
Differences in tension and compression

in the nonlinearly elastic bending of beams

M. Destradea, J.G. Murphyb,∗, B. Rashida

aSchool of Electrical, Electronic, and Mechanical Engineering,University College Dublin, Belfield, Dublin 4, Ireland
bDepartment of Mechanical Engineering,Dublin City University, Glasnevin, Dublin 9, Ireland

Abstract

The classical flexure problem of non-linear incompressible elasticity is revisited for elastic materials whose mechanical
response is different in tension and compression—the so-called bimodular materials. The flexure problem is chosen to
investigate this response since the two regions, one of tension and one of compression, can be identified easily using simple
intuition. Two distinct problems are considered: the first is where the stress is assumed continuous across the boundary
of the two regions, which assumption has a sound physical basis. The second problem considered is more speculative: it is
where discontinuities of stress are allowed. It is shown that such discontinuities are necessarily small for many applications,
but might nonetheless provide an explanation for the damage incurred by repeated flexure. Some experimental evidence
of the possibility of bimodularity in elastomers is also presented.
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1. Introduction

Many materials seem to behave differently in tension and compression. Such materials are sometimes termed
bimodular materials. Such bimodularity has been observed, for example, in rocks (Lyakhovsky et al. (1997)),
nacre (Bertoldi et al. (2008)), and soft biological tissue, especially (Soltz and Ateshian (2000)). Although the
concepts of tension and compression seem intuitively obvious, a precise definition of these terms is a non-
trivial problem that is still open. Perhaps the most definitive formulation of these concepts is given in the
study by Curnier et al. (1995), who formulate their theory in the context of unconstrained non-linear elasticity.
The linearization of their theory yields an unambiguous and precise definition of tension and compression for
infinitesimal strains, but the situation for non-linear deformations is less clear-cut, with the regions of tension
and compression corresponding to positive and negative values respectively of an undefined functional of the
Green-Lagrange strain tensor.

This difficulty is avoided here by considering the problem of flexure, where intuition suggests the appropriate
regions of tension and compression. If a rectangular bar is bent by terminal couples, with the faces along
the length of the bar assumed to be traction-free, then the region of tension corresponds to the region where
imaginary fibres originally aligned along the length are extended and the region of compression is where the
fibres are contracted, as illustrated in Figure 1 below. This problem is, perhaps, the benchmark problem that
all theories of bimodularity must describe; specifically, a general theory of when a material is in tension and
compression should coincide with our intuitive notion of tension and compression in flexure.
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The problem of flexure is considered here within the context of non-linear, isotropic, incompressible elasticity,
primarily because the mathematical analysis is considerably simpler than that for unconstrained materials. First
formulated and solved by Rivlin (1949), it has since been studied extensively in the literature (see, for example,
Green and Zerna (1954) and Ogden (1984)). There is continuing theoretical interest in this problem, as can be
seen, for example, in the recent studies of Kanner and Horgan (2008) and Destrade et al. (submitted). Rivlin
(1949) showed that if a circular, annular sector is assumed for the deformed configuration, then an elegant
solution to a natural boundary value problem can be found. We recall this derivation in Sections 3.1 and 3.2.
There, the solution is simplified by assuming that the turning angle α through which the beam is bent is specified,
as opposed to the more usual assumption of specifying the moment.

ra

rn

rb

Figure 1: In-plane section of a bent block of an isotropic, incompressible, non-linearly elastic solid. The bending angle is α. The
inner and outer radii of the bent faces are ra and rb, respectively. Along the arc line at r = rn, the circumferential line elements
preserve their length during bending. In the region of “compression”, ra ≤ r ≤ rn, they are contracted. In the region of “tension”,
rn ≤ r ≤ rb, they are extended.

