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NONLINEAR OBLIQUE INTERACTION OF LARGE AMPLITUDE 
INTERNAL SOLITARY WAVES 

Keisuke Nakayama1, Taro Kakinuma2, Hidekazu Tsuji3 and Masayuki Oikawa4 

Solitary waves are typical nonlinear long waves in the ocean. The two-dimensional interaction of solitary waves has 
been shown to be essentially different from the one-dimensional case and can be related to generation of large 
amplitude waves (including ‘freak waves’). Concerning surface-water waves, Miles (1977) theoretically analyzed 
interaction of three solitary waves, which is called “resonant interaction” because of the relation among parameters of 
each wave. Weakly-nonlinear numerical study (Funakoshi, 1980) and fully-nonlinear one (Tanaka, 1993) both 
clarified the formation of large amplitude wave due to the interaction (“stem” wave) at the wall and its dependency of 
incident angle. For the case of internal waves, analyses using weakly nonlinear model equations (e.g. Tsuji and 
Oikawa, 2006) suggest also qualitatively similar results. Therefore, the aim of this study is to investigate the strongly 
nonlinear interaction of internal solitary waves; especially whether the resonant behavior is found or not. As a result, 
it is found that the amplified internal wave amplitude becomes about three times as much as the original amplitude. In 
contrast, a “stem” is not found to occur when the incident wave angle is more than the critical angle, which has been 
demonstrated in the previous studies. 
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Introduction 
Solitary waves are typical nonlinear long waves in the ocean. The two-dimensional interaction of 

solitary waves has been shown to be essentially different from the one-dimensional case, and can be 
related to generation of large amplitude waves (including ‘freak waves’). Concerning surface-water 
waves, Miles (1977) theoretically analyzed the interaction of three solitary waves, which can be called 
“resonant interaction” because of the relation among parameters of each wave, and applied the result to 
the oblique reflection of solitary waves at a wall. A weakly-nonlinear numerical study (Funakoshi, 
1980) and a fully-nonlinear study (Tanaka, 1993) both clarified the formation of large amplitude waves 
due to the interaction (“stem” wave) at the wall and its dependency on the incident angle. For the case 
of internal waves, analyses using weakly nonlinear model equations (e.g. Tsuji and Oikawa, 2006) also 
suggested qualitatively similar results. However, as these solutions were obtained using weakly 
nonlinear model equations, Strongly nonlinear wave effects were not explored but were expected to 
change the amplification rate of the solitary waves. 

Similar to surface waves, large amplitude internal waves occur in a stratified flow field which can 
induce resuspension and transport mass (Wallace and Wilkinson, 1988; Helfrich, 1992; Pierson and 
Weyhenmeyer, 1994; Antenucci and Imberger, 2001; Boegram et al., 2005; Boegman and Ivey, 2009; 
Nakayama and Imberger, 2010; Aghsaee et al., 2010; Nakayama et al., 2012). Nakayama and Imberger 
(2010) and Nakayama et al. (2012) demonstrated that long-term transport occurs due to intrusion under 
the density interface resulting from the breaking of internal waves over a uniform slope. Therefore, it is 
necessary to analyze large amplitude internal waves in the context of their capacity to induce long-term 
mass transport. 

Choi and Camassa (1999) and Horn et al. (2001) show how to deal with one-dimensional internal 
solitary waves, but do not provide theoretical solutions of an internal solitary wave as an initial 
condition. Thus, we applied third-order internal solitary wave equations based on the ninth-order 
solitary wave equations (Mirie and Pennel, 1989) as an initial condition by using a fully nonlinear and 
strongly dispersive internal wave model (FSI model: Kakinuma, 2001; Nakayama and Kakinuma, 
2010). The FSI equations were derived based on the variational principle, which was a modified 
version of the theory proposed by Luke (1967). The aim of this study was to investigate the strongly 
nonlinear interaction of internal solitary waves; especially whether resonant behavior was evident. 

                                                             
 
1 Civil and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami City, 090-8507, Japan 
2 Natural Science, Kagoshima University, 1-21-40 Korimoto, Kagoshima City, 890-0065, Japan 
3 Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen Kasuga City, 816-8580, Japan 
4 Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi Higashiku Fukuoka City, 

811-0295, Japan 



 COASTAL ENGINEERING 2012 
 
2 

FSI model 

Wave equations in a two-layer system with an irrotational flow field (Fig. 1) were obtained by 
expanding velocity potential using  vertical profile functions. 

ii φ∇=u  and zw ii ∂φ∂= /    (1) 

( ) ( ){ } ( ) αα

−

=α
αα ≡=φ ∑ ,,

1

0
,, ,,,, ii

N

iiii fZtxfxhzZtzx     (2) 

where ρ1 and ρ2 indicate the density in the upper and lower layers, H and h0 indicate the total and lower 
layer thickness, ζ is the interfacial displacement, p1 and p2 indicate the pressure in the upper and lower 
layer,  ∇  is a partial differential operator in the horizontal plane, i.e., )/,/( yx ∂∂∂∂=∇ , N is the 
number of vertically distributed functions and the sum rule of product is adopted for subscript α, fi,α is 
the weight for the ith-layer.  

