Albert Falqués, Niels van den Berg, Francesca Ribas, Miquel Caballeria


Shoreline undulations extending into the bathymetric contours with a length scale larger than that of the rhythmic surf zone bars are referred to as shoreline sand waves. Many observed undulations along sandy coasts display a wavelength in the order 1-7 km. Several models that are based on the hypothesis that sand waves emerge from a morphodynamic instability in case of very oblique wave incidence predict this range of wavelengths. Here we investigate the physical reasons for the wavelength selection and the main parametric trends of the wavelength in case of sand waves arising from such instability. It is shown that the existence of a minimum wavelength depends on an interplay between three factors affecting littoral drift: (A) the angle of wave fronts relative to local shoreline, which tends to cause maximum transport at the downdrift flank of the sand wave, (B) the refractive energy spreading which tends to cause maximum transport at the updrift flank and (C) wave focusing (de-focusing) by the capes (bays), which tends to cause maximum transport at the crest or slightly downdrift of it. Processes A and C cause decay of the sand waves while process B causes their growth. For low incidence angles, B is very weak so that a rectilinear shoreline is stable. For large angles and long sand waves, B is dominant and causes the growth of sand waves. For large angles and short sand waves C is dominant and the sand waves decay. Thus, wavelength selection depends on process C, which essentially depends on shoreline curvature. The growth rate of very long sand waves is weak because the alongshore gradients in sediment transport decrease with the wavelength. This is why there is an optimum or dominant wavelength. It is found that sand wave wavelength scales with λ0/β where λ0 is the water wave wavelength in deep water and β is the mean bed slope from shore to the wave base.


shoreline sand waves; shoreline instability; wave driven longshore transport; high angle waves


Alves A. R. 2009. Long term erosional hot spots in the southern Brazilian coast. Journal of Geophysical Research, 114, C02020, doi:10.1029/2008JC004933.http://dx.doi.org/10.1029/2008JC004933

Ashton, A., A. B. Murray and O. Arnault 2001. Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature, 414, 296-300.http://dx.doi.org/10.1038/35104541


Ashton, A., and A. B. Murray 2006a. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. Journal of Geophysical Research, 111, F04011,doi:10.1029/2005JF000422.http://dx.doi.org/10.1029/2005JF000422

Ashton, A., and A. B. Murray 2006b. High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. Journal of Geophysical Research, 111, F04012, doi:10.1029/2005JF000423.http://dx.doi.org/10.1029/2005JF000423

Bruun, P. 1954. Migrating sand waves or sand humps, with special reference to investigations carried out on the Danish North Sea Coast, Proceedings of 5th International Conference on Coastal Engineering, ASCE, 269-295.

Caballeria, M., A. Falqués, N. van den Berg 2011. Potential instabilities of Catalan coastline induced by high-angle waves. Proceedings of the 7th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, cd-rom

Davidson-Arnott, R. G. D. and A. van Heyningen 2003. Migration and sedimentology of longshore sandwaves, Long Point, Lake Erie, Canada. Sedimentology, 50, 1123-1137.http://dx.doi.org/10.1046/j.1365-3091.2003.00597.x

Falqués, A., and D. Calvete 2005. Large scale dynamics of sandy coastlines. Diffusivity and instability. Journal of Geophysical Research, 110, C03007, doi:10.1029/2004JC002587.http://dx.doi.org/10.1029/2004JC002587

Falqués, A., N. van den Berg, F. Ribas and M. Caballeria 2011a. Modelling shoreline sand waves. Application to the coast of Namibia. Proceedings of the 7th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, cd-rom.

Falqués, A., D. Calvete and F. Ribas 2011b. Shoreline Instability due to Very Oblique Wave Incidence: Some Remarks on the Physics. Journal of Coastal Research, 27(2), 291-295.http://dx.doi.org/10.2112/JCOASTRES-D-09-00095.1

Gravens, M. B. 1999. Periodic shoreline morphology, Fire Island, New York. Proceedings of Coastal Sediments'99, ASCE, 1613-1626.