Next (§3.3), we establish the general expression for the stress difference across the neutral axis, which separates
the region of “compression” from the region of “tension”. The consequences of assuming that the stress is
continuous across the neutral axis are first explored. It is shown in Section 4 that for the case of a Mooney-
Rivlin solid, or equivalently, of a general incompressible solid in the third-order approximation of non-linear
elasticity, knowledge of μ̂, the ratio of the shear moduli in tension and compression, is all that is required to solve
the boundary value problem in its entirety. This solution is then used to illustrate some possible consequences
of bimodularity in flexure. The possibility of a stress jump across the neutral axis is also briefly considered with
an estimate given as to its possible magnitude (§5)

The problem considered here is one of the simplest non-linear problems in solids that involve structural
changes induced by applied mechanical forces. It is hoped that this analysis can give insight into more complicated
problems involving such changes and also can provide a reference solution for non-linear flexure problems where
structural changes other than simple changes in material constants are considered. The problem of flexure is
studied as it is very often the dominant mode of deformation, in the sense that the applied forces encountered are
small compared to those necessary to effect other deformations, for many materials that experience structural
changes, as is shown, for example, in the work of Lua et al. (2001). It is also of importance in the theoretical
investigation of the consequences of proposed models of complex behaviour in solids (see, for example, Rajagopal
et al. (2007)).

Although the idea of elastomers behaving differently in tension and compression has an intuitive appeal,
experimental evidence of this is scant, presumably because the effect of bimodularity has not previously been
considered important. Some indirect evidence of this effect in rubbers is presented next.

2. Experimental data on bimodularity

Rubbers are traditionally modeled as being non-linearly elastic, incompressible materials. The recent data of
Bechir et al. (2006) suggest that, for at least some natural rubbers, there seems to a different response in tension
and compression.
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By examining closely the data displayed on their Figure 8(a), we can estimate the slope of the stress-strain
curve in the linear region of compression. We obtain an excellent (visual) fit for the first recorded five data points
by taking a straight line passing through the origin with slope approximatively equal to 8.33 MPa. For the region
of tension, we use their experimental data (kindly provided by H. Bechir), see Table 1. Here, depending on how
many points we estimate to be in the linear regime, we find that the slope is somewhere between 3.94 and
5.84 MPa. This suggests that for the natural rubber NR70 of Bechir et al. (2006), the ratio of E+ to E−, the
infinitesimal Young moduli in tension and in compression, is within the range

0.47 < E+/E− < 0.70. (1)

Table 1. Experimental data of Bechir et al. (2006) in the early (linear) stages of the uniaxial tensile region:
Cauchy stress (MPa) Vs elongation (m/s).

e 0.0514 0.1016 0.1518 0.2023

σ 0.3000 0.4899 0.6525 0.7971

We conducted similar experiments on soft translucent silicone [Feguramed GmbH]. Figure 2 shows representative
results obtained from uni-axial compression and tension tests, in the neighborhood of the unstressed state. We
carried out several tests in each regime, on specimens with various sizes, and found that in the linear tensile
region, the slope was approximatively 0.45 MPa (notice that the silicone is about 20 times softer in tension than
the NR70 of Bechir et al.), while in the compressive region it was approximatively 0.25 MPa. This suggest that
in contrast to rubber, silicone is stiffer in tension than in compression, with

E+/E− � 1.8. (2)
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Figure 2: Uni-axial compression and tension tests of translucent silicone. The original dimensions of the block in compression were 50
mm (depth) × 70 mm (width) × 50 mm (height); there, the elongation was measured as (recorded displacement)/(original height);
the Cauchy stress was computed from the recorded nominal force applied by the Tinius Olsen machine; the contact areas between
the compression platens and the specimen were generously lubricated. The dogbone specimen used in tension had an original section
area of 2 mm × 6 mm; there elongation was tracked directly by LASER monitoring.

Of course, we must acknowledge that external factors, other than bimodularity, can explain that E+/E− �= 1,
most importantly, those due to experimental error and protocol. Indeed uniaxial compressive tests such as
those presented above are harder to implement than tensile tests, because a perfect lubrication between the
platens and the sample is required in order to ensure homogeneous deformations. Nonetheless we note that there
exists standardized protocols for compressive tests of rubbers (see International Organization for Standardization
(2004), American Society for Testing and Materials (2001), and also Gent (1994)). It seems thus perfectly
legitimate to investigate what would be the consequences of bimodularity for elastomers.
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Finally we remark that Soltz and Ateshian (2000) used bimodularity to model the tension-compression nonlin-
earity of articular cartilage. There, the mean values obtained from 9 specimens give E+/E− = 12.75/0.6 = 21.25.
Similarly, Bertoldi et al. (2008) recently showed that nacre (mother-of-pearl) must be considered orthotropic
and bimodular in order to interpret correctly the available experimental data. They estimate that for nacre,
0.5 < E+/E− < 0.8. They also carry out calculations for the plane strain bending of a orthotropic, bimodular
beam, within the theory of linear elasticity. In what follows here, we focus on the large bending of isotropic,
incompressible, bimodular beams in non-linear elasticity.