The definition of the vertical profile function as in Eq. 3 yields upper and lower layer equations.  
α

α = zZi,    (3) 

Upper layer equations: 
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Lower layer equations: 
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In the FSI equations, the velocity potential is defined using expansion of the power function, which 
means that the higher the number ofN, the higher the accuracy of the computation. When N = 1, the FSI 
equations are the same as the shallow water equations. It should be noted that it is possible to apply the 
equations to surface waves by taking the upper and lower layer as air and water, respectively. 

3rd order internal solitary wave solution 
The shape of the internal solitary wave was obtained from Eqs. 8 to 16.  

  
Figure 1. Schematic diagram of a two-layer system used in the FSI model. 



 COASTAL ENGINEERING 2012 
 

3 

2

1

ρ

ρ
=σ    (8) 

0

0

h
hH

R
−

=    (9) 

R
C

/1
1

0 σ+

σ−
=    (10) 

( ) ( )333231
3

2221
2

11 AAAAAAa ++ε++ε+ε=    (11) 

XS 2sech=    (12) 

( )tCx
h
KX R−
ε

=
02

3    (13) 

( )33
2

2
100 1 CCCCghCR ε+ε+ε+=    (14) 

( )ζ+= 10hh    (15) 

( ) ( )333
2

3231
32

2221
2

11 SASASASASASA ++ε++ε+ε=ζ    (16) 

  
Figure 2. Computational domain. 
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where a is the amplitude of internal solitary wave, h is the interfacial level, K is the coefficient 
regarding spatial scale, Aij (i, j = 1~3) indicates the coefficient for interfacial displacement and Ci (i  = 
1~3) indicates the coefficient of wave speed.  

Computational domain and results  
To compute the resonance of solitary waves, we applied oblique boundary conditions for an 

incident solitary wave in the computational domain, as proposed by Funakoshi (1980) (Fig. 2). The 
upper and lower layer depths were 0.2 m and 0.8 m, respectively, the specific density difference 2.0, 
and the amplitude given as 0.024 m. Computations were conducted for 8 cases, in which the incident 
wave angle ranged from 15 to 40 degrees (Table 1). To save computational time, the actual 
computational region was limited to the 150 meshes around the incident internal solitary wave, which 
corresponds to 60 m in the x coordinate. Elsewhere, a sponge layer was applied to reduce the reflection 
from the outside of the actual computational region. Parallel computing was applied using 8 CPUs. 

Kadomtsev–Petviashvili (KP) theory can provide critical angle of oblique internal solitary waves 
in a two-dimensional domain shown as Eqs. 17 to 20. 
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Figure 3. Interaction of internal solitary wave when the incident wave angle is 20 degrees. (a) 
Computational domain, 800 m x 400 m. (b) Initial condition. (c) 100 s. (d) 200 s. (e) 300 s. 
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where  ϕ is the critical angle.  

A "“stem"” was found to occur when the incident wave angle was less than the critical angle, and 
the "“stem"” length was confirmed to decrease with increasing incident wave angle. As a result, the 
amplified internal wave amplitude was found to be about three times as much as the original amplitude 
(Fig. 3). In contrast, a "“stem"” was not found to occur when the incident wave angle was more than 
the critical angle, which has been demonstrated in the previous studies. 

Discussion  
Amplification rate was compared with that of the KP theory and the solution based on Boussinesq-

tupe equations (Kakinuma and Nakayama, 2007; Nakayama K. and J. Imberger. 2010). It was found 
from the KP theory that Mach reflection was observed when the incident angle was smaller than the 
critical angle, and regular grazing reflection was found when the incident angle was larger than the 
critical angle (Eqs. 21 to 22). 
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where  β is amplification rate. 
On the other hand, the theory based on the Boussinesq-type equations can provide regular non-

grazing reflection shown as Eq. 23.  
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The maximum amplification rate for the 8 cases was found to be about 3, which agreed with the 
results demonstrated by Tanaka (1993) and Li et al. (2011) (Fig. 4). Interestingly, the amplification 
rates for the cases excluding case 1 and case 5 showed that regular non-grazing reflection agreed with 
the computational results, which may indicate the limitation of using the KP theory (Kodama, 2010). 
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