tensors are denoted by
Qβv = ẽi ⊗ ei, mapping one orthonormal basis ei into another one ẽi. If Q can be interpreted as a rotation, the optional
indexing contains the amount of rotation β and the normalised axial vector v. Two-fold rotations are rotations of amount
π. They are denoted as Rv = −I + 2v ⊗ v, with v being the normalised axial vector. The derivative of a vector valued
vector function with respect to its argument is denoted like v′(w) = ∂v(w)/∂w = ∂vi/∂wj ei ⊗ ej .

1.2. The hexagonal lattice

For a hexagonal lattice, it is convenient to use the Miller-Bravais basis

a1 = ae1, (1)

a2 = a

(
−1

2
e1 +

√
3

2
e2

)
, (2)

a3 = a

(
−1

2
e1 −

√
3

2
e2

)
, (3)

c = ce3, (4)

see Figure 2 (Neumann, 1966; Pitteri and Zanzotto, 2002). The lattice parameters c and a represent the height of the cell
and the edge length of the base hexagon, respectively, and correspond to the norms of c and a, c =

√
c · c and a =

√
a · a.

Although one usually does not appreciate the use of linearly dependent base vectors, this basis has the advantage that
it reflects the hexagonal symmetry. Permutations of the components a1...3, a change of sign of the c-component or a
simultaneous change of sign of all a1...3 yield crystallographically equivalent directions, which are denoted as 〈a1a2a3c〉.
Usually, negative components are denoted by x̄ instead of −x. Further, due to the linear dependence of a1...3, the condition
a1 + a2 + a3 = 0 is imposed, and therefore sometimes the third component a3 is omitted.
To indicate planes, it is advantageous to introduce another basis. This is done by taking the dual basis (ã1, ã2, c̃) of
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Figure 2: Simple hexagonal lattice with Miller-Bravais basis (left), hexagonal close packed multilattice constructed from the simple lattice by introducing
additional translations in v = 〈 1̄
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〉 (right).

(a1, a2, c) and defining the base vectors

a∗
1 =

2
3
ã1 − 1

3
ã2 =

2
3a2

a1, (5)

a∗
2 = −1

3
ã1 +

2
3
ã2 =

2
3a2

a2, (6)

a∗
3 = −1

3
ã1 − 1

3
ã2 =

2
3a2

a3, (7)

c∗ = c̃ =
1
c2

c. (8)

This basis again satisfies a∗
1 + a∗

2 + a∗
3 = 0, but it is not the dual basis of (a1, a2, a3, c). It also has the advantage

that crystallographically equivalent planes are connected by permutations of the components and changes of sign as stated
above. Again, the components should be restricted to a∗

1 + a∗
2 + a∗

3 = 0. If this is done, several practical simplifications
are obtained: If a normal vector is given with respect to the basis (a∗

1, a
∗
2, a

∗
3, c

∗), the reciprocals of its components
correspond to the piercing point distances of the plane with the base vectors (a1, a2, a3, c). Therefore, the plane {101̄2}
can be visualised by considering the points a1, −a3 and 1/2c (see Figure 2). Moreover, one can easily see whether
direction and normal vectors are perpendicular to each other by calculating the scalar product as if (a1, a2, a3, c) and
(a∗

1, a
∗
2, a

∗
3, c

∗) were dual bases. One notes easily that 〈101̄1〉 and {1̄012} are perpendicular to each other:

(a1 − a3 + c) · (−a∗
1 + a∗

3 + 2c∗) = a1 · (a∗
3 − a∗

1) − a3 · (a∗
3 − a∗

1) + 2c · c∗
= −1 − 1 + 2 = 0. (9)

2. Uniaxial testing of extruded magnesium

Twinning in magnesium has been studied in detail firstly by Reed-Hill and Robertson (1957a,b); Partridge (1965);
Roberts and Partridge (1966); Wonsiewicz and Backofen (1967); Kelley and Hosford (1968). Since these pioneering works,
a large amount of literature concerning twinning in magnesium and its alloys has been published. In hexagonal metals, the
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Figure 3: The c/a ratio controls the direction and the magnitude of the shear deformation accompanying {101̄2} twinning. Left: c/a >
√