3. Bending

3.1. Bending deformation
The fundamental assumption introduced by Rivlin (1949) to model the non-linear flexure of an incompressible

beam is that a beam of length L and thickness 2A is deformed under applied terminal moments into a circular,
annular sector. For definiteness, assume that the faces X = ±A are deformed into the inner and outer faces
of radii ra and rb, respectively, of the annular sector and that the faces Y = ±L/2 are deformed into the faces
θ = ±α, where α is a specified constant. The turning angle α, is restricted to lie in the range

0 ≤ α ≤ π, (3)

which only allows a beam to be bent into at most a circular annulus.
Adopting a semi-inverse approach, Rivlin (1949) shows that the following non-homogeneous deformation field

is a solution to the equilibrium equations of non-linear incompressible elasticity:

r =
√

2(L/α)X + D, θ = αY/L, z = Z, (4)

where (X, Y, Z) and (r, θ, z) denote the Cartesian and cylindrical polar coordinates of a typical particle before
and after deformation, respectively, and D is a constant. Hence, the inner and outer radii of the deformed curved
surfaces are determined by

ra,b =
√

D ∓ 2(L/α)A. (5)

Adding and subtracting these equations then yields

D = (r2
a + r2

b )/2, r2
b − r2

a = 4AL/α. (6)

The corresponding deformation gradient tensor, F , is given by

F = diag (λ1, λ2, λ3) = diag
(
λ, λ−1, 1

)
, where λ = L/(αr), (7)

denoting the principal stretches by λ1, λ2, λ3. Here λ2 = λ−1 is the stretch experienced by circumferential line
elements: when λ2 > 1 (λ < 1), the line elements are extended by the bending; when λ2 < 1 (λ > 1), they are
contracted. Also, λ3 = 1 at all times, showing that Rivlin’s solution (4) is a plane strain deformation. Note
that λ1λ2λ3 = 1, showing that the deformation respects the internal constraint of incompressibility. Finally, it is
clear that F corresponds to a non-homogeneous deformation because the radial stretch λ1 varies as the inverse
of r. In particular, it takes the following values

λa = L/(αra), λb = L/(αrb), (8)

on the inner and outer faces of the bent beam, respectively. These notations allow us to rewrite (6)2 in non-
dimensional form as

λ−2
b − λ−2

a = 2ε, (9)

where ε is the product of the beam aspect ratio by the turning angle Destrade et al. (submitted):

ε = (2A/L)α. (10)
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3.2. Homogeneous (unimodular) beams
For homogeneous, incompressible, elastic materials, the corresponding principal Cauchy stresses are

Trr = −p + λ1W,1, Tθθ = −p + λ2W,2, (11)

where p is an arbitrary scalar field, W = W (λ1, λ2, λ3) is the strain-energy function and the comma subscript
denotes partial differentiation with respect to the appropriate principal stretch. The equations of equilibrium
determine p as

p =
∫

(λ1W,1 − λ2W,2) r−1dr + λ1W,1 + K, (12)

where K is an arbitrary constant. It therefore follows immediately that

Trr =
∫

(λ1W,1 − λ2W,2) r−1dr + K, Tθθ = Trr + λ2W,2 − λ1W,1. (13)

Now define the function W̃ (λ) as

W̃ (λ) = W (λ, λ−1, 1), (14)

which is assumed henceforth to be a convex function. Then

λW̃ ′ = λ1W,1 − λ2W,2, (15)

where the prime denotes differentiation. The stress components can then be written simply as functions of λ as

Trr = W̃ + K, Tθθ = Trr − λW̃ ′. (16)

The curved surfaces of the bent beam are assumed to be free of traction. This assumption then yields

K = −W̃ (λa), W̃ (λb) = W̃ (λa). (17)

Only isotropic materials are considered in this paper. For these materials, W (λ1, λ2, 1) = W (λ2, λ1, 1) , or
equivalently,

W̃ (λ) = W̃ (λ−1). (18)

Then (17)2 yields

W̃ (λb) = W̃ (λa) = W̃ (λ−1
b ) = W̃ (λ−1

a ). (19)

