MODELLING INFRAGRAVITY WAVES AND CURRENTS ACROSS A FRINGING CORAL REEF

Ap Van Dongeren, Ryan Lowe, Andrew Pomeroy, Trang Minh Duong, Dano Roelvink, Graham Symonds, Roshanka Ranasinghe

Abstract


Low-frequency (infragravity) wave dynamics on a fringing coral reef were investigated using the numerical model XBeach (Roelvink et al, 2009). First, the skill of the one-dimensional model was evaluated based on its predictions of short waves (0.04-0.2 Hz), infragravity waves (0.004-0.04 Hz) and water level measurements (tidal and wave setup) obtained during a 2009 field study at Ningaloo Reef in Western Australia. The model calibration was sensitive to friction coefficients for short waves and current / infragravity bed friction, which were assumed independent in this model study. The infragravity waves were found to be generated primarily in the surf zone through the breakpoint generation mechanism rather than through offshore forcing. The infragravity waves were strongly also modulated over the reef by tidal depth variations, primarily due to the variability in frictional dissipation rates when the total water depth over the reef varied. The results reveal that short waves dominated bottom stresses on the fore reef and near the reef crest; however, inside the lagoon, infragravity waves become increasingly dominant, accounting up to 50% of the combined bottom stresses

Keywords


fringing coral reefs; hydrodynamics; wave breaking; infragravity waves; low frequency waves; surfbeat; XBeach

References


Atkinson, M. J., and J. L. Falter (2003), Coral Reefs, in Biogeochemistry of Marine Systems, edited by K. P. Black and G. B. Shimmield, pp. 40-64, CRC Press, Boca Raton, Florida.

Baldock, T.E. (2012), Dissipation of incident forced long waves in the surf zone - Implications for the concept of "bound" wave release at short wave breaking, Coastal Engineering, 60, 276-285.http://dx.doi.org/10.1016/j.coastaleng.2011.11.002

Battjes, J. A., and J. P. F. M. Janssen (1978), "Energy loss and set-up due to breaking of random waves", Proc. 16th Int. Conf. Coastal Eng., ASCE, 569-587.

Brander, R. W., P. S. Kench, and D. Hart (2004), Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia, Mar. Geol., 207, 169– 184.http://dx.doi.org/10.1016/j.margeo.2004.03.014

Falter, J. L., M. J. Atkinson, et al. (2004). "Mass transfer limitation of nutrient uptake by a wavedominated reef flat community." Limnology and Oceanography 49: 1820-1831.http://dx.doi.org/10.4319/lo.2004.49.5.1820

Foda, M. A., and C. C. Mei (1981), Nonlinear excitation of long-trapped waves by a group of short swells, J. Fluid Mech., 111, 319– 345.http://dx.doi.org/10.1017/S0022112081002401

Gerritsen, F. (1980). "Wave attenuation and wave set-up on a coastal reef." Proc. 17th Int.Conf. Coastal Eng., ASCE, 444-461

Gourlay, M. R. and G. Colleter (2005). Wave-generated flow on coral reefs--an analysis for twodimensional horizontal reef-tops with steep faces. Coastal Engineering, 52(4), pp 353-387.http://dx.doi.org/10.1016/j.coastaleng.2004.11.007

Hardy, T. A., and I. R. Young (1996), Field study of wave attenuation on an offshore coral reef, Journal of Geophysical Research-Oceans, 101(C6), 14311-14326.http://dx.doi.org/10.1029/96JC00202

Hearn, C.J. (2009). Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J. Geophys. Res., 104(C12), 30,007-30,019, doi:10.1029/1999JC900262http://dx.doi.org/10.1029/1999JC900262

Hench, J. L., J. J. Leichter, and S. G. Monismith (2008). Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnology & Oceanography, 53 (6): 2681-2694.http://dx.doi.org/10.4319/lo.2008.53.6.2681

Jago, O. K., P. S. Kench, and R. W. Brander (2007), Field observations of wave-driven water-level gradients across a coral reef flat, Journal of Geophysical Research-Oceans, 112(C6).http://dx.doi.org/10.1029/2006JC003740

Jonsson, I. G. (1966), Wave boundary layers and friction factors, Proc. Tenth Conference on Coastal Engineering, ASCE, Tokyo, Japan.

Kench, P. S., and R. W. Brander (2006), Wave processes on coral reef flats: Implications for reef geomorphology using Australian case studies, 1072 J. Coastal Res., 22, 209–223, doi:10.2112/05A-0016.1.http://dx.doi.org/10.2112/05A-0016.1

Lee, T. T., and Black, K. P. (1978). "The energy spectra of surf waves on a coral reef." Proc.16th Int. Conf. Coastal Eng., ASCE, 588-608.