Guillén J., M. J. F. Stive and M. Capobianco 1999. Shoreline evolution of the Holland Coast on a decadal scale. Earth Surface Processes and Landforms, 24, 517-536.http://dx.doi.org/10.1002/(SICI)1096-9837(199906)24:6<517::AID-ESP974>3.0.CO;2-A

Inman, D. L., M. H. S. Elwany, A. A. Khafagy and A. Golik 1992. Nile Delta Profiles and Migrating Sand Blankets. Proceedings of 23th International Conference on Coastal Engineering, ASCE, 269-295.

Kaergaard, K., J. Fredsoe and S. B. Knudsen 2011. Coastline undulations on the West Coast of Denmark: Offshore extent, relation to breaker bars and transported sediment volume. Coastal Engineering, 60, 109-122.http://dx.doi.org/10.1016/j.coastaleng.2011.09.002

Komar, P. D. 1998. Beach Processes and Sedimentation, Prentice-Hall, Englewood Cliffs, New Jersey, 544.

List, J. H. and A. D. Ashton 2007. A circulation modeling approach for evaluating the conditions for shoreline instabilities. Proceedings of Coastal Sediments 2007, ASCE, 327-340.

Medellín, G., R. Medina, A. Falqués and M. González 2008. Coastline sand waves on a low energy beach at 'El Puntal' spit, Spain. Marine Geology, 250, 143-156.http://dx.doi.org/10.1016/j.margeo.2007.11.011

Medellín, G., A. Falqués, R. Medina and M. González 2009. Sand waves on a Low-Energy Beach at 'El Puntal' Spit, Spain: Linear Stability Analysis. Journal of Geophysical Research, 114, C03022, doi:10.1029/2007JC004426.http://dx.doi.org/10.1029/2007JC004426

Pelnard-Considère, R. 1956. Essai de theorie de l'Evolution des Formes de Rivage en Plages de Sable et de Galets. Proceedings of the 4th Journees de l'Hydraulique, LesEnergies de la Mer, Paris, Société Hydrotechnique de France, III(1), 289-298.

Ruessink, B. G. and M. C. J. L. Jeuken 2002. Dunefoot dynamics along the Dutch coast. Earth Surface Processes and Landforms, 27, 1043-1056.http://dx.doi.org/10.1002/esp.391

Ryabchuk, D., I. Leontyev, A. Sergeev, E. Nesterova, L. Sukhacheva and V. Zhamoida 2011. The morphology of sand spits and the genesis of longshore sand waves on the coast of the eastern Gulf of Finland. Baltica 24 (1), 13–24.

Stive, M. J. F., S. G. J. Aarninkhof, L. Hamm, H. Hanson, M. Larson, K. M. Wijnberg, R. J. Nicholls and M. Capobianco 2002. Variability of shore and shoreline evolution. Coastal Engineering, 47, 211-235.http://dx.doi.org/10.1016/S0378-3839(02)00126-6

Thevenot M. M. and N. C. Kraus 1995. Longshore sandwaves at Southampton Beach, New York: observations and numerical simulation of their movement. Marine Geology, 126, 249-269.http://dx.doi.org/10.1016/0025-3227(95)00081-9

Uguccioni, L., R. Deigaard and J. Fredsoe 2006. Instability of a coastline with very oblique wave incidence. Proceedings of 30th International Conference on Coastal Engineering, ASCE, 3542-3553.

Van den Berg, N., A. Falqués, F. Ribas. 2012a. Modeling large scale shoreline sand waves under oblique wave incidence. Journal of Geophysical Research, 117, F03019, doi:10.1029/2011JF002177.http://dx.doi.org/10.1029/2011JF002177

Van den Berg, N., A. Falqués, F. Ribas, M. Caballeria. 2012b. On the wavelength of self-organized shoreline sand waves. Journal paper to be submitted.

Van den Berg 2012c. Modelling the dynamics of large scale shoreline sand waves, PhD thesis, Universitat Politècnica de Catalunya, Barcelona, 130 pp.

Verhagen, H. J. 1989. Sand waves along the Dutch Coast. Coastal Engineering, 13, 129-147.http://dx.doi.org/10.1016/0378-3839(89)90020-3

Vila-Concejo A., A. D. Short, M. G. Hugues and R. Ranasinghe 2009. Formation and evolution of a sandwave on an estuarine beach. Journal of Coastal Research, 56, 153-157.

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.