There are two obvious solutions to these equations: the first is λa = λb, which by (8) gives ra = rb, a physically
unacceptable solution; the second is λa = λ−1

b , which gives

λaλb = 1, or α2rarb = L2. (20)

In that latter case, (8) yields a quadratic equation for λ2
a, with the following unique physically acceptable solution:

λa =
√

ε +
√

ε2 + 1, or r2
a =

L

α

(√
4A2 +

L2

α2
− 2A

)
, (21)

which completely determines the deformed configuration. Unusually, it is independent of the form of the strain-
energy function (provided that (20), which is sufficient for (19) to be satisfied, is also necessary). From the
specialization to isotropic materials follows also immediately from (15) that

W̃ ′(1) = 0. (22)

Hereafter we consider the boundary value problem where equal and opposite moments are applied to the ends
of the beam at Y = ±L/2, whilst the inner and outer curved faces of the beam are traction-free.



78 Destrade et al. / International Journal of Structural Changes in Solids 1(2009)

3.3. Bimodular beams

The neutral axis in flexure is the circumferential material line (originally parallel to the major axis of the
beam in the reference configuration) with unchanged length, see Figure 1. The neutral axis is therefore given by
the radius rn in the deformed configuration such that

rn =
L

α
, (23)

assuming that

ra ≤ rn ≤ rb. (24)

The neutral axis is the natural, intuitive, boundary in flexure between the regions in “tension” and “compression”,
defined by r > rn and r < rn, respectively.

Assume now that a material behaves differently in these two regions. The turning angle α is assumed to
be constant across these two regions. Assuming also that the radial deformation field is continuous across rn

then means that both the deformation field and the deformation gradient tensor have the same form in both
regions. Denote quantities associated with the tensile and compressive regions by the superscripts ‘+’ and ‘-’,
respectively. It follows from (16) that the radial stress therefore has the form

T +
rr = W̃+(λ) + K+, T−

rr = W̃−(λ) + K−, (25)

where K+, K− are constants and λ is defined by (7). Satisfying the stress free boundary conditions on the upper
and lower curved surfaces, and solving for K+, K− then yields

T +
rr = W̃+(λ) − W̃+(λb), T−

rr = W̃−(λ) − W̃−(λa). (26)

Along the neutral axis then

T +
rr(rn) = W̃+(1) − W̃+(λb), T−

rr(rn) = W̃−(1) − W̃−(λa). (27)

The usual assumption of zero strain energy in the reference configuration yields

W̃+(1) = W̃−(1) = 0, (28)

and so we obtain the following relation for the normal stress difference across the neutral axis :

ΔTrr ≡ T +
rr(rn) − T−

rr(rn) = W̃−(λa) − W̃+(λb). (29)

It follows from (13) and (22) that the difference in the hoop stress is exactly the same:

ΔTθθ ≡ T +
θθ(rn) − T−

θθ(rn) = W̃−(λa) − W̃+(λb). (30)

We call ΔT this stress difference: ΔT = ΔTrr = ΔTθθ.
Consider now that there is no stress discontinuity across the neutral radius. Then ΔT = 0 and

W̃−(λa) = W̃+(λb). (31)

Recalling (9), this equation can be rewritten as the defining equation for λa as follows:

W̃−(λa) = W̃+(λa(1 + 2ελ2
a)

− 1
2 ). (32)

With λa, necessarily > 1, determined in this way, the deformed configuration is completely determined. Note
that, in contrast to the standard flexure problem solved by Rivlin (see (21)), the deformed configuration depends
here on the form of the strain-energy function. One such form is considered in the next section.
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4. An example

In this section we solve the flexure problem in the case where the solid is modeled by the Mooney-Rivlin
strain energy density:

W =
μ

2
(1 + f)(λ2

1 + λ2
2 + λ2

3 − 3) +
μ

2
(1 − f)(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3), (33)

where μ and f are constants, or equivalently Goriely et al. (2008), by the third-order expansion of W in the
weakly non-linear elasticity approximation Ogden (1974); Hamilton et al. (1974):

W = μ tr(E2) +
A
3

tr(E3), (34)

where μ is the shear of modulus of second-order elasticity, A is a third-order non-linear Landau constant, and
E is the Green-Lagrange strain tensor (with eigenvalues (λ2

i − 1)/2).
In both cases we find that

W̃ (λ) =
μ

2
(
λ2 + λ−2 − 2

)
. (35)