List, J. (1992), A model for the generation of two-dimensional surf beat, J. Geophys. Res., 97(C4), 5623-5635.http://dx.doi.org/10.1029/91JC03147

Longuet-Higgins, M. S., and Stewart, R. W. (1964). "Radiation stress in water waves: A physical discussion with applications. Deep Sea Research 11, 529-562

Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, and J. R. Koseff (2005), Spectral wave dissipation over a barrier reef, J. Geophys. Res., 110, C04001, doi:10.1029/2004JC002711.http://dx.doi.org/10.1029/2004JC002711

Lowe, R. J., J. L. Falter, J. R. Koseff, S. G. Monismith, and M. J. Atkinson (2007), Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation, J. Geophys. Res., 112, C05018, doi:10.1029/2006JC003605.http://dx.doi.org/10.1029/2006JC003605

Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson (2009a), Wave-Driven Circulation of a Coastal Reef-Lagoon System, Journal of Physical Oceanography, 39(4), 873-893.http://dx.doi.org/10.1175/2008JPO3958.1

Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson (2009b), A numerical study of circulation in a coastal reef lagoon system, J. Geophys. Res., 114, C06022, doi:10.1029/2008JC005081.http://dx.doi.org/10.1029/2008JC005081

Lugo-Fernandez, A., H. H. Roberts, W. J. Wiseman, and B. L. Carter (1998), Water level and currents of tidal and infragravity periods at Tague Reef, St. Croix (USVI), Coral Reefs, 17(4), 343-349.http://dx.doi.org/10.1007/s003380050137

Masselink, G. (1995), Group bound long waves as a source of infragravity energy in the surf zone, Continental Shelf Research, 15(13), 1525-1547, ISSN 0278-4343, 10.1016/0278-4343(95)00037-2.

Munk, W. H., and Sargent, M. C. (1948). "Adjustment of Bikini Atoll to ocean waves." Trans. American Geophysical Union, 29, 855–860.http://dx.doi.org/10.1029/TR029i006p00855

Nwogu, O. and Demirbilek, Z. (2010). Infragravity wave motions and runup over shallow fringing reefs, ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering (http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000050

Ogg, J. G., and Koslow, J. A. (1978). "The impact of typhoon Pamela, 1976, on Guam's coral reefs and beaches." Pacific Science, 32, 105-118.

Péquignet, A. C. N., J. M. Becker, M. A. Merrifield, and J. Aucan (2009), Forcing of resonant modes on a fringing reef during tropical storm Man-Yi, Geophys. Res. Lett., 36, L03607, doi:10.1029/2008GL036259.http://dx.doi.org/10.1029/2008GL036259

Pomeroy, A.P.M., R. J. Lowe, G. Symonds and A.R. Van Dongeren (submitted). Dynamics of infragravity waves transformation over a fringing reef. Submitted to J. Geoph. Research.

Ranasinghe, R., Turner, I.L., Symonds, G. (2006). Shoreline response to multi-functional artificial surfing reefs: A numerical and physical modelling study Coastal Engineering, 53 (7), pp. 589-611.http://dx.doi.org/10.1016/j.coastaleng.2005.12.004

Roelvink, J.A., A. Reniers, A. Van Dongeren, J. Van Thiel de Vries, R. McCall, J. Lescinski. (2009). Modeling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, doi: DOI: 10.1016/j.coastaleng.2009.08.006.http://dx.doi.org/10.1016/j.coastaleng.2009.08.006

Ruessink, B. G., M. G. Kleinhans, and P. G. L. van den Beukel (1998), Observations of swash under highly dissipative conditions, J. Geophys. Res., 103, 3111– 3118.http://dx.doi.org/10.1029/97JC02791

Ruessink, B.G., Miles, J.R., Feddersen, F., Guza, R.T., Elgar, S. (2001). Modeling the alongshore current on barred beaches. J. Geophys. Res. 106, 22451–22463. Schäffer, H. A., and I. A. Svendsen (1988), Surf beat generation on a mild slope, in Coastal Engineering, 1988, pp. 1058– 1072, Am. Soc. of Civ.Eng., Reston, Va.

Sheremet, A. J.M. Kaihatu, S.-F. Su, E.R. Smith, J.M. Smith (2011). Modeling of nonlinear wave propagation over fringing reefs, Coastal Engineering, Volume 58, Issue 12, December 2011, Pages 1125-1137, ISSN 0378-3839, DOI: 10.1016/j.coastaleng.2011.06.007.http://dx.doi.org/10.1016/j.coastaleng.2011.06.007

Storlazzi, C. D., A. S. Ogston, et al. (2004). "Wave- and tidally-driven flow and sediment flux across a fringing coral reef: Southern Molokai, Hawaii." Continental Shelf Research 24(12): 1397-1419.http://dx.doi.org/10.1016/j.csr.2004.02.010

Symonds, G. and Black, K.P. (2001). Predicting Wave-driven Currents on Surfing Reefs. Journal of Coastal Research Special Surfing Issue 29, 102-114.

Symonds, G., D.A. Huntley and A.J. Bowen (1982). Two dimensional surf-beat: Long wave generation by a time-varying break point. Journal of Geophysical Research, 87, C1, pp. 492-498.http://dx.doi.org/10.1029/JC087iC01p00492

Symonds, G., Black, K. P., andYoung, I. R. (1995). "Wave-driven flow over shallow reefs." J. Geophys. Res 100, 2,639-2,648.

Taebi, S., Lowe R.J., Pattiaratchi, C.B., Ivey, G.N., Symonds, G., and Brinkman R. (2011) "Nearshore circulation in a tropical fringing reef system," Journal of Geophysical Research - Oceans, 116, C02016, doi: 10.1029/2010JC006439.http://dx.doi.org/10.1029/2010JC006439

Van Dongeren, A.R., R. Lowe, A. Pomeroy, M.T. Duong, J.A. Roelvink, G. Symonds and R. Ranasinghe (2012). Numerical modeling of low-frequency wave dynamics over a fringing coral reef. Submitted to Coastal Engineering.

Wolanski, E. and Sarsenski, J. (1997). Larvae dispersion in coral reefs and mangroves. American Scientist, 85(3), 236-243


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.