3, twinning
shear increases width of the structure, leading to c-axis compression. Centre: c/a =

√
3, width and height do not change (the mean deformation is zero,

no {101̄2} twinning). Right: c/a <
√

3, twinning shear increases the height of the structure, leading to c-axis elongation.
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Figure 4: Cross section of an extruder. The material enters through the upper inlet funnel, and is pressed through the outlet on the right. The resulting rod
is strongly textured.

twins are usually categorised as extension or compression twins, depending on whether they appear under elongation or
compression along the c-axis. Magnesium has c ≈ 0.52103nm and a ≈ 0.32094nm, which gives c/a ≈ 1.62345, i.e. it is
quite close to the densest possible packing with c/a =

√
8/3. The unit cell is slightly less high than thick. This causes the

{1̄012}〈1̄011〉 twins to be extension twins (see Figure 3), while twinning along the {101̄1}, {101̄3}, {303̄4} and {101̄5}
planes (Meng et al., 2008) occurs under c-axis compression. Recently, Stanford (2008) observed {112̄1}-twinning in the
magnesium alloy WE54.

In a recent work Al-Samman and Gottstein (2008), plane strain compression tests are carried out on cuboid-shaped
AZ31 samples with different processing histories. One of them is an extruded sample, that is compressed along the
extrusion direction (Figure 4). Extruded magnesium is textured such that the c-axes are aligned approximately uniformly
and perpendicular around the extrusion direction, i.e. a compression along the extrusion direction results in a c-axis
elongation and vice versa. In a compression test, the strongly textured material undergoes a complete shift of texture, see
Figure 5.

However, the impressive change of texture does not occur when the loading direction is reversed. Moreover, one
observes a pronounced strength differential effect. The cause for this is the uni-directionality of twinning. The c-axis elon-
gation is accommodated by {1̄012} twins, while compression twins (mostly {1̄011}) accommodate c-axis compression,
i.e. elongation along the extrusion direction. These twinning modes exhibit strong morphological differences. The {1̄012}
tension twins are activated very easily, (namely at a shear stress of approximately 2.7MPa in pure magnesium, Koike
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Figure 5: (0002) (left) and (101̄0) (right) pole figures before (above) and after (below) the compression test at a nominal strain of ε = 0.28 (courtesy
of Al-Samman and Gottstein (2008)). The projection direction is parallel to the extrusion direction. As {101̄2} twinning reorients the c-axis about
approximately 86◦, the outer ring (upper left figure) transforms into the centre peek (lower left figure). The slight deviation from the approximately
rotational symmetric starting texture comes from the asymmetry of the loading (plane strain compression, two opposing faces are kept fixed).

a1a2

a3

c

d〈1̄101〉

d〈1̄102〉

Figure 6: Strength differential effect in the AZ31 magnesium alloy (left, courtesy of Chino et al. (2008)), sketch of 〈1̄101〉{11̄02} extension and
〈1̄102〉{11̄01} compression twinning (right). Due to the approximately perpendicular alignment of the c-axis with respect to the extrusion direction, the
extension twins (twins that form under c-axis elongation) develop in compression test along the extrusion direction, while compression twins (twins that
form under c-axis compression) show in elongation tests parallel to the extrusion direction.
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(2005)), and their boundaries are mobile. The {1̄011} compression twins are thin, pinned lamellas. Instead of growing
in thickness like the elongation twins, double twinning (first {101̄1} compression followed by {101̄2} extension twins) is
observed as loading continues (Yi et al., 2009).

Therefore, in a compression test, the major deformation mechanism are the {1̄012} elongation twins. After virtually
occupying the entire volume, elongation twinning is no more disposable. Due to the reorientation of the c-axis of ap-
proximately 86◦, the deformation is then accommodated by {1̄011} compression twinning (Wonsiewicz and Backofen,
1967; Kelley and Hosford, 1968), as it occurs from the beginning if the contrary loading direction is chosen. As depicted
in Figure 6, the stress level is then approximately the same as in the tension test. Due to the immobile interfaces of the
compression twins, the deformation accommodated before fracture is much lesser than in case of elongation twinning. The
double twins have been identified to be crack initiation sites (Hartt and Reed-Hill, 1968; Yin et al., 2008).