Then (32) reduces to the following cubic:

2εx3 +
[
1 − 4ε − μ̂ (1 − 2ε)2

]
x2 − 2 [1 − ε − μ̂ (1 − 2ε)] x + 1 − μ̂ = 0, (36)

where x ≡ λ2
a, ε is defined in (10), and μ̂ ≡ μ+/μ− is the ratio of the shear modulus in the region of tension by

the shear modulus in the region of compression.
Focusing now on bimodular solids which are stiffer in compression than in tension, we take 0 < μ̂ < 1. Calling

f(x) the cubic on the left hand side of (36), we find that f(1) = −4μ̂ε2 < 0 and f(∞) = 1 − μ̂ > 0, ensuring
that there always exists a relevant root for λa. Setting μ̂ = 1 recovers the case where there is no difference
in material properties in tension and compression, and (36) then yields (21). Letting μ̂ → 0 in (36), which
physically corresponds to the case where μ+ << μ−, yields λa = 1: in other words, an infinitely stiff bar cannot
be bent, as expected intuitively. Figure 3 displays several graphs of λa as a function of ε, for different values of
the parameter μ̂.
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Figure 3: Variations of λa, the radial stretch ratio on the inner curved face, with ε, the product of the bar aspect ratio by the turning
angle, in the case of a bimodular Mooney-Rivlin solid. The ratio of the tension shear modulus to the compression shear modulus
takes the values: μ̂ = 0.0 (horizontal dotted line), 1/20, 1/10, 1/4, 1/2, 1/1.1 (full lines), and 1.0 (other dotted line).

It is clear that the effect of the tension-compression difference becomes more pronounced with increasing
angle and/or aspect ratio.
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A physically realistic value for μ̂ can be deduced from the experimental data of Bechir et al. (2006), who
obtained a Poisson’s ratio of 0.48 in simple tension experiments on the rubber NR70 and a Poisson’s ratio of 0.26
in simple compression. Assuming that the bulk modulus doesn’t change in tension and compression, for which
there is some experimental evidence (see, for example, Horgan and Murphy (In press)), then yields μ̂ ≈ 0.07
which when substituted into (36) yields a solution curve virtually identical to that plotted above for μ̂ = 0.

5. Possibility of a stress discontinuity

Finally, the possibility of a stress discontinuity across the neutral axis is considered. The size of the stress
discontinuity cannot be determined without a further assumption. It will be assumed here that the deformed
configuration for the bimodular material is the same as that in the classical problem of flexure,

As shown in Section 3.2, the deformation of the classical flexure problem is independent of the form of the
strain-energy function and therefore, in particular, independent of which of the tension/compression forms is to
assumed. For the classical problem,

λb = λ−1
a , (37)

according to (6) and, from (29), the stress discontinuity in the bimodular beam therefore has the value

ΔT = W̃−(λa) − W̃+(λ−1
a ). (38)

Noting (18), this can be simplified as

ΔT = W̃−(λa) − W̃+(λa). (39)

Now the material is isotropic, and without loss of generality, the strain-energy function can be assumed to
have the form

W̃ (λ) = W̃ (I), where I ≡ λ2 + λ−2 − 2, (40)

because in bending, the first and second principal invariants of the Cauchy-Green strain tensor are both equal to
I. The problem of flexure is a typical example of a deformation where the strain, quantified here by I, is small
but with possibly moderate or large deformations. Therefore the general strain-energy function W̃ (λ) can be
closely approximated by the linearisation of W̃ (I), i.e., by the form (35) of the strain-energy function. It follows
that ΔT can be closely approximated in general by

ΔT =
(
μ− − μ+

) (
λ2

a + λ−2
a − 2

)
= 2

(
μ− − μ+

)(√
ε2 + 1 − 1

)
. (41)

Hence, in general, it can be seen that the stress discontinuity cannot be large because the difference in the
shear moduli is multiplied by a small term. We would like to propose this stress difference as a possible cause
of damage in the flexure of hyperelastic materials. We note that simply flexing a hyperelastic bar is not likely
to cause much damage but, over time, flexing and unflexing the same bar is likely to cause the accumulation of
small amounts of damage due to the stress discontinuity, with inevitable consequences for the integrity of the
component.
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