3. Characteristics of {1̄012} and {1̄011} twinning

Summarising the foregoing section roughly, {1̄012} tension twins allow for large deformation accommodation, while
{1̄011} compression twins precede fracture. A similar behaviour is observed in titanium (Serra and Bacon, 1996; Ungár
et al., 2008) and zinc (Lay and Nouet, 1994), which suggests that the morphological difference between the twinning
modes is intrinsic to the hexagonal lattice structure. It is explained by the characteristics of the distinct interfaces and
partial dislocations belonging to each twinning mode.

A first explanation is given in a series of articles by Serra and Bacon (Bacon and Liang, 1986; Serra and Bacon, 1986,
1991, 1996), who analysed twinning with the molecular dynamics technique. Firstly, they examined which of the different
many-body potentials given in the literature suite best to each hcp metal (Bacon and Liang, 1986). Igarashi et al. (1991)
adopted parameters of the many-body potentials such that they reproduce the elastic properties and c/a ratio for eight
hcp metals. With the potentials at hand, the stacking fault and interface energies have been calculated, and found to be
in agreement with experiments (Serra and Bacon, 1986). In Serra and Bacon (1991), the mobility of partial dislocations
belonging to different twin interfaces has been studied by means of molecular dynamics. It is found that dislocations in
{101̄2} and {112̄1} boundaries are very glissile, but sessile in {101̄1} and {112̄2} interfaces. In Serra and Bacon (1996),
the interaction between basal slip dislocations and different twin interfaces has been studied. It is found that if a basal
slip dislocation hits a {101̄2} interface, a source for {101̄2} partial dislocations is created, which forms pairs of partial
dislocations if a shear strain of approximately ±0.005 is applied. The source therefore provides a mechanism to move
the interface gradually by generating a pair of partial dislocations, as long as the load is not removed and no obstacle is
met. The converse is reported for a basal slip dislocation that hits a {101̄1} interface. It creates there a pair of partial
dislocations, but not an independent source for twinning dislocations. Together with the findings from Serra and Bacon
(1991), a convincing explanation for {101̄2}-twinning being the most prominent twinning mode in hcp metals is obtained.

Another explanation for the needle-like {101̄1} twinning and the extensive {101̄2} twinning is that the {101̄1} twins
produce a larger shear strain. Therefore, to accommodate a certain deformation, compared to {101̄2} twinning, less volume
fraction of {101̄1} twins is necessary (Bingert et al., 2002; Jiang et al., 2007). At least for magnesium this explanation is
rather improbable, as the corresponding shear numbers γ{101̄2} ≈ 0.13 and γ{101̄1} ≈ 0.137 differ only slightly.

A third explanation is given by the recent works of Li (Li and Ma, 2009b,a). Summarising their findings, the mor-
phological difference between {101̄1} and {101̄2} twinning arise from different propagation mechanisms. In case of the
{101̄1} twinning, the interface movement rests upon the movement of partial dislocations, while in case of the {101̄2}
twinning, atomic shuffling appears to play the leading role, and no pronounced partial dislocation is observed. There-
fore, unlike {101̄2} twinning, the {101̄1} twin propagation is restricted by the partial dislocation density, which renders
the {101̄2} interfaces more glissile compared to the {101̄1} interfaces. Interestingly, these findings are not entirely in
agreement with the results of Serra and Bacon.

Since the {101̄2} twinning mode allows for large strains, it is the adequate candidate to be tested with a continuum
theory. Therefore, it is implemented in the material model that is presented in the next section, and compression tests on
extruded magnesium are carried out with help of the RVE method.
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4. The material model

The material model is based on a nonconvex elastic energy plus the viscous regularisation, in terms of the second
Piola-Kirchhoff-Stresses

T =
1
2

(
∂w̃

∂C
+ ηC−1ĊC−1

)
, (10)

where the elastic energy w̃ is a stress potential with respect to the right Cauchy-Green tensor C. The viscosity discussed
in the introduction is denoted by η. The elastic energy is obtained by combining the elastic energies of the possible
configurations in a regularised version of the Ball and James-approach (Ball and James, 1987)

w̃(C) = min(w1(C), w2(C)...wn(C)). (11)

The individual strain energies are obtained by exploiting the isomorphy of the parent and the twin lattices (Bertram, 2003),
embodied by the plastic transformations P i. To avoid an overestimation of the critical twinning stress, a modification of
the individual strain energies is necessary, which is done with the help of the indicator functions φi. Inside the parent
configuration, basal slip is possible, which is approximated by the card glide mechanism. The index 0 indicates the parent
configuration, while the indices 1...6 run over the possible twin variants, and sums are explicitly written. Firstly, eq. (11)
is replaced by the regularization

w̃ =
n∑

i=0

aiwi ai =
gi∑6

j=0 gj

gi =
h(wi)

1 − h(wi)
hi = exp(−kwi), (12)

where the regularization parameter k is introduced. Taking the limit k → ∞, eq. (12) approaches eq. (11) from above.
The individual strain energies are given by

wi =
1
2
Ei · · C · · Ei if φi(Ei) ≤ 0 (13)

wi = Ei · · C · · Ei,crit − 1
2
Ei,crit · · C0 · · Ei,crit if φi(Ei) > 0 (14)

The indicator functions are given by

φ0(E0) =
6∑

i=1

〈γi/γtwin〉m − 1 γi = 2E0 · · M i (15)

φi(Ei) =
γi

γtwin
− 1 γi = 2Ei · · M i i = 1...6, (16)

with the critical twinning shear γtwin and the Schmid tensors M i = di ⊗ ni. The straining with respect to the stress-free
configurations of each phase is

Ei(C) =
1
2
(P T

i CP i − I). (17)

The plastic transformations P i contain the twinning shear Si and the lattice reorientation Rni
,

P i = P 0P 0i i = 1...6, (18)

P 0i = S−1
i Rni

, (19)

Si = γ0di ⊗ ni (20)

Rni = −I + 2ni ⊗ ni. (21)
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Figure 7: Let the sheet represent all possible strain states. The stress-free states are denoted by Ei0, and the curved lines are the isolines φi(E) = 0.
The piercing points represent the strains Ei,crit. The Ei correspond to E from the viewpoint of each stress-free configuration Ei0.

P 0 relates the elastic reference law to the reference placement, which is in the parent configuration. The Ei,crit are,
together with λ, defined implicitly by the orthogonal projection

φi(Ei,crit) = 0, Ei = Ei,crit + λ
∂φi

∂E

∣∣∣∣
Ei,crit

(22)

At least the Ei and Ei,crit can be schematically visualised, see Figure 7. This is, so far, the elastic energy. Since we
replaced the algebraic condition (11) by a differentiable function, the elastic energy w̃ may enter in eq. (10).

In order to account for basal slip, the collective of basal slip systems is approximated by the card glide mechanism. nb

corresponds to the base plane normal, while the slip direction db is obtained by projecting the stress vector into the base
plane. The plastic transformation of the parent evolves corresponding to

−P−1
0 Ṗ 0 = γ̇d∗

b ⊗ nb, d∗
b =

db

‖db‖ , (23)

with

d = ((I − nb ⊗ nb)F̃
−1

σF̃
−T

) · nb, F̃ = FP 0. (24)

γ̇ is determined consistently with the elastic law. I.e., during the plastic flow, the resolved shear stress in the card glide
system is equal to the flow stress,

τbasal = σ · ·d∗
b ⊗ nb. (25)

The material parameters are given with respect to the elastic reference law. e1 is parallel to a1 while e3 is parallel
to the c-axis. The elastic stiffness tetrad of single crystalline magnesium (Simmons and Wang, 1971), with respect to the
basis B1 = e1 ⊗ e1, B2 = e2 ⊗ e2, B3 = e3 ⊗ e3, B4 =

√
2/2(e1 ⊗ e2 + e2 ⊗ e1), B5 =

√
2/2(e1 ⊗ e3 + e3 ⊗ e1),
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B6 =
√

2/2(e2 ⊗ e3 + e3 ⊗ e2), is

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

56.49 23.16 18.10 0 0 0
56.49 18.10 0 0 0

58.73 0 0 0
2 × 16.81 0 0

2 × 16.81 0
56.49 − 23.16

⎤
⎥⎥⎥⎥⎥⎥⎦

Bi ⊗ Bj , (26)

in GPa. Bi is an orthonormal vector basis for symmetric 2nd order tensors, i.e. a fourth order tensor with both subsymme-
tries can be denoted as a second order tensor with respect to Bi. The six structural tensors belonging to the {101̄2}〈1̄011〉
twin systems are given by

M 1 = d1 ⊗ n1 (27)

d1 = cos(α)e2 + sin(α)e3 (28)

n1 = −sin(α)e2 + cos(α)e3 (29)

M i = Qi−1
π/3e3

∗ M1, i = 2...6 (30)

i.e. by rotating the twin system M1 in the sixfold symmetric hexagonal cell, with

α = atan(c/(a
√

3)). (31)

For magnesium and its alloys, c/a ≈ 1.623. The twinning shear for the {101̄2}〈1̄011〉 twin systems is given by

γ0 =
√

3
c/a

− c/a√
3

, (32)

i.e. γ0 ≈ 0.13 (Christian and Mahajan, 1995).
The critical shear strain is taken as γtwin = 0.006γ0, which allows to estimate the critical shear stress (CSS) for

twinning by τcrit = Gγtwin ≈ 0.006 × 0.13 × 17000 MPa≈ 13 MPa. For {101̄2}〈1̄011〉 twinning in Mg, one can find
values ranging from 2.7 to 2.8 MPa (Koike, 2005) to 14 to 19 MPa (Zhou et al., 2008) and 40 to 50 MPa for a Mg alloy
(Wang and Huang, 2007). The actual value depends strongly on the twin criterion that is employed by the experimenters.
Since no analytical estimation of the macroscale material law can be given, we determined the value of 13 MPa inversely
by adopting γtwin = 0.006γ0 to the experiments, see Section 5.4. The corresponding CSS falls well into the range of
reasonable values.

The parameter k should be chosen such that the linear elastic behaviour near the stress-free configuration is reproduced
sufficiently well, which is the case as k tends to ∞. On the other hand, a very large k results in an approximation of the
algebraic condition (11), i.e. a very sharp transition. Since γtwin limits the linear elastic range, k should not be determined
independently on γtwin. We found k = 0.25 to be a reasonable compromise between a smooth transition and a good
approximation of the individual elastic laws of each phase.

For the viscosity, the value η = 10000 MPa s has been estimated. Again, a compromise between a preferably small
viscous contribution to the stresses and stable time integration with reasonable large time steps has to be found. Its
choice is strongly connected to the simulation setup, in particular to the mean deformation rate. For the RVE-simulations
discussed in the next section, a variation of η did not show an essential effect on the apparent stress strain relation, i.e.
it is considered to be sufficiently small. The average viscous contribution can be estimated by multiplying η with the
average strain rate (0.2E-3), resulting in 2MPa, which is relatively small compared to the average stresses found in the
homogenisation procedure. The regularisation parameter of the phenomenological model adaption of the strain energy is
taken to be m = 10, which results in a fairly sharp approximation of the non-differentiable single crystal yield surface
τcrit = max(τ1, τ2 . . . τ6).

For the basal glide, only the critical shear stress τbasal enters the card glide. It is observed that the critical {101̄2}〈1̄011〉
twinning stress and the basal slip shear stress are related by τcrit/τbasal ≈ 2 . . . 4. Therefore, τbasal is set to 4 MPa, and
strain hardening is neglected.
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Table 1: Material parameters of the present model.

parameter value source
C see eq. (26) measurement, Simmons and Wang (1971)
γ0 0.13 geometrical considerations (eq. 20)

γtwin 0.006γ0 estimation such that τcrit ≈ 13MPa, Zhou et al. (2008)
k 0.25 estimation
η 10000 MPa s estimation

m 10 estimation
τbasal 4 MPa estimation such that τcrit/τbasal ≈ 3, Li et al. (2007)

5. Simple compression of an RVE

In order to obtain results that are comparable to experimental data, the RVE method is used to simulate the simple
compression of an extruded magnesium alloy along the extrusion direction. The crystallographic texture of the latter
is such that the c-axes are aligned approximately perpendicular to the extrusion direction, i.e., the compression along the
extrusion direction results in c-axis elongation, which is accommodated by {101̄2}〈1̄011〉 twinning (see Jiang et al. (2007);
Al-Samman and Gottstein (2008)).

5.1. Model setup

The FE model of the RVE consist of a regularly meshed cube with 40×40×40 fully integrated linear hexahedron ele-
ments (C3D8 in the ABAQUS element library). The initial microstructure has been approximated by a periodic Voronoi
tessellation, consisting of 20 grains, Figure 8. The limited number of grains is necessary to provide a reasonable discretiza-
tion of each grain, though the grains are partitioned by twinning. The phases are assigned integration-point-wise, i.e. the
model contains multiphase elements. The crystal orientations are restricted such that the c-axes do not deviate more than
15◦ from the plane of compression, and are uniformly distributed. This value has been estimated from the texture sharp-
ness given by Jiang et al. (2007). No preferred orientation of the remaining degree of freedom (rotating the ai around the
c-axis) has been established. The displacement boundary conditions are periodic on the entire surface of the cube, while
the tractions are anti-periodic. The 11-component of the mean displacement gradient with respect to the orthonormal base
system used for the model description have been constrained,

H =

⎡
⎣f(t) 0 0

0 · 0
0 0 ·

⎤
⎦ei ⊗ ej , (33)

while H22 and H33 have not been constrained. Instead, the mean reaction forces along the e2 and e3 directions have been
constrained at the corresponding faces to be equal to zero, in order to obtain the average uniaxial stress state along the e1

direction.

5.2. Numerical homogenization

The apparent material behaviour is obtained by relating average dynamic and kinematic quantities to the RVE. The
kinematic and dynamic coupling has been carried out in F and the first Piola-Kirchhoff stresses S by integrals in the
reference placement,

F̄ =
∫

Ω0

FdV0 (34)

S̄ =
∫

Ω0

SdV0. (35)
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Figure 8: FE Model of the RVE, with schematic pole figure of the c-axes. The greyscale exemplifies the periodic Voronoi structure of the grains.

Figure 9: Cut through the RVE, where the cutting plane normal corresponds to the compression direction. The grey-scaling represents the grain structure.
One can see the propagation of a twin (black) over a grain boundary. The left frame is taken shortly before the right frame.

However, only S̄ needs to be extracted from the RVE, since F̄ is prescribed. From F̄ and S̄, the Cauchy stresses

σ̄ =
1

detF̄
S̄F̄

T
(36)

and the logarithmic strains are determined. Due to the diagonal form of F̄ , the logarithmic straining in the e1 direction
is obtained by εlog = lnF̄11. For more details on the RVE method the reader is referred to the works of Suquet (1987);
Nemat-Nasser (1999); Markov and Preziosi (2000); Zohdi and Wriggers (2001); Miehe (2003).

5.3. General observations

Initially, the stress-strain relation is linear elastic, as expected. Due to the weak anisotropy of magnesium, the deforma-
tion and the stresses are relatively homogeneous at this stage. At approximately 2% of logarithmic strain, twins nucleate
and spread rapidly over the FE model. In Figure 9, the propagation of a twin over a grain boundary is illustrated. In Figure
10, a sequence of states illustrating the twin spreading in the RVE is given. The incorporation of basal glide does not sig-
nificantly alter the results, which is due to the approximately perpendicular alignment of the basal planes to the principal
stress direction. The microscale features of the material model are studied in detail in Glüge et al. (2010). Here, the focus
is on the macroscale predictions.
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Figure 10: Twin spreading on the RVE, at a nominal compression strain of 2.5%, 2.9% and 4.6%, from left to right. The compression direction is normal
to the lower right face of each cube.

5.4. Comparison to experimental findings

As a reference, the works of Reed-Hill (1973) and Jiang et al. (2007) have been used, where compression tests for two
magnesium alloys (AM30 and AZ31, Jiang et al. (2007)) and pure magnesium (Reed-Hill, 1973) are documented. The
material model and simulation setup correspond to pure magnesium without precipitates. However, due to the lack of data
for pure magnesium, the twin volume fraction and texture evolution are compared to experimental findings obtained for
the magnesium alloy AM30.

Stress-strain relation. Comparing to the compression stress-strain response given by Jiang et al. (2007) (Figure 17), one
finds that the experimental results display a considerable strain hardening, while in the simulations a pronounced zero-
hardening plateau is found. This is due the fact that the hardening behaviour of AM30 is very complex due to precipitates,
which is not captured by the model. This explanation is furnished by the fact that the stress strain response is in considerable
agreement with the compression experiments with pure magnesium (Reed-Hill, 1973), which displays a less complicated
hardening behaviour due to the lack of particles and precipitates, see Figure 12. It is found that the zero-hardening-plateau
at approximately 60 MPa (≈ 8.7 ksi) corresponds to the twin nucleation phase. At approximately 3% of logarithmic strain,
the nominal stress increases constantly, which coincides with the point where volume-filling twinning starts seriously.
Similar findings are given by Muránsky et al. (2009). The hardening is explained by the fact that the twins form firstly at
stress concentration points, or expressed differently, at the most favourable twinning sites. For further twinning, the loading
must be increased in order to activate the less favoured twinning sites. One notes that the hardening rate is overpredicted
in the simulations. This is due to the fact that the material model does not capture secondary twinning and slipping inside
the twins, which renders them stiffer as in reality.

Twin volume fraction evolution. In Figure 11, graphs for the twin volume fraction evolution in the experiments and the
simulations are depicted. One notes that the evolution of the twin volume fraction is qualitatively in good agreement with
the experimental findings. The rapidly increasing twinning rate at 3 to 5% of logarithmic strain, as well as the saturation are
captured by the model. Therefore, it is to be expected that the crystallographic texture evolution are in good accordance, as
twinning dominates the texture evolution for this particular experiment. Quantitatively, the simulated twin volume fraction
is overestimated. This discrepancy is discussed in the last paragraph of this section.

Texture evolution. The RVE-simulations allow to compare the texture evolution with experimental results. At a material
point, the significant orientation is assumed to be given by the phase with the smallest strain energy. Due to the phe-
nomenological model adaption, the strain energy invariance is not exactly met by the model, i.e. a definite orientation can
be extracted at each of the 8 × 403 integration points of the FE model. The c-axes of 20 initial orientations deviate at
most by 15◦ from the compression plane, see Figure 13 for pole figures of the initial orientation distribution. The sequence
of c and a pole figures for the compression test is given in Figure 14. One notes that the texture evolution corresponds
qualitatively well to experimental results of Jiang et al. (2007), although the rate at which the texture shifts is overestimated.
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Figure 11: Comparison of the experimental (Jiang et al., 2007) and the RVE-simulated twin volume fraction evolution.

Figure 12: Comparison of the experimental and the RVE-simulated stress evolution (Cauchy stress over logarithmic strain). Courtesy of S.N. Monteiro,
experimental data firstly published in Reed-Hill (1973).
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Figure 13: c and a pole figures of the initial orientation distribution, with Icmax = 9.403 and Iamax = 5.173. The projection plane is parallel to the
compression direction. The pole figures are calculated using a Mises-Fisher (Fisher, 1953) distribution with a half-width of 20◦ around the individual
orientations.

Experimental c pole figures measured by Jiang et al. (2007) at a logarithmic strain of -4%, -8% -11% and -15%.

Imax = 8.233 Imax = 7.916 Imax = 10.591 Imax = 11.204
simulated c pole figures

Imax = 4.391 Imax = 2.801 Imax = 3.581 Imax = 3.749
ε0 = −2.4 ε0 = −4.4 ε0 = −6.6 ε0 = −8.4

simulated a pole figures

Figure 14: c and a pole figures for the compression test. The projection plane is parallel to the compression direction. The pole figures are calculated
using a Mises-Fisher distribution with a half-width of 20◦ around the individual orientations.
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The role of basal glide. Not surprising, the basal glide has virtually no effect on the overall material behaviour, which is due
to the approximately perpendicular orientation of the basal plane to the compression direction. At the onset of twinning,
very weak basal glide is observed. The model does not include basal slip in the twins. Therefore, as the deformation
continues and the twin volume fraction increases, the basal slip ceases completely.

Differences between simulations and experiments. Since the model captures only first order {101̄2}〈1̄011〉 twins and basal
glide in the parent crystal, some deviations from experimental findings should be expected. There are more deformation
mechanisms contributing the the material behaviour, namely very few pyramidal glide, secondary twinning, glide inside
the twins, other primary twinning modes and damage.

First of all, the twins deform purely elastically, i.e. they behave stiffer as in reality. Therefore, in the case of a twin
saturation at a volume fraction of 100%, no stress saturation is obtained. Instead, the stress-strain response approaches the
linear elastic material behaviour, which explains the overestimation of the hardening after the zero-hardening plateau.

Secondly, a comparison of the stress strain relation with AM30 is even more risky. As mentioned before, precipitates
strengthen the material by acting as stiff inclusions, hindering twinning and slip. This is not included in the model setup,
allowing for a more easy twin formation at a lower stress level. Therefore, the twin volume fraction and consequently the
texture evolution are overestimated.

6. Summary

The model proposed by Glüge et al. (2010) is used in a simple compression simulation of an RVE, where the orientation
distribution is similar to the one that is experimentally observed in extruded magnesium. It is found that the predicted twin
structure displays the main features of experimentally observed twin structures. The twins form as plates inside the grains.
Near the grain boundary, the twinning induced misfit strain causes the nucleation of a twin in the neighbouring grain, i.e. the
twins are able to propagate across grain boundaries. The average twin volume fraction and the texture evolution correspond
well to experimental findings of Jiang et al. (2007). Due to the complicated hardening behaviour owed to twin-particle
interactions, the hardening behaviour of magnesium alloy is underestimated. In the phase of extensive twinning, the model
predicts a zero hardening plateau, which is in accordance to experimental observations on pure magnesium (Reed-Hill,
1973). At the end of the phase of extensive twinning, the stresses are overpredicted in both cases. This is due to the lack of
the following deformation mechanisms: secondary twinning, slip inside the twins, and damage. Due to the model setup,
the principal direction of straining is approximately perpendicular to the basal slip planes, which renders the role of basal
glide as secondary. The slip-twin interaction is studied in Glüge et al. (2010).

The presented modelling approach is able to predict the features of deformation twinning on the microscale (Glüge
et al., 2010) as well as on the macroscale. However, problems should not be concealed. First of all, to predict the macro-
scopic material behaviour, the numerical homogenisation via the RVE method needs to be employed. The computational
effort is therefore too large for practical forming process simulations. There are as well some fundamental difficulties.
The most problematic fact is that twinning is connected to the movement of partial dislocations. This induces a strain
path-dependence and energy dissipation. Both are neglected by any pseudoelastic modelling. For example, the elastic
modelling allows, in principle, phase changes from one twin variant to another one without passing through the parent
phase as the intermediate configuration. Such behaviour is not realistic due to the kinetic process underlying to the twin
formation. The conclusion is that the pseudoelastic modelling cannot be applied if severe strain path changes occur. For
the same reason, higher order twinning has to be excluded from the model, as the higher order twins are only accessible
by a specific series of twinning operations. This strain path dependence can not be reflected by an elastic modelling with
a static strain energy. The latter may be resolved by proposing a non-static strain energy density. Moreover, the strain
energy invariance of conjugate twins restricts the elastic modelling to crystallographically equivalent conjugate twins. An
example for crystallographically distinct conjugate twins are the {011̄1}〈011̄2̄〉 and the {011̄3̄}〈033̄2〉 twins in the hcp
lattice. In an elastic modelling approach as given here, the strain energy invariance forces us to include both twin systems
or none of them, although they may display very different characteristics